SPECTRUM +2 ROM o DISASSEMBLY

The Spectrum ROMs are copyright Amstrad, who have kindly given permission to reverse engineer and publish Spectrum ROM disassemblies.

Image © Bill Bertram 2006

SPECTRUM +2 ROM o DISASSEMBLY

CONTENTS
N L@ S ST PR PRTPPR
Release Date
DiSASSEMDIY CONIDULOTSeiiiiiiiiei ettt bbbt ea e bt e bt e s bt e e et e e bt e e b e oo b et e et e oo et e ekt e eh b e e obe e eab e e be e e s b e e ebe e e sbeesan e e bt e ebbeenbeesineenes 10
[U] £ OO P PSP UPPT 10

REFERENCE INFORMATION — PART 1
128 BASIC Mode Limitations .
Timing Information
1L I B L] = 1 PP UPPRUPRN
IMIEMOTY PAGING ...ttt ettt et h et h e e bt e b et e e bt e eh bt e bt e eh st e b et oa bt e b e e e h bt e Hh e e 4Ht e e be e ea b e e b e e e et e e ehe e e bt e h bt e bt e e he e e bt et e b e e s b e e nae e nan e e
Memory Map
ShAOW DISPIAY FlE ...ttt b ettt et e ea e bt e e h bt e b et eh et ettt e bt e b et oot e e ea et ek e oo e bt oo b b e e bt e e b et e bt e e b e e e b e e s en e e bt e e e e nneesane s
[eTa11=TaTo [=To Y/ I=T00To] oY TS O T O T O O TP OO U PO TP PP PR TUPROPPRPP
Logical RAM Banks
AY-3-8912 Sound Generator
I/O Port A (AY-3-8912 Register 14) .
Sy = Ta o F=T o I VL@ B o4 £ O PPPPPPRRPTI
EITON REPOM COUESttt ettt ettt ettt et oo bt e ab e s at e et e ekt e e bt e ehs e e st e ea bt 4okt e e e bt e Hhs e et e e eh bt e b e e 4h bt e bt e e et e ek e e e et e e nhe e et e e eab e e beesbn e e sbe e eabeenbeeas
Standard Error Report Codes ..
NEW EITOI REPOM COUES ...ttt ettt ettt ettt ettt ettt b e sh bt e bt e bt e h et o2 bt sh et et e e eh bt e b e e eh bt e be e e et e ek e e e bt e nh et et b e e e b e e b e e eeb e e ebe e e bt e beeebeesaneeneee
SYSIEM VANADIES ...ttt h ettt ekt e ettt oo bt e eat e ekt e b e oo b e e oot e e eh st e bt oo b bt e b et ehb e e b et e e b e e b e e h bt e nhe e et e e bt e b e e ettt e b et ans
NEW SYSIEM VATIADIESottt ettt h et h e e bt sh b e ekt e o2 bt e h e e e hb e e bt e o e bt e ket e ot e e she e et e e e kb e e b e e nbt e e be e e i e et e e ebneenaeeeaneeneee
StANAArd SYSIEM VAITADIESc..oiiiiiiiiii ettt h et et b et e bt oo bt e e bt sab e e b e e eh bt e oh e e eeb e e ehs e e bt e e be e e bt e nat e et e e eab e e nbeenane e
RAM Disk Catalogue
EdItOr WOTKSPACE VAIADIESoiiiiiiiiiiiti ettt h et h et eh e h e eh et e b e e e bt ekt e bt e e he e et e e s hb e e b e e e be e e be e e et e e be e e b e e nanesaneens
(O 11 T=To I 2 1@ 1Y B RS U] o] fo 101 1] 1= TR UU R PUPRRRUPRRN
RESTART ROUTINES — PART 1.
RST $00 — Reset Machine
RST $10 — Print A Character
RST $18 — COllECE A CRAIACLETeitiiitiiiiii ettt ettt et st e et e e stee e bt e eate e bt estee e beesaseaaseeesbe e b eeeaseeesseeabe e s eeeabeeea s e emseeesbeenbeeeheeeseesnbeenseeanbeesbeeannaann
RST $20 — Collect Next Character
RST $28 — Call Routine in ROM 1 .
MASKABLE INTERRUPT ROUTINE ...ttt ettt ettt she et she s abe s e et ea s e bt sa e et e 1h e ea st eh e o1 bt 4h e e s b e b e es b e bt ea b e b e e a s e bt eh e et e eh e e bt ebeenbe e b e e b e et e e b e nteenes
ERROR HANDLER ROUTINES — PART L ..ottt ittt sttt b ettt ettt es et a e bt 41t e b4 h e h ek e bt b2 e bt e b€ oot e b€ e ae e b4 h e e e bt b e e b e e bt e bttt e b bt ennenbeennes
128K Error Routinecccccecvvvniviniennnn.
RESTART ROUTINES — PART 2 ..cccovviiiiiieiee
Call ROM 1 Routine (RST $28 Continuation) ..
RAM ROUTINES ...ttt ettt ettt bbbtk b e b £ e bt e b e e bt e H £ o2 et oh e ee st 18 e e h 44 1h £ eh e e 48 £ e h e e b e e h e e b e ee e oAb e e a e e aE e eh e et e 4h e et e eh e e b e b e e st ekt en b e bt et e bt e e nneaneas
Swap to Other ROM (COPIEA 0 $5BO0D)ccueiuirueiiiitieiteitie ettt ettt sttt b e e bt h e o bt eb e e bt eb e bt eh £ e bt eh £ e a et eh e e s e e eh e es e e ab e es e e ebees b e bt es e e beasbebesanenean
Return to Other ROM Routine (copied to $5B14)
Error Handler ROULINE (COPIEA t0 $5BLD)c.eueieuieuiitiiteteeeteeteatesteseeteseesestesteseeseaseateateasesseseeseaseaaeebe s emeemeebeeEeebe s e s e eseebeebeebe b eneaneaneabeebesneseeneereanas
'P' Channel INput ROULINE (COPIEA 10 $EB2F)iuiieieiiitiiteiteite ettt st et et e st e teateeeesee st e st aseabesbe b emeeseeb e e b e eEeeeenee st es e ebeebeebe s eneeseabeabeabeseeneeneaneaneanens
'P' Channel Output Routine (copied to $5B34)
'P' Channel Exit Routine (copied to $5B4A) ..
ERROR HANDLER ROUTINES — PART 2
[11 IR 01 o (10 i1 L= TP
INITIALISATION ROUTINES — PART L .oiiiiiitiitiitiitte ittt sttt sttt ettt et b et b et h e eh e 1h e 41 £ e b e o4 e bt o4 2o bt e h £ e at e eh £ e o et eh e eh e e 1h e es b e eb e e s e e bt en e et e es e e bt esnenbenaeene e
Reset Routine (RST $00 Continuation, Part 1)
ROUTINE VECTOR TABLE ...ttt ettt ettt h st h et e bt e b ek e 22 8o k£ eaE e b€ S a et 4 €42 e e H e 4h e oAbt e h e A b e e h e oAb e eh £ e bt eh et e eh e en bt eheen et eh e et e abe et e sbeenbenbean
INITIALISATION ROUTINES — PART 2 ..oiiiitiitiiitiittaite ittt sttt sttt h et b et b e st s bt a4 1b e 44 £ 41 bt o4 £ e bt eh 2o bt eh £ e bt eh e e e et eh e ea e e 1h e es b e eb e e s e e e bt ene e bt es e e bt eseebenaeennenns
[z L R AN I T o] S PP RPN
Reset Routine (RST $00 CONINUALION, PAIT 2)iuiiiitiiieitiiteete sttt ettt ettt b e ae e bt bt e o bt e b e e b e e bt e bt eh e e bt eh e ea bt ehees bt nbe e s b e abeeneeabeessesbeeneenbeas
COMMAND EXECUTION ROUTINES — PART 1
[T U 1= @do]aqT 4 F=TaTo N o USSP SUPR
Return from BASIC LiNE SYNTAX CRECKeiiiiiiiiiitieiit ettt h ettt ettt b e e s he e e bt e et e e bt e e b bt e sb e e ehb e e ket e bt e e be e e sbeesan e e bt e sebeesbeesaneenes
Parse a BASIC Line with No Line Number
ERROR HANDLER ROUTINES — PART 3
Error Handler Routineccccocieiieniiiniciicen,
Error Handler Routine When Parsing BASIC LINEooiiiiiiiiieii ettt ettt ettt b et h ettt b e e b e e s be e st e e e ha e e bt e e be e e beesaneebee s 31
COMMAND EXECUTION ROUTINES — PART 2 .ottt ettt sttt t et b e b e bttt h et s b £ e a4 1h e eh et 1h e e s 2 e eb e e s e e e bt e s e e bt ea e bt ee e e bt eae e bt ebe e b e sbeenbeabeens 31
Parse a BASIC Line with a Line Number
ERROR HANDLER ROUTINES — PART 4 ..ottt etttk b ettt ettt 2ottt h 4 bt e b4k e bt b £ oAb e E e e e bt b £ oo et e b e e a et e bt eh e e e bt b e b e bt e b e et e e bt e bt et e bt ennes
NEW Error MESSAJE VECION TADIEcoiuiiiiiiiiieii ettt ettt b e bbb etk e oo bt o bt ea bt oo b st e b e e b et e bt e eab e et b e e s b e e nbe e sab e e sab e et e e sbneenbeesaneeneee
NEW EITOr MESSAGE TADIEiiiiiiiiie et h e bttt a e bt e e bt e e s bt e e bt e bt e bt e e bt e e et e e e bt e e bt e e b bt e e bt e eee e ettt et e e ebe e e b e e sae e e teenanes

SPECTRUM +2 ROM o DISASSEMBLY

L 111 ST - Vo -SSR
INITIALISATION ROUTINES — PART 3 .
The 'Initial ChanNel INTOMMELIONoiiiiie ettt b bt b et ea bt ekt e e s bt oo bt e ea e e e ea bt e bt e eh st e b et eaE e et e e e a bt e ehe e ea bt e nab e e bt e es e e e nbeenane e e
THE "INILAI STFEAM DAIA"eiiuiieieieeti ettt h et e b et e bt oo bt e o2 bt e o a et o2k e e ea bt e oh et 4R e e e eh et o e b e e E et oAbt e ea b e oAbt e ea bt e ebe e e et e e nhb e e bt e e be e e nbeenere et s
ERROR HANDLER ROUTINES — PART 5 .. .
Lo 0 ToT I g (o Gl == o o] PSSR
Check fOr BREAK INTO PTOQIAMNuiiiiiiiieeitiieeeieteesteeessteessaseeeasseseaasseeeassaeeassseeeassseesassseeassseeassseessssesessssssesssssseassssssansessssssesssnsseessssseeenssesesnseneans
RS232 PRINTER ROUTINES
RS232 Channel HANAIET ROULINESeiiuiiiiiiitii ittt ettt b ettt sh et o2t e e o2 bt e bt e £h et e bt e 2a b e e b e e oo bt e Ah et 4o bt e eab e e bt e ebe e e bt e eab e et e e et e e nbeeaneeen
FORMAT ROULINE ...ttt ittt etttk e o2t h e ea e a st e b e e 4h e 442 s e e ea bt £ b e e eH bt e b e e 4o e €4k et oo b e e b £ e 4ab e e HeH e 2o b e e ea b e oAbt e 4h e e ookt e ea bt ek e e e nb e e nbe e e bt e esn e e neenrneene
Baud Rate Table .
LR S 2 1 T o TU 1 Lo 101 T RS OPRPURRN
REAA BYLE fTOM RS232 POITuiiiiiiiii e ettt e ettt e st e e st e e e st te e e e steeesssaeeeasseeeaasseee e sseeeanseeeeamsseeeasseeeesseeeanteeeeanteeeenneeeeaseeeeanseeeeanseeeannteeesnnneaeannneenns
RS232 Output Routine
WIILE BYLE 10 RS23B2 PO ..oiiiiieitiiieeittie e ettee sttt e e sttt e e st e e et eeesste e e s staee s seeeeasae e e e sseeeaaseeeeaaseeeeasseeeeasseeeeasseeeanseeeeamsaeeensseee e saeeeenteeaennseeeennseeeenneeennnnn
COPY COMMANT ROULINEutiiiiteetie ettt ettt ettt e et eshe e e 2 et e s et o2 bt e1b o4 o2 bt e oh et 22t e e 2h bt e b e e £h b4 4 as e e oaE e e b o4 4a b e e 1h e e ea bt e b bt e bt e eh e e e bt e ea bt e beeenneenaneenneenn
Output Half Row
(O 10 o U 1 AN 1o o] [0 Y PSSP
(@ 0o T8 @ P = ox L= £ 00 T I][OSSPSR
Test Whether Pixel (B,C) is Set
EPSON Printer CoNtrol COUE TADIESoiiuiiiiiiitiiiit ettt b e bt e e bt e e s bt e £ e oo bt e 1h et 4 et e e h bt e bt e eh et e bt e ea et ettt ea bt e nbe e enbeenaneenteennnes
L I N O @ 11V Y AN A1 I L@ 1 I 1NN PSP
Command Data Block Format
Channel Data BIOCK FOIMALoiiiiiiiiitiiii ettt h e bt bt et a bt ekt e e h bt e eh et o e et e b et e bt e eh e e oo bt e oh e e b e e e h bt e nbe e eab e e bt e e bt e nbeeenneenabeenbee e
Calculate Timing LOOP CoUNtEr « RAM ROULINE 3uiiiiiiieeiiiieeiiitessieeesstteeestteeessseeeassseaeatsseassteeeaasseeeasssseeasssseaassessanssessssssseesssseeessseeesnssesesnsseseans 50
Test BREAK Key .
Select Channel Data BIOCK DUFALION POINLETSoiiiiiiiiiieiie ettt ettt ettt et b e e sh e e et e ea bt e bt e e b bt e bt e ea bt ekt e ea bt e nhe e eab e e nbe e e bt e sbeeenbeenaneetee s
Select Channel Data BIOCK POINTEISiiiiiiiiiiii ittt ettt h e o2 st eea bt e bt e e h bt e h e e ea et ettt oo bt e eb e e e et e e ehe e e bt e ehb e e nbeesebeenbeeanbeenbeeans
Get Channel Data Block Address for Current String .. .
NEXE ChANNEI DALA POINTETteiitiiiiiieitit ettt ettt h ettt et bt e b e sh et e s st e eh bt ekt e eh st e bt e 4o £ e e b et oo bt e b o4 4 ab e e eh bt £ bt eeh bt e bt e ehe e ettt ea bt e nbeeenbeenaeeenteenines
PLAY COMMAN (CONINUALION) ..eeiutiieeiiiieeeitiieeeteeeesieeesssteeessueeeessseesassseeesssaeesssseeeassseeeasseeeasseeeansseeesssseeesssaneaassseeanssseeanseesssnseeeasssseennseesennsenssnnsennn
PLAY Command Character Table . .
L= o O 4 T - T - SO SR
(1= T A N[(T IS T=T 0 11 (0] L= PPV P PO PPP VRPN
Get Numeric Value from Play String
L0 Lo VA oY USSR
Find Next Note from Channel String
Play Command "' (Comment)
[PV @oTaa g =T o To I @ L (@ o3 7= - OSSPSR
Play COMMANG "N’ (SEPAIALIOT) ...uvieiiuiieeiiiieeitereesteresrtteeastreeasseeteassseeaateeeaateeeasseeeasseeeaasseeeaasseeessseeesssstesasseseanssssesnssesssssseessssssessssseennsesssnnsesessssseens
Play Command ‘(" (Start of Repeat) . .
Play Command)" (ENG Of REPEAL) ...cveiiiiiiieiiiiee it esiteteestee e e st e e sssteeessteeessteeeaasaeeeasteeesssseeesssseeeasseee et seeeanseseeassseeessseeeessseeeansseaeanseneeanseeesnnsenennnnn
Get AJAress Of BraCKet POINET STOTEoiiiiiuiiiii ittt ettt a bt e bt ea e e s bt ea bt e eh bt e bt e eh et e a bt e ea bt ekt e e h bt e nhe e ea bt ettt e b e e nbe e e bt e naneenbeentnes
Play Command 'T' (Tempo) .
BT] o T @0 o 00T U o =Y (] oSS
Play Command 'M' (Mixer)
Play Command 'V' (Volume) .
Play Command 'U' (USE VOIUME EffECL) ...uuiiiiiieiiiiiie st esee st e st e e sttt e et e e e et e e e sate e e s seeeeassee e e steeeaasteeeaasaeeeassaeeessseeeansseeeanseeeennseeeennneeeansanennnnen
Play command "W' (VOIUME EffECT SPECITIEI) ...eiiiuiiiiiiii ittt et e e st e e et e e et e e e s ste e e s steeeasaaeeeasseeeesbeeeansteeesnneeeeanneeeesaeeeansnneennseeas
Play Command 'X' (Volume Effect Duration)
Play Command "Y' (MID] CRANNEI)cciciieiiiiie ittt et e e e s st e e st e e e e taeeessteeeasteeesasteeeasseeeeasseeeaasseeeansaeeeamseeeeasseeeesseeeanteeeeanseeeennseaesnnnenennsnnenn
Play Command 'Z' (MIDI Programming COOE)cccuuieiiuueeeiieeeeiietesiteeesiuessassueeesssteeessteeesssetesassseessseessasseessssssessssssesnssssesssessssseeesssseesssssensesess
Play Command 'H' (Stop)
Play Commands 'a’..'g', "A' G, L. 12", '&' @NA ' it — e e e ——— e e ——— e et ———eaate et e e teeeeatteeeanteeeanneeeeateeeanreeeannreeenn
LT 0] £ T T =0T o SRR
Point to Duration Length within Channel Data Block .
Store Entry in Command Data Block's Channel Duration Length POINter TabIEcccuveiiiiieiiiii ettt ee e ee e e sere e e snaeeeenneeeennes 62
[N A @) T4 = Ta T LU 0 o T 1= U= SRS 63
Envelope Waveform Lookup Table ...
1dentify COMMANT CRATACIETuuiieiiiieeiieeeeiiee e st ee e sttt e e steee e e teeeesteeeesseeeeassseeeassseeaasseeeaasteeesnseeeeasseeeeaseeeeeasseeeanseeeeansaeeeasseeeesseeeanteeeennneeeennnenennnn 63
ST 011 o] T=T I = o L= OSSPV UUPOPRP
Find Note Duration Length .
o1 SR DN =T T I Lo L= O PP PUU POV UPRPPRN
LSS AN LU L4 1= o T SRR 64
Play a Note On a Sound Chip Channel .. .
Y=y S To 10 g To I 1= g 1T Lo LT 1) 1= S
LR ICT= o IS To 10T a o @ T g =T = Lo gl =T) (=Y OSSRt
Turn Off All Sound
Get Previous CharaCter frOM PIAY STINQcicueeoiiieeiireeiieesieeesteee e steeeeastaeeesteeeessseeaessteeeassseaasseeeaasseeeasteeesssseeeasseeeaassaeeasseeesnsseeesnssneesssneennseees 66
Get Current Character frOM PIAY STHNQoeioieeiiiieee i e s e st e e st e e st e e e sateeesaaeeeasteeeeataeeeasseeeeasseeeassseeeasseeeeasteaessseeessseeeeasseeeeansaeesnseeennnneeennnns 67

SPECTRUM +2 ROM o DISASSEMBLY

L 0T 0 ToT oI o P Y 4 (o) Gl =T o T o £SO SP 67
Play Note on Each Channel
T Lo (3 B U] = oo O OO PR URROPRTP
[Lo IS g F= 11 L= Al I TU = U T) =T Vo |1 o PP
Play a Note on Each Channel and Update Channel Duration Lengths .
[0 LT o o S0 o T I Lo = RO SPPRN
L PV N o (=30 T Y/ 0 o= U T T SO
Turn MIDI Channel Off .
Y=L aTo I =3V G (T 11T = o SRS
CASSETTE / RAM DISK COMMAND ROUTINES —— PART L .oiiiiiiiitite ittt e sttt e e sttt e e saee e astteaesssaaeesssaeeasssseeaasssaeansasaeanseeeasssseeassseseassessannseessnnseeesnnseees
SAVE Routine
[0 YD I o1 1= USSP PRTOPRRUPRUPROE
VERIFY Routine
MERGE Routine
LR TN 1) Q@ o] 4] = U o B o =TT |1 SRR
RAM DiISK VERIFY! ROULINEeutiiitiiiiiieitie ettt ettt sttt e hb e h et £ a et e bt o2 b £ e bt 442 s e e 1H et et £ oo a bt e b e 44 H e e e b et oo b e e b et e b e e nh bt ettt ea bt e nbeeesneenaneenteennnes

RAM Disk MERGE! Routine

RAM DiSK LOAD! ROULINE ...ttt ettt ettt ettt e h et et et e o bt e 1h et 42 st e oo 8t e bt e eh st e oh et eaE e ek et 4o b e e eh et 42 bt e ohb e £ bt e eh bt e ohe e eht e ettt e b e e ebeeenbeenaneebeenane
RN 1Y o =T = =SSR
Get Expression from BASIC Line ..

[g T=Ted S 1= g F= 1o L= 1a o o o OSSRt
Cassette / RAM Disk COMMANG HANGING ...eoiiiiiiiiiiieeiiee ettt e st e s e e st e e sstaeeeasteeeasteeessseeeesssseeeasseeeanssaeeanseeeensseeeasseeeeansaeeannsaeeanteeesnnneeennnnes

EDITOR ROUTINES — PART 1

Relist the BASIC Program frTom the CUITENT LINEcciuiieiiiiieiiieeeiiee e st e e sttt e e sttt e sstaeeessteeesssseeessseeeassseeeanteeeansseeeasseeeassaeeaanseeeasseeesnssaeesnnneeenssnns
Print All Screen Line Edit Buffer ROWS t0 the DISPIAY FlEeieiiiiii it s e st e e e st e e e st e e e st e e e teeeeesteeeaanteeesneaeeannneeennseeeanneeeeans
Clear Editing Display .
Shift All Edit Buffer Rows Up and Update Display File if REQUIFETcccuiieiiiieiiiie et s e st e e e e ste e e ssaeeesnaaaeessaeeeansaeeesnsaeeesnsseesssneneenseneennes

Shift All Edit Buffer Rows Down and Update Display File if Required
Insert Character into Edit Buffer Row, Shifting Row Right

Insert Character into Edit Buffer ROW, Shifting ROW LTtc.uiiiiiiiii et e st e e e e et e e et e e e sste e e e nnteeesnaeeeansaeeeasseaesnseeeanneeeeans
BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART L ...ttt ittt e e s ettt e e e e s ettt e e e e e s st eeeaeaesnnntneeeeeesennsnnneeeeens 92

The Syntax Offset Table

L LCIRS) VLt Nl = U= 1 =1 1= I Lo L= USRS RRSUR 93

The 'Main Parser’ Of the BASIC INTEIPIELETiiiiiieeiieie et e eeee e st e e sttt e e steteeasteeaeataeeassteeeasseeeeasseeeaasseee e steeeasteeeansseeeasseeeasseeeansteeesnnteeesnsneeensnes 95

The Statement Loop

LI LIRS L= o F= L= Lo YU o) (o TU] - USSP 96

The 'Statement RETUIN' SUBTOULINEcouiiiii ittt b e a ettt h e e bt e o h et ettt ea bt ek et oo st e eh et ea bt e b bt e bt e she e enbe e aabeenbeeenneennneenteees 96

The 'Line Run' Entry Point
The 'Line New' Subroutine
L Y 0 T 1T OSSP
The 'Line End' Routine .. .
TRE "LINE USE' ROULINEeiiiiiiiiiiiiie e iiiee e ittt e e sttt e s teee e e teeesssteeeasaeeeeasseee e sseeeaasaeeeaaseeeeasseeeeasseeeanteee e nteee e neeeeense e e e nseeeenseeeeannteeeanneeeennnnaeansanaennseeeennnannn
B LTS N Lot I T 0T 1= SRS
The 'CHECK-END' Subroutine
THE "STMT-NEXT' ROULINE ...eeieiiutiieiitiieeitteeiseeessteeesteeeassteaessteeesssteeeasseteaasseeeasteeaeassseeasseeeasseeeeasseeeansseeeansaeeeassaee e s seeeensaeeennseeeennneeeenneeneansnneennsenen
LTSI O Ty aF= g T O Tt 1= o OSSO SP
The 'Command Classes — 0C, 0D & OE' ..
The '‘Command Classes — 00, 03 & 05'
I ST O 0 T g F= a1 Tt 0 RSP S
The 'Command Class — 02' ...
The 'Command Class — 04'
The 'Command Class — 08
The 'Command Class — 06
LR =T oL A O N[0 Y T o = 7] OSSPSR
THhe "COMMANG ClaSS — A"eiieeiiee e it e e ettt e et e ettt e e st eeasteeeeateeeaasteeeaastaeeasseeeeasseeeasseeeaaseeeeanseeeeasseeeeseeeeansseeennteeeennteeeessneeeanseeennseeeannaeeennnees
The 'Command Class — 07" ...
I ST O 0T g F= a1 Tt 0 SR
The "COmMMANG ClASS — OBoiiiiiiieeiiiie e it e et er e et e e st e e e sttt e e teeeeasteeeaasteeeasseeeeassaee e seeeeaasseeeanseeeeassseeeseeeeanseeeennteeeeanteeeesseeeeansaeeennseeeannaeeennnees
IF Routine
L0 B o T 11y = OSSR
L N I I Lo 1 = OSSPSR
DATA Routine ...
L8 LN L 10 (1 T USSP
CLEAR Routine
GO SUB Routine
RETURN ROULINEeiiiiiiiieiiteieeste e stee e sttt e e stteeeastateeateeeesssseeessseeeassseeeasseee e steeeaasseeeansaeeeanseeeeasseeeansseeeasseeeeassaeeensseeennsseeennseeeennseeeenseeeennseeeannsanennnnn
[0 N L 11 TSRS
MOVE Routine
Y L N O I @ 1 Il N S o A = I
LU T = oY= I 10T U Y OSSPSR

SPECTRUM +2 ROM o DISASSEMBLY

[Qe oTo T = V4 B (o TR] =Y S UPRSURROY 107
BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 2iiitiiiiie ittt ettt e e e ettt e e e s sttt e e e e e e st e e e e e e aennnnteeeeeeesnnsnnneeens 108
SPECTRUM Routine
MENU ROUTINES — PART 2 .ooiiiiiiiiiiitiiitete et ittt e e e e ettt ittt e e e s ettt eeeeeassaeteeeeeeeaaasssteeeeeeesaantse et eeeeaaaansteeeeeeeaanssteeeeeeeeaansaeeeeeeeeeannnbeeeeeeesannsnnneeeeeessnnnen 108
L U I LT U R R N T @ o 1o) o OSSO 108
Set 'P' Channel Data 108
[72 B B @ 14 F= g T [= (= USRS 109
BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 3 .. 109
[S I = (o101 (o1 PSP P PR UPPOPP 109
[IS {010 1] =TSPV PPROPPO 109
RAM Disk SAVE! Routine 109
CAT! Routinec.cce... .. 110
ERASE! ROULINE ...ttt ettt ettt h et ettt e o2 bt e e b et 4o 4t e h st ok e o4k et 4 b et Ha e € e b e e oa b e e b e e 4ot e oo h s e 4o b £ e b et 42 b e e Ahe e £a b e e ea bt e b e e e ab e e be e e a bt et e e b e nnneennes 110
RAM DISK COMMAND ROUTINES — PART 2 ..iiitiiiiitiiiiitititet e e e asteeete e e s saataeteeeaeeesastaeeeeaeaaassnteeeeeeeeaaasssteeeeeeesantseeeeeeeasannsteeeeeeesansssaeeeeeeesansaneeeeesnnns 110
Load Header frOM RAM DISKoiiiiiiiiiieitit ittt ettt ettt a e e bt e eh et e b et oa bt e b et o2 bt oo h et oo bt e ea bt e bt a4 he e e bt e e e bt e b e e e bt e nhe e bt e e b s 110
Load from RAM Disk .
PAGING ROUTINES — PART L ooiiiiiiiiiiiiite ettt et e e ettt et e e e s e st ettt e e e e e s s nteeeeeeeeaaasasteeeeeeesansteeeeeeeeeanstseeeeee s e nsseeeeeeeeesmnsbeeeeeeeeansnseeeeeeesannsnneeeeeeennnnnnnns
L 1o TR o o [Toz= U = ¥ AN 1Y = T o USRS
Physical RAM Bank Mapping Table
RAM DISK COMMAND ROUTINES — PART 3 ..
Compare Filenamescccccovvveeiiiveeniineennns
Create NEW Cat@lOQUE ENLIYccciiiiiiieeiiiieeitiee e sttt e e teeeesteeeassteeesseeeeassaeeaastaeeasseeeasseeeeassseeaasseeeaasaeeesnseeeeasseeeeseeeeanseeeennseeeanneeeeannneeeannnneennsneeans
AdJUST RAM DISK FIEE SPACE ...iuveiiiiuiieeiiiiieeiiiteesteeeastteeessteaesssteaessseteaseseaastseeaasteeeaassseeasssesaasseeeaasseeesasteeeassseeeasseeeasseeeansseeesnseeeessseeeensnenenssnnannes
Find Catalogue Entry for Filename ...
FINA RAM DISK IR ...ttt h et ekttt e eh e ot oo et ekt e H b e o2 b et 1a et 4o b e e oo bt oAb e 4ab e e h bt e b e e b b4 e bt e ea bt et e e ea bt e nbeesat e e aneenteenbee s
L8] oo E=1EC I @F= 1= (oo U LT 1 USROS
Save Bytes to RAM Disk
Load Bytes from RAM DiSKcccccvvevvieeeriieeeniiee e
Transfer Bytes to RAM Bank 4 — Vector Table Entry 118
Transfer Bytes from RAM Bank 4 — VECIOr TADIE ENTIYviiiiiiieeiiiie i esiie e eee e st e e sttt e e e st e e e et eeesnteeeessteeeessseeeasseeeeassaeesanteeesnseeesnneeeanseeenns 119
PAGING ROUTINES — PART 2 ooiiiiiiiiitiiiti ettt et e e ettt e e e s e sttt et e e e s s ntae et eeeeaaasae et e eeeeeaansteeeeeeeee s ssteeeeeee s e nsseteeeeeeeamnsbeeeeeeeeanssseeeeeeesnnntnneeeaeeennnnnnnen 119
Use Normal RAM Configuration .. .
L= o g Ry AN Y T Ty | PP O PP PP PR PP 119
Use WOrksSpace RAM CONFIQUIALIONuuieiiiiieiiiiisesieeeseeeste e e s teeeessteeessteeesssaeeessseeeasaeaeaasseaeanseeeeasseeeassseseansaeeennteeesnseeeeasseeeeanseeeasaneennsaneennsenns 120
RAM DISK COMMAND ROUTINES — PART 4 ..ooiiiiiiiii ittt ettt e e e e s ettt e eeeesa s e et eeeeaassa e et e eeeeeaasaeteeeeeeesannbeeeeeeeeaaannsseeeeeeeaansssaeeeeeeesnnntaneeeeeennns 120
Erase @ RAM DiSK FIE ...ttt bttt b e o2ttt o h e bt ook bt e bt a4 h €4kt e oo bt e b e eH bt oAb e e 4 ARt e b et oAb et ehe e e bt ea bt b e e h e e nhe et et 120
Print RAM DiSK CAAlOQUEoieiiiiiiiiiiieiiiiee ettt e sttt e esteeessteeessteeeasaeeeasseeesatseeeassseeessseeeesseeeanseeeaanteeesasteeeanseeeeassaeeansteeeansseeeansseeesnsaneasnenennsnnnnnnes 123
Print CatalogUue FIlENAME DALAcccivieiiiiieeiiiieesieteesttte e s tteeestteeessaeeeasseeeeasteeeaasteeeaasseeeassseeeasseeeaasseeeaasteeesssseeeasseeeesseeeansseeeansaeeennsaneensnenensnnnannes 124
Print SiNGIE Cat@lOgUE ENLIYoiiiiiieiiiiie ettt e et e e st e st e e s ateessteeeassaeeeasteeesasteeesassee e sseeeanteeeeaneseeeasseeeesseeeeanseeeeanseee e nteeeanseaeeansneeeansneeansaeennnsenesns 124
BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 4 125
[N I (o 101 1o 1= PSPV PRUPROPPOPN 125
PRINT Routine 125
INPUT ROUBINE ...ttt ettt ettt b e skttt eoa e e b a4 h e e e b et 4ot €28 e €42 b e e 1h et 4ot £ 4o h bt £ E £ e h 4442 h et 1h b€ e b oo e H bt oAbt 44 e st e b et oo bt e b et eab e e nheeeabeennbeebeeneneenn 125
(010 oA = (o 111131 S OOV PP TRPRVRPPRNE 125
NEW Routine .
CIRCLE ROULINE ...ttt ettt ettt h et h et e ke e bt ea bt o2kt e o2 bt e 4h o442t e £ o4 st 2o ke e 4H 8t e H e e 4ot e 4ot e e 4o b e e b e e 4o bt e Hh et oo b £ e b bt e bt e she e e b et ea bt e et e e enbeenaneenbeenane 126
DIRAW ROULINE ...ttt ittt ettt ettt a ettt ea bt e bt e 4h et e s et ea bt ekt e o2 b e e 1h e e 4ot 4o b s e 42k e e 4E 84 4o b e e oa bt 2ok £ e 4h bt oAb e e 4h e e e e et e s bt e b et 4 A bt e eh bt et e e ehb e e b e e s hneeneeenbeenbeeanne 126
(D1 (o 0111 =TSR U PP UPROPPPO 126
Error Report € — NONSENSE IN BASICcuuiiieiiiie it e st e e st e sttt e et eeeateeeesaeteeesseeeeasseeeaasteeeansteeeanseeeeanseeeeasseeeanseeeennsseeeanseeeesnneeeanseeeennseeeanneennn
Clear Screen Routineccocveveenne
EVAlUAE NUMETIC EXPIESSION ...e.uveieiiuiiieiiutieeateeeesteeeassteeessteeesssseeaassseeasseeesssseeesssseeassssseassssseassssesassesssnssesessssssenssnsssnssesssnssesssnsseessssssesnssseesneensnes
PrOCESS KBY PrESS ..ottt ettt e
Find Start of BASIC Command .
S I O] 41y 1 = o PO O PR UPRPPPPN 129
LS @] o T=T = 1 (o] @ 4 F= = T2 (=Y SRRSO 129
(0 01T -1 (o G 0] =T LT I Lo = SRRSO 129
Is Function Character?cccoceeene . 129
Is Numeric or Function Expression? . .. 130
LR[00 [=T g o g P =T 1= TPV PR PP PRUPPOPN 130
Lo N o (o 111 1o 1= PSSO PP PPOUP PO
UNUSED ROUTINES — PART 1 .
LR (8] 0 (o T =T 1o] S PSSO PP PRTOUP TP
BC=HL-DE, SWAP HL GNA DEooiiiiiiiiiiiie ittt e st et e e e e e s ttee e ssateeeateeeeatseaeassaeeesaseeeesseeeasseee e steee s seeeeansseeeasseeeensseeeansseeeansseeeansaneensnenennsnnnennes
Create Room for 1 Byte
Room for BC Bytes?
HL = A*32cceeel .
oL PSSP
[T To B g To T L Lo =TT - ot SRS
Print Screen Buffer Row

Blank Screen Buffer Content ...

SPECTRUM +2 ROM o DISASSEMBLY

Print Screen BUFfEr t0 DISPIAY FlEeiiiiiiiiiiie it ct et e et s e e e sttt e e ettt e st e e e steeesasteeeanseeeeasseeeeasaeeeansseeesmseeeeasseeeenseeeeanteeeenteeesnneeeennnneenns 133
Print Screen Buffer Characters t0 DISPIAY FlEc.uiiiiiiiiiiie et se s st e e s e e e st e e e te e e e esteeeessseeeessseeeessseeeansaeeaantaeesnteeesnnseeeannaeeennsnnenns 134
Copy A Character « RAM Routine » .
TOQQIe ROMS 1 « RAM ROULINE 3 ...uuiiiiiiiieiiiiieeiiiteeitieeesstteesssteeasseeeeastaeeassteeeasseaeasseeeasseeeaasseeeansseeeasseeeeassseeassseeeansseaesnsesesassenessssesesnseseenssenssnnees
TOQQIe ROMS 2 « RAM ROULINE 3 ...uuiiiiiiiieiiiiieeiiieeeitteeestteesssteeasseeeeassaeeaasteeeaasseeeasseeeasseeeaasseeeasseeeaasseeeassseeasseeeansseaeanseeesassenessssssesnsenesnnsenssnnees

Construct 'Copy Character' Routine in RAM .
Set Attributes File from Screen Buffer

Set Attributes for a Screen Buffer Row 137
Swap INK and Paper ALHDULE BILSeiiiiiieiiiie it eit ittt e e e e st e e st e e e e taeeeetaeeesasteeesaseeeesseeeanteeeeasteee e staeeassseeeanseeeanssaeeannseeeanseneeasnneensnnaennes 138
[3 T= = Uox 1= I 7 | - PSRN 139
KEY ACTION TABLES 139

Editing Keys Action Table ..
Menu Keys Action Table
MENU ROUTINES — PART 3 .oiiiiiiiiiiititittteeeiiitieetteeesaaueteeeteeesaataeeeeeeeaaaneteeeeeeeaaasssteeeeeeesaansseeeeeeeaaaansteeeeeeesaasssseeeeeeesannsaseeeeseaeannnteneeeeesannsnnneeeeeessnnses 140
L1 E LTIV FoTo LT ST =Y o USSP 140
Show Main Menu
EDITOR ROUTINES — PART 2 iiiiiiiiiiiiitt et iiiittitte e e e e sttt e e e s e sttt eeteeeesa s ae et eeeeaa s neteeeeeeesaansseee et eeee s s s aeeeeeeeeaannsteeeeeee s e nsseaeeeeeeesnnnbneeeeeesannsntsneeeeesannnnnn 141
Return to Editor / CalCulator / IMENU fTOM ETOFoiiiiieiitieeit ettt ettt ae e bbbt ea bt bt e eh e e bt e ea bt e b et e bt e e b et e ab e e nae e et e e beeenneeneeeentes 141
Return to the Editorccccoveiviiiiiiniiieen . 141
Main Waiting Loop
Process Key Press 142
RO LTI L= Y P TaTo | Yl o1 = PSR 143
L] [Tod g o =T g Tor (=T o OO U PR PPRUPPOPP
Select Upper Screen ...
0T 0ot g (o =TT T USRS
Produce Success Beep
MENU ROUTINES — PART 4
Menu Key Press Handler Routines
Menu Key Press Handler — MENU
MeENU KeY PreSS HaNIEr — SELECTuiiiiiiieeiiiie e ititeesteee e ettt e e steeeassteeeassaeeaasteeeaasteee s saeeeasseeeeasaeeeasseeeansseeeaaseeeesssaeeesseeeansseaeanseeeennseeesnnnennannnn
Menu Key Press Handler — CURSOR UPoii i iiiis et e st e e s ee e e st e e e ste e e ssteeesssseeaasaeeeasaeeeansseeeasseeeeaseeeeasseeeeanseeeannteeesnteeeannneeennnnneans
Menu Key Press Handler — CURSOR DOWN
Y =T o T I T[T RU PO PRTPPRURTPP
=Y g Y =T o O TSP TP OPRUPROPRRPP
Edit Menu
Calculator Menu
Tape Loader Text
o o IU R o o Tl T gl o Lo U g 1= O PO STO PRSPPSO
L LAY o T T Yo (= T= T o @ o1 [) o RSP RSSSPRE
Edit Menu / Calculator Menu — Exit Option .
Main Menu — Tape Loader Option
Edit Menu — Renumber Option
o LAY =T T T o A o o PSR RRN
L= U I LT U R @Y [T = o G @] o111) o SRS
EDITOR ROUTINES — PART 3
R A O T Yo gl =] oY o o PSPPSR UPRPPRP
R (U IR o T =T Y =T o O SO PTOP TP PPR PR PP
Main Screen Error Cursor Settings ...
Lower Screen Good Cursor Settings ...
Initialise Lower Screen Editing Settings .. .
Initialise Main SCre€N EQITING SEIINGSiiiiiiiieiiiiee ittt ciiee e st e e sttt e et e e e s te e e ssstee e s saeeeasaeeeaasaeeeasaeeesssseeeassaeeaasseaeansseeeansseeeanseeeessneeeasnneennseeennnsnnesn
Handle KeY PreSS CRAraCIEr COUEccuueeiiiieeiiiieesiieeesteeesetteeestaeeesaseeeastsaeeasteeeaasteeesasaeeeassaeeasseeeasteeeasseeeeasseeeaasaeeeansseaesnsseeesnseneasnneennseneannnen
DELETE-RIGHT Key Handler Routine
DELETE KeY HaNGIEr ROULINEveiiiiiiieiiiieeiiieeestieeessteestieaestteeesssteeesssaeeassseeeanteeaaassseesasseeeasseeeeasseeeaaseeeesnsteeeansseeeasseeeensseaeansseeennsaeeesnssaeensnnnennen
ENTER K@Y HANAIEr ROULINEoiieiiiiieiiiiieeteeesette e sttt e e s tee e e ssteeeessteeesssaeeesssaeeeasseeeaasseeeaatseeeasseeeeasseeeasseeeeanteeeeasEeeesneeeeasneeeeannaeeanseeeanneeeesnneeeennnns
TOP-OF-PROGRAM Key Handler Routine ...
END-OF-PROGRAM Key Handler Routine ...
WORD-LEFT Key Handler Routine
WORD-RIGHT K@Y HANAIET ROULINE ...eiiiiieiiiiiieeitiieesitie sttt e e steeeateeeessteeeassteeessteeessseeeeasseeeaasseeeansteeesmsseeesssaeeesseeeanseeeeanteeeesseeeanneeeansneeannsenennnten
LRY=T 101V U £ PP PSPPI
Show Cursor .
[0S o] | U Yo I USRS
[(o I OA 0| T gl = Y o] o PP UP RS PRTRTR PP
Store Cursor POSItIONcccooeviiieniiiiesece e
Get Current Character from Screen Line Edit Buffer
TEN-ROWS-DOWN Key Handler Routine
TEN-ROWS-UP Key Handler Routine
LN @ T I | =V o P La T | T o T 1 = SR RSUSRY
START-OF-LINE Key Handler Routine
CURSOR-UP Key Handler Routine

SPECTRUM +2 ROM o DISASSEMBLY

CURSOR-DOWN KEY HANIEr ROULINEiiiiiieiiiieeiiiie e siiee e sttt e estteeestaeaesseaeeasssaeeassseeaasseeeaasteeessseeeasseeeeasseeeaasseeeassteeesnseeeeannseeeasseeeassneennsseeesnsenns 157
CURSOR-LEFT KEY HANUIEI ROULINEuviiiiiiieeiiieeeitieeeeitteeestteeesteeeeateeeessteeeassteaeasseeeasssseaassaeeasseeeansseeesssseeasseneasseseesnsseeeassenessssssesnseseensenssnse
CURSOR-RIGHT Key Handler Routine
Edit BUFEr ROULINES —— PAIT L ..ottt ettt ettt h e s a et e b e o bt ekt e 42 bt e ohe e 42t £ 44 H bt e b e e 4H b€ e b et oo k£ e b et 42 bt e eh e e e et e e oo bt e b e e en et e nhe e et e e be e e b e e nnneenees
Find Closest Screen Line Edit Buffer Editable Position to the Right €1S& LEfteiiiiiiiiiic e e et e e e e e
Find Closest Screen Line Edit Buffer Editable Position to the Left else Rightccccevvvveennnen.
Insert BASIC Line, Shift Edit Buffer Rows Down If Required and Update Display File If Required ...
Insert BASIC Line, Shift Edit Buffer Rows Up If Required and Update Display File If Required
Find Next Screen Line Edit Buffer Editable Position to Left, Wrapping Above if REQUITEAccueiiiiieeiiiie e see e ree e see e
Find Next Screen Line Edit Buffer Editable Position to Right, Wrapping Below if REQUIrEMceoiiiieiiiieeeiiie e see e e
Find Screen Line Edit Buffer Editable Position from Previous Column to the Right
Find Screen Line Edit Buffer Editable Position to the Leftcoccooiiiiiiiicene
Find Start of Word to Left in Screen Line Edit Buffer
Find Start of Word to Right in SCreen LiNe EdIt BUFEEc.uiiiiiiiiiiiee ettt s e e s e et e e st e e st e e e saae e e e seeeeesteeeeanteeesnteeeannaeeennnneeans
Find Start of Current BASIC Line in Screen LiNe Edit BUTEToiiiiiiii ettt be e s
Find End of Current BASIC Line in Screen Line Edit Buffer .. .
Insert BASIC Line iNtO Program if AIEIEAccuiieiiiiieiiiee et e sttt s e st e e sttt e e st e e e ssea e e e saeeeeeasseeeasteeeaanteee s saeeeanseeeeanseeeesteeeannteeeanseeeeansaeeennses
Insert Line into BASIC Program If Altered and the FirSt ROW Of the LINEccuuiiiiiiiiiiie e e et e et e et e st e e s nae e e s e e e snnaneennneeenns
Insert Line into BASIC Programccccoccuieeiiuireeiieeesiieessnneessneeeesssnneeanes
Fetch Next Character from BASIC Line to Insert ...
Fetch Next Character JUMP Tablec.ooooiiiiiiiiie e seee e .
Fetch Character from the Current Row of the BASIC Line in the Screen Line Edit BUfer ..o
Fetch Character from Edit BUFET ROWoiiiiiiiiiii ittt b et h ettt eea bt e bt e e h et e bt e ea bt ekt e e s bt e nhe e e et e e ebe e e bt e nbee e beenaneetee e
Upper Screen Rows Table
Lower Screen Rows Table

R A (oI = 1 IS ol (1= o T PSPPSR PP PPRP
RESEt 10 LOWET SCIEEM ...coiuviiiiiiiii et
Find Edit Buffer Editable Position from Previous Column to the Right
Find Edit Buffer Editable Position to the Leftcccocoeviiiiiiiiiicenn .
Fetch Edit BUEr ROW CRATACLETc..eiiiiiitii ettt ettt h e bttt e e et ekt e s h bt e h et o e £t ettt e b e e e h et oo bt e ea bt e bt e eh bt e nhe e eat e e b et et e e nbeeenbeenaneebeeanne
Insert Character iNto SCreen LiNe Edit BUFEE ..ottt b ettt e e h bt e bt e et e bt e bt e sbeeebeesaneebeenas
Insert Blank Row into Screen Edit Buffer, Shifting Rows Down .
EMPLY Edit BUFEN ROW D@EAiiiviiiiiiieeiiiieeiiee e sttt e e s ee e st eeesstaeeessteeeassaeeeastaeeeasteeeaassseeeseeeeassaeeeasseeeaasteeesnseeeeasseee e saeeeensseaennseeeennsaeeennneeensnnnannes
Delete a Character from a BASIC Line in the Screen Line Edit BUFFEToouiiiiiiiiiiii ettt
Shift Rows Up to Close Blank Row in Screen Line Edit Buffer
DELETE-WORD-LEFT Key Handler Routine ...
DELETE-WORD-RIGHT Key Handler Routine
DELETE-TO-START-OF-LINE KEY HANGIEI ROULINEccciiiiiiiiiieiiiiieesitieeestee e esieesssteeesssaaeessaeeeassseaesssseeesnsaeeessseeeaassseeassaeeeanseeeeassseessssenessnnsannes
DELETE-TO-END-OF-LINE K@Y HANUIEI ROULINEeiiiiiieeiiiiieeitiieesteeesssteeesstteeesssaeeessteeeansteeesssaeeesssseeeassseeaasseaesssaeessnsseessssesesssseseansesssnssesesnnsenes
Remove Cursor Attribute and Disable Updating Display File .
Previous Character Exists in Screen Line Edit Buffer?
Find RoOw Address in SCreen LINE EQIt BUFFETco.iiiiiiiiiiieiee ettt b et b ettt e e et et e e b bt e bt e s et e e bt e e bt e nbeeenbeenaneentee e 183
Find Position within SCreen LiNe Edit BUFFETc.ii ittt h et b e bt e bt e s bt e she e bt e bt e bt e shn e et e e e e beeanees 184
Below-Screen LiNe Edit BUET SEINGSvveeiiiieeiiiieesiieeiiieeesittee e sttt e e stteeeateeeeasteeeaasseeeaasteeeasseseaasseseasteeesssseeeasseeeeasseeeasseaeansseeesnsaneessnenenssnnnennes 184
Set Below-Screen Line Edit Buffer Settings .. 184
Shift Up Rows in Below-SCreen LiNe Edit BUTETiiiiiii ettt s e e e st e e et e e e st e e e ssaeeeesseeeeasseeeeenteeeaanteeesnsteeeannaneennsneeans 184
Shift Down Rows in BElOW-SCreen LiNE Edit BUIFEToiiiiiiii ittt ettt h ettt e be e e b e e sbn e e bt e sabeebeeanne 185
Insert Character into Below-Screen Line Edit BUFFETio ittt bbbt ettt nbe e st enees 186
Find Row Address in Below-Screen LiNe Edit BUFFETiiiiiiiiiieii ettt b et be ettt e bt enbe et e s e nbeenane s 188
Delete a Character from a BASIC Line in the Below-Screen Line Edit BUETcoiiiiiiiiiiiii e 188
AbOVE-SCreen LiNe Edit BUfEI SEIINGS ...vviiiiiieeiiiieeiiie e sie e setee sttt e sttt e e st e e e e e e e s ste e e e steeeasaeeeeassaeeasteeeansaeeeanseeeessseeeansseeeanseeeesnseneennseeeannnnannses 189
Set Above-Screen LiNe Edit BUIfEr SEIHNGS ...iiiiiiiiiiie i eiiie st e st e et e et e e e e e e e e te e e s ateeeasaeeeeasteee e steeeaasteeessseeeeasseeeasaeeeansaeeennseeeennnenennsnenen 190
Shift Rows Down in the Above-Screen Line Edit Buffer .. 190
Shift Row Up into the Above-Screen Line Edit BUfEr if REQUITEAuieiiiiieiiiie ettt e e e st e e e st e e e sta e e e staeaesnteeeesnseeesnnneeennnes 191
Find Row Address in Above-Screen LiNe Edit BUFETo.oo ittt h ettt e bt esbe e et et e s 192
BASIC Line Character Action Handler Jump Tableccccevviveiiiieeciieee s .. 192
Copy a BASIC Line into the Above-Screen or Below-Screen Line Edit Buffer 193
Set 'Continuation' Row in Line Edit BUffercccccooiiiiiiiiiiciiecec e .. 194
BASIC LiNe HANAING ROULINESveiiiiiiiieiiiieeiiiee e ittt e e steeeeeteeeessteeeassteeeasaeeeasseee e steeeaasteeessseeeeasseeeasseeeansseeeaaseeeessseeeansseeeanseeeeanteeeennaeeeannneeeansneennsnnneans 195
Find Address of BASIC Line with Specified LiNE NUMDETcc.uiiiiiiiiiie sttt e s e e st e e st e e e s teeessaeeesnsseeessseeeessneeeensneaesnnneeenne 195
Create Next Line Number Representation in Keyword Construction Buffer .
Fetch Next De-tokenized Character from Selected BASIC LiN€ iN PrOgram ATB@eeeiuureeiueeeeiteeeeeieeessteeessaeeesssesessssesssssseessssseessssseessssseennes 195
Copy 'Insert Keyword Representation into Keyword Construction Buffer' ROUtING iNt0 RAMccuuiiiiiieiiiiie e cr e see e teee e seee e seeeeesnnee e e 195
Insert Keyword Representation into Keyword Construction Buffer « RAM ROULINE »cciiiiiiiiiieeiiieeciie e esiiee e see e see e sieee s snaeeeeteeessneaeesnnnneens 196
Copy Keyword Characters « RAM ROULINE 3ciiiuuiiiiiiieiiiieesiiee e sttt e e steeeessteeeeastaeeaastseesasseeeassseeaasseesaasseeessteeeassseeeasseeeeasseeeassesessseessssseesssssnennes 197
1o =T o 11V 0] =T o I 0o 0 AT I o) [OSSPSR 197
Create Next Line Number Representation in Keyword ConstruCtion BUFFETc.uviiiiiii it et e et a e e nnaaeesnaae e e 198
LT =T AN T @ | IR oI LU T o7 Gl 0 o [OSSR 199
Find Address of BASIC Line with Specified Line Number 200
Move to Next BASIC LNcocvviveniiiiienicee e .. 200

SPECTRUM +2 ROM o DISASSEMBLY

(O g T=Te) Q= Al = Lo I Y NS T = (oo - o RS 201
Compare Line Numbers .
Clear BASIC LiNE CONSIIUCHON POINTEISccccuiieiiiieeiiiieesieeeesieeesstteeessaeeeessaeeeassaeaestseeesssaeeeasseeeaseeeeasseseaasteeesssaeeeasseeeaasseseansseeessseeessssnesssnenennes
LT To N (o [T R0 2 7 2] [= PRSPPSO
Fetch Next De-tokenized Character from BASIC Line in Program Area
Edit BUFfEr ROULINES — PAIT 2 ...iiiiiiiiiiieiiiie e eitee et e e et e e s tee e s te e e sasteeesaseeeeasaeeeaasseeeaataeeeasseeeesseeeeesseeeeanteeeeasteeean s eeeeasseeeenssaeeansaeeennseeaeannneeensneneansnnnennes
LG AT (oL (0 FSTRS (o TN - o PSSP
Indentation Settings .
Y=Y [o Lo =0T T ST= g LSS
Store Character in Column Of Edit BUFEI ROWcoiiiiiiiie ettt e et e et e et e e e st e e e s e e e sasteeeassee e e saeeeeasaeeesnseeeesnneeeesseeeeansaeeennteennn
‘Enter' Action Handler Routine .
'NUll Columns' ACHON HANGIET ROULINEciiiiiieiiiiie e et e ettt e et e e s e e saaee e ssaeee e saeeesssaeeesmsseeessseeeasseeeanteeeeanaeeeensseeeassseeeanseeeannseeeannteeeannneeennnns
Null Column Positions
Indent Edit Buffer Row
Print Edit Buffer Row to Display File if Required
Shift Up Edit ROWS in DIiSPlay File if REQUIFETeeiiiiieeiiiieeiiieeestie e st e e st e e et e e s tee e e s teeeassteeessteeeassaeeaasseeeaasseaesnsseeesnsseeessseneessseeennseeeennsenennnen
Shift Down Edit Rows in Display File if Required ...
STy A @A U =0 AN a1 01U (=T O o] o1 SRR
Restore Cursor POSItioN PrEVIOUS ATTIDULEci.iiiiiieiiiee i e st e s ee e e e e st e e e ssaaeeesseeeeatseeeaataeeesstseesasseeeassaeeeanseeeanseeeeasseeeeanseeeensnneeansaneennseens
Reset 'L' Mode
R Y= L 0T = T) A (TSRS
MENU ROUTINES — PART 5 oiiiiiiiiiiiiiiiiite et iitie et e e e e e sttt et e e et ettt et eeea s a e te e eeeeeaaasssteeeeeeeaaantaeeeeeaeeaaansteeeeeeeaa st steeeeeeeeannsaeeeeeeeeeannnteeeeeeesannsnnneeeeeessnnses
Display Menu
0] A T = SRR
L1 AN I = TN O O o= 1 Uox (=SSR
Print String
S (o (I Y (=T g TS Tod (o I Y - PSPPSR
RIS (o Y LT T IS ox (=T =T o Y = PRSP
Store / Restore Menu Screen Row
IMOVE UD MMEBINU ...tttk A e e e e e e e e e e e e n eaeeaeaaaaes
IMOVE DOWN IMIEBINU .ottt ettt eeeeaeen
Toggle Menu Option Selection Highlight .
LT O Iy L= @0 [o 0T 1K= o = PSSR
L LT U L= o F= Lo =B 1= o USSR
Menu Sinclair Stripes Bitmaps ...
B 1w = UL {1 T =« PSSR
Print the SiNClair StPES 0N ThE MENUciiiiiiiiiee et s e e e sttt e et eeeestaeaessteeeesaseeeastaeeeanteeeaasteeeanseeeeasseeeesseeeanseeeennseeeennsenennnnennn
Print '128 BASIC' Banner
L1 A= T [oT U] = L (oLl = T Y USSP
LT Al =Y o oI 0T Uo (=Y T T SO SSSTSSS
Print Banner
Clear Lower Editing Display
RENUMBER ROUTINE ...oiiiiiiiiiitititeeeiitiiit e e e s sttt ee e e e e sttt eeesaasssteeeeeeeaaanteeeeeeeeaassasteeeeeeeaanseeteeeeeeeanstseeeeee s e nsseteeeeeeeannsbeeeeeeeeaansntaeeaeeesannsnneeeeeeennnnnnnns
Tokens Using Line Numbers
Parse a Line Renumbering Line NUMDEI REEIEINCEScccuiiiiiiiiiiiie et se et e e s e e st e e e s taa e e e te e e e ateeeessteeeessseeeasaeeeanseeeaantaeesnnteeesnneeens
Count the NUMDBET Of BASIC LINESueiiiiiiieeiiiee e ittt e estteeeestteeestteeessteeeasseeeeaseeeeasteeeaasteeeasteeeassaeeeasseeeaasseeeaasteeeansaeeeassaeeansseaeansseeesnsseeesnsnnennnnnnennes
Skip Spaces
Create ASCII Line NUMDEI REPIESENTALIONccciuiieiiieeeiiiieeatereesteeessteeessteeesareeaasseteaasaeeeasseaessseeeesssseeaasseseassseeansesesassesessssseesseseenssesesnseessnnes
INSEIT LINE NUMDET DIGIT ..iiiviiiiiiiieiiiee e it e e sttt e e sttt e ettt e e st e e e saeeeeesteeeeastaee e steeeassseeeansaeeenseee e s seeeaasseeeasseeeeassaeeansseeennsseaennseeeeanseeeenseeeennseeeennsenennnen
EDITOR ROUTINES — PART 4
INitial LOWET SCIEEN CUISOT SEIIINTS ..uvveiiiiieeiiieeeiiiteaitettasteeesssteeesseeeessseeeaasseaeasseaesssaeeessseeeassseeeantesesasseeesasseseassseeaasseeeansseeessseeesssnneensnnsesnsenesnnes
INitial MaiN SCrEEN CUISOT SEINGS .ouvvieiittereiitieeeiitieeaiteeeartteeeateeeaasteeessareeasseteaasseeeasseaesssaeeesssseeesssseeasseseaastesssssssesnssseesssesesnssesssnsseeesnsseesssnseennns
Set Main Screen Editing Cursor Details .
Set Lower Screen Editing CUISOT DELAIIScccuureiiiireiiiieeiitiee e sttt e e sttt e s steeeasteeesssteeeasseeeaasseee e steeeasteeeassseeeasseteasaeeeansseeeanseeeessseeeansneeeanseeeennseeen
UNUSED ROUTINES —— PART 2 ..oiiiiiiiiiiiiiitiitiie e ettt et e e e s e st eeeeeesa s ta et eaeeaassa e teeeeeeeaaasseteeeeeaa s nsteeeteeesansaeeeeeeeeeamnsbeeeeeeeaaanssteeeeeeesanntnseeeeeeeaannnneneeeennn
Print 'AD'
EDITOR ROUTINES — PART 5
£ (0 (T @ £=o) B O o] 0T OSSPSR
Set Cursor Position Attribute
LR (o] (=R @AW =Yoo Y1 1o o Y 11 1o T = SRR
Shift Up Edit ROWS iN DISPIAY FIlEeiiiiiiieiiie ettt e et e et e s e e st e e st e e e s te e e s steeesaseeeeasseee e seeeeaasaeeeansseeeanseeeessseeeansseeennseeeennsenesnnnenennnnn
Shift Down Edit Rows in Display File
Print @ ROW Of the Edit BUfEI t0 The SCIEENccviiiiieie ettt s e st e e sttt e e ta e e e st e e e sstaeeeaseeeeessneeeanteeeesnteeeaanseeeassaneennseeeannsaneannnen
(O Tl 1] o] - 1Y = L 1TSS
Find Rows and Columns to End of Screen .
[T o B 0TI (o I o 0 o (Y] o SRR
L= N 11T T8 (=AY [0 1TSS
Exchange Colour Items
EDITOR ROUTINES — PAR T D oiiiiiiiiitiiitit ettt ettt e e ettt e e e e e sttt et e e e s aa e ae et eeeeaa s seteeeeeeeeaansaeeeeeeeee s nsaeeeeeeeeaansntee et eeesansseeeeeeeeesnnsbneeeeeeeannsnsseeeeeesnnnnnnns
TOKENIZE BASIC LINE .iveieiiieeeiiiee e ettt e e sttt e e s ttte e et e e e sstaeeesseeeeesseeeeasteeeeanseeeaaseeeeeasseeeanse e e e nseeeaasteeeamseeeeanseee e sseeeaasseaenmsseeesmsseeensseeeensseeennseeeennsenennn

SPECTRUM +2 ROM o DISASSEMBLY

Fetch Next Character and Character Status from BASIC LiNE £0 INSEITcoiuiiiiiiiiiiiie ittt beenine et
IS LOWEICASE LEIEI? ..ottt
Copy Keyword Conversion Buffer Contents into BASIC LiNE WOIKSPACEcceiiuuiieiiuiieeiieeeeiieeesiteeesiateesaeeesssseessssessssseessssesessssssessssssssnsseesnnes
Insert Character into Keyword CONVEISION BUFTEEcccuiiiiiiiie it st s e e ste e e e st e e et e e e sae e e e saae e e e saeeeantseeeanteeeeanteeesnneeeeansaeeaanseaeanneeeenns
Insert Character into BASIC Line Workspace, Handling *>' and '<'
Insert Character into BASIC Line Workspace, Handling 'REM' @and QUOLEScceiiuiiiiiiieeiiiieesiiee e stteeesteeeessiaeeesstaeessneaeesssneeesnsanesnnseessnsseessnnees 236
Insert Character into BASIC Line Workspace With SPace SUPPIESSIONciiuireiiiieeiiiieesieeeesteeesstaeeessseeessseeesssseseasesesssseeeassseeessnseeeassnsesssseeeans 237
Insert a Character into BASIC Line Workspace
R0 To 4T (o] = O =1 (=PRSS 240
Identify Keyword
Copy Data Block
Get NUMENIC VAlUE fOr ASCIH CRATACTETeiiiiiiiieitie ittt ettt h et h ettt e e st e bt £h et ekt e e bt e be e e bt e eh et et e e ea bt e bt e e a bt e nbe e et e e beeebeenaneennes 242
Call ACHON HANGIET ROULINEttt ra ettt h e e bt 4 b et e bt e oa bt ek e o2 s e e ohe e o2t e oo h et e b e o4 h bt e bt oo bt e bt ea bt e ehe e eab e e eab e et e e eneeenbeenateennes 242
PROGRAMMERS' INITIALS
LT] I] Y 0 PSSR
END OF ROM MARKER ..ottt ettt ettt e e e e e ettt et e e e s s te et eeesaas s a et e e e ee e e e s sa e et eeeeeessnste et e e e e aaante s eeeeeeeeamneseeeeee e e nseteeeeeeesannsnseeeeeeesnnntnneeeeesnnnnnn
REFERENCE INFORMATION — PART 2 ..
Routines Copied/CONSIIUCIEA iN RAMcciiiiiiiiiee ettt e et e e st e e st e e st eeesateeeesseeeeaseeeaasseeeasteee s seeeeanseeeeasseeeaasseeeansseeeanseeeesseeeeenseeeeanteeeanneeesnnneeennnneenns 244
(070] 01y (8 o1 al NN AT o o B =T o] (=TT =T o = o] o SR SURSURRN 244
Copy Keyword Characters
10 1= 01 11V 0] =T o PSSR
Insert Character INtO DISPIAY FilEcciiiiiiiiieiiie ettt et e e st e e st e e st e e st tee e e steeeaasaeeessseeeeasseee e seeeeeasseeeantaeeeanseeeeseeeeansneeennseeeennseneannnenennnns 246
Standard Error Report Codes
Y= L [0 P10 IS S (T Y U o o] T RS R
1Y =T 0 aT0] VA 1V =T PO
| Register
1ol =TT A Lo o) 1 o (TSSO P P PPR VSRR

[0S o - | 1 RS
Attributes File
Address Conversion Between Display File and AtHBUIES FlEuiiiiiiie ettt e s e e s ee e e st e e e sbeeessbeeesnstaeeansaeeennneeeenneeas 251
1= g To F=T (o I VL@ I o 4 £ OO UPRVRTUPPUPOt 251
Port $FE
(@8 Y1 (o [T Vo [T g o] 4y - OO PP RU PO PR PP POUPPP 251
AY-3-8912 Programmable SOUNTd GENEIAtOr REGISIEISuuiiiiiieeiiiie e ittt eesit e e e s ee e s e e staeeestaeeeestseee e taeeesasaeeessseeeesssseeasseeeansseeaanseeesanseeeanseeeennsnneannsen 252
Registers 0 and 1 (Channel A Tone Generator)
Registers 2 and 3 (Channel B Tone Generator)
Registers 4 and 5 (Channel C TONE GENEIALOT)uueiiuiieiiiiee ittt eatereesteeeassteeessreeessaeeeaasseeeaasseeessaeeesssseeasssssaasseesaassesssassseeanssssessssseanssesssnsseeesns 252
Register 6 (Noise Generator)
LR =To 5 CoL A (1 G V@ T = o Y OSSOSO
REQISEr 8 (ChANNEI A VOIUIME) ...eiiiiiiii ittt et e sttt e et e e st e e st eeasaeeeeastaeeaasteeeasteeeaaseeeeasse e e e saeeeaasseaeansseeeaaseeeeseeeeanseeeeanteeeeanseeeennnenannsnenannnen
Register 9 (Channel B Volume)
LR d=Te 5y (=Y O I (@ = T U= B O o] 0 = R SOTS
LR T=To 5y C= g =Yg Yo B I g1V 7=T [o L= == T o PSSR 253
Register 13 (Envelope Shape)
L1015 (= I 1@ T o TSR
ST o) (= o T @ 10 ST PTOTTST PP R PPROPRUPRt
RS232/MIDI Socket .
21/ 0 T2 Lo S T Lo] SRR
1\ To] a1 (o] g ST Tod = AP UOUP PR PPR PP
Edge Connector ...
S To U] 3 To S To Lol (= APPSOV U PP SR OPRPPN
ROM 0 Differences Between Models

SPECTRUM +2 ROM o DISASSEMBLY

NOTES

Release Date

4th August 2017

This file was automatically derived from the Spectrum 128 ROM 0 disassembly, using a conversion utility created by Paul Farrow.

Any enhancements or corrections should only be made to the Spectrum 128 ROM 0 disassembly and then the utility used to automatically regenerate
the Spectrum +2 listing.

Disassembly Contributors

Matthew Wilson (www.matthew-wilson.net/spectrum/rom/)
Andrew Owen (cheveron-AT-gmail.com)

Geoff Wearmouth (gwearmouth-AT-hotmail.com)

Rui Tunes

Paul Farrow (www.fruitcake.plus.com)

Markers

The following markers appear throughout the disassembly:

[...] = Indicates a comment about the code.

???? = Information to be determined.

For bugs, the following marker format is used:

[BUG - xxxx. Credit: yyyy] = Indicates a confirmed bug, with a description 'xxxx' of it and the discoverer 'yyyy'.

[BUG? - xxxx. Credit: yyyy] = Indicates a suspected bug, with a description 'xxxx' of it and the discoverer 'yyyy'.

Since many of the Spectrum 128 ROM routines were re-used in the Spectrum +2 and +3, where a bug was originally identified in the Spectrum +2 or +3
the discoverer is acknowledged along with who located the corresponding bug in the Spectrum 128.

For every bug identified, an example fix is provided and the author acknowledged. Some of these fixes can be made directly within the routines affected
since they do not increase the length of those routines. Others require the insertion of extra instructions and hence these cannot be completely fitted
within the routines affected. Instead a jump must be made to a patch routine located within a spare area of the ROM.

Fortunately there is 0.5K of unused routines located at $2355-$2555 (ROM 0) which are remnants of the original Spanish 128, and another unused routine
located at $3F6A-$3F75 (ROM 0). This is sufficient space to implement all of the bug fixes suggested.

REFERENCE INFORMATION — PART 1

128 BASIC Mode Limitations

There are a number of limitations when using 128 BASIC mode, some of which are not present when using the equivalent 48 BASIC mode operations.
These are more design decisions than bugs.

. The RAM disk VERIFY command does not verify but simply performs a LOAD.

. The renumber facility will not renumber line numbers that are defined as an expression, e.g. GO TO VAL "10".

. The printer output routine cannot handle binary data and hence EPSON printer ESC codes cannot be sent.

. The Editor has the following limitations:

. Variables cannot have the same name as a keyword. This only applies when entering a program and not when one is loaded in.

. Line number 0 is not supported and will not list properly. It is not possible to directly insert such a line, not even in 48 BASIC mode, and so
line number 0 is not officially supported.

. There is a practical limitation on the size of lines that can be entered. It is limited to 20 indented rows, which is the size of the editing

buffers. Typed lines greater than 20 rows get inserted into the BASIC program, but only the first 20 rows are shown on screen. Editing such
a line causes it to be truncated to 20 rows. There is no warning when the 20 row limit is exceeded.

. It is not possible to directly enter embedded control codes, or to correctly edit loaded in programs that contain them. Loaded programs that
contain them will run correctly so long as the lines are not edited.

. It is not possible to embed the string of characters ">=", "<=" or "<>" into a string or REM statement without them being tokenized (this is
perhaps more an oversight than a design decision).

. In 48 BASIC mode if the line '10 REM abc: PRINT xyz' is typed then the word PRINT is stored as a new keyword since the colon (arguably

incorrectly) reverts to 'K' mode. In 128 BASIC mode, typing the same line stores each letter as a separate character.

Timing Information

Clock Speed = 3.54690 MHz (48K Spectrum clock speed was 3.50000 MHz) Scan line = 228 T-states (48K Spectrum was 224 T-states).
TV scan lines = 311 total, 63 above picture (48K Spectrum had 312 total, 64 above picture).

10

SPECTRUM +2 ROM o DISASSEMBLY

|/O Details

Memory Paging

Memory paging is controlled by 1/O port:

$7FFD (Out) - Bits 0-2: RAM bank (0-7) to page into memory map at $C000.

Bit 3 : 0=SCREEN 0 (normal display file in bank 5), 1=SCREEN 1 (shadow display file in bank 7).

Bit 4 : 0=ROM 0 (128K Editor), 1=ROM 1 (48K BASIC).

Bit 5 : 1=Disable further output to this port until a hard reset occurs.

Bit 6-7 : Not used (always write 0).

The Editor ROM (ROM 0) always places a copy of the last value written to port $7FFD into new system variable BANK_M ($5B5C).

Memory Map

ROM 0 or 1 resides at $0000-$3FFF.

RAM bank 5 resides at $4000-$7FFF always.
RAM bank 2 resides at $8000-$BFFF always.
Any RAM bank may reside at $C000-$FFFF.

Shadow Display File

The shadow screen may be active even when not paged into the memory map.

Contended Memory
Physical RAM banks 1, 3, 5 and 7 are contended with the ULA.

Logical RAM Banks

Throughout ROM 0, memory banks are accessed using a logical numbering scheme, which maps to physical RAM banks as follows:
Logical Bank Physical Bank

$00 $01
$01 $03
$02 $04
$03 $06
$04 $07
$05 $00

This scheme makes the RAM disk code simpler than having to deal directly with physical RAM bank numbers.

AY-3-8912 Sound Generator

The AY-3-8912 sound generator is controlled by two I/O ports: $FFFD (Out) - Select a register 0-14.
$FFFD (In) - Read from the selected register.

$BFFD (In/Out) - Write to the selected register. The status of the register can also be read back.
The AY-3-8912 1/O port A is used to drive the RS232 and Keypad sockets.

Register Function Range

0 Channel A fine pitch 8-hit (0-255)

1 Channel A course pitch 4-bit (0-15)

2 Channel B fine pitch 8-bit (0-255)

3 Channel B course pitch 4-bit (0-15)

4 Channel C fine pitch 8-bit (0-255)

5 Channel C course pitch 4-bit (0-15)

6 Noise pitch 5-bit (0-31)

7 Mixer 8-bit (see end of file for description)

8 Channel A volume 4-bit (0-15, see end of file for description)
9 Channel B volume 4-bit (0-15, see end of file for description)
10 Channel C volume 4-bit (0-15, see end of file for description)
11 Envelope fine duration 8-bit (0-255)

12 Envelope course duration 8-hit (0-255)

13 Envelope shape 4-bit (0-15)

14 I/O port A 8-bit (0-255)

See the end of this document for description on the sound generator registers.

11

SPECTRUM +2 ROM o DISASSEMBLY

I/O Port A (AY-3-8912 Register 14)

This controls the RS232 and Keypad sockets.

Select the port via a write to port $FFFD with 14, then read via port $FFFD and write via port $BFFD. The state of port $BFFD can also be read back.
Bit 0: KEYPAD CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 1: KEYPAD RXD (out) - O=Transmit high bit, 1=Transmit low bit

Bit 2: RS232 CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 3: RS232 RXD (out) - 0=Transmit high bit, 1=Transmit low bit

Bit 4: KEYPAD DTR (in) - 0=Keypad ready for data, 1=Busy

Bit 5: KEYPAD TXD (in) - 0=Receive high bit, 1=Receive low bit

Bit 6: RS232 DTR (in) - 0=Device ready for data, 1=Busy

Bit 7: RS232 TXD (in) - 0=Receive high bit, 1=Receive low bit

See the end of this document for the pinouts for the RS232 and KEYPAD sockets.

Standard /O Ports

See the end of this document for descriptions of the standard Spectrum 1/O ports.

Error Report Codes

Standard Error Report Codes

See the end of this document for descriptions of the standard error report codes.

New Error Report Codes

a — MERGE error
b — Wrong file type

¢ — CODE error

d — Too many brackets
e — File already exists

f — Invalid name

g — File does not exist

h — File does not exist

i — Invalid device

j— Invalid baud rate

k — Invalid note name

| — Number too big

m — Note out of range

n — Out of range

0 — Too many tied notes
p — © 1986 Sinclair Research Ltd

System Variables

New System Variables

MERGE! would not execute for some reason - either size or file type wrong.

A file of an inappropriate type was specified during RAM disk operation, for instance a CODE file in
LOAD!"name".

The size of the file would lead to an overrun of the top of memory.

Too many brackets around a repeated phrase in one of the arguments.

The file name specified has already been used.

The file name specified is empty or above 10 characters in length.

[Never used by the ROM].

The specified file could not be found.

The device name following the FORMAT command does not exist or correspond to a physical device.
The baud rate for the RS232 was set to 0.

PLAY came across a note or command it didn't recognise, or a command which was in lower case.

A parameter for a command is an order of magnitude too big.

A series of sharps or flats has taken a note beyond the range of the sound chip.

A parameter for a command is too big or too small. If the error is very large, error L results.

An attempt was made to tie too many notes together.

This error is given when too many PLAY channel strings are specified. Up to 8 PLAY channel strings
are supported by MIDI devices such as synthesisers, drum machines or sequencers. Note that a PLAY
command with more than 8 strings cannot be entered directly from the Editor. The Spanish 128 produces
"p Bad parameter" for this error. It could be that the intention was to save memory by using the existing
error message of "Q Parameter error" but the change of report code byte was overlooked.

These are held in the old ZX Printer buffer at $5B00-$5BFF.
Note that some of these names conflict with the system variables used by the ZX Interface 1.

SWAP EQU $5B00
YOUNGER EQU $5B14
ONERR EQU $5B1D
PIN EQU $5B2F
POUT EQU $5B34
POUT2 EQU $5B4A
TARGET EQU $5B58
RETADDR EQU $5B5A

20 Swap paging subroutine.

9 Return paging subroutine.

18 Error handler paging subroutine.

5 RS232 input pre-routine.

22 RS232 token output pre-routine. This can be patched to bypass the control code
filter.

14 RS232 character output pre-routine.

2 Address of subroutine to call in ROM 1.

2 Return address in ROM 0.

12

SPECTRUM +2 ROM o DISASSEMBLY

BANK_M EQU $5B5C 1 Copy of last byte output to I/O port $7FFD.

RAMRST EQU $5B5D 1 Stores instruction RST $08 and used to produce a standard ROM error.

RAMERR EQU $5B5E 1 Error number for use by RST $08 held in RAMRST.

BAUD EQU $5B5F 2 Baud rate timing constant for RS232 socket. Default value of 11. [Name clash with

ZX Interface 1 system variable at $5CC3]
SERFL EQU $5B61 2 Second character received flag:

Bit 0 : 1=Character in buffer.

Bits 1-7: Not used (always hold 0).

$5B62 Received Character.
COL EQU $5B63 1 Current column from 1 to WIDTH.
WIDTH EQU $5B64 1 Paper column width. Default value of 80. [Name clash with ZX Interface 1 Edition 2
system variable at $5CB1]
TVPARS EQU $5B65 1 Number of inline parameters expected by RS232 (e.g. 2 for AT).
FLAGS3 EQU $5B66 1 Flags: [Name clashes with the ZX Interface 1 system variable at $5CB6]

Bit 0: 1=BASIC/Calculator mode, 0=Editor/Menu mode.

Bit 1: 1=Auto-run loaded BASIC program. [Set but never tested by the ROM]
Bit 2: 1=Editing RAM disk catalogue.

Bit 3: 1=Using RAM disk commands, 0=Using cassette commands.

Bit 4: 1=Indicate LOAD.

Bit 5: 1=Indicate SAVE.

Bit 6; 1=Indicate MERGE.

Bit 7: 1=Indicate VERIFY.

N_STR1 EQU $5B67 10 Used by RAM disk to store a filename. [Name clash with ZX Interface 1 system
variable at $5CDA]

Used by the renumber routine to store the address of the BASIC line being
examined.

HD_00 EQU $5B71 1 Used by RAM disk to store file header information (see RAM disk Catalogue section
below for details). [Name clash with ZX Interface 1 system variable at $5CE6]

Used as column pixel counter in COPY routine.
Used by FORMAT command to store specified baud rate.

Used by renumber routine to store the number of digits in a pre-renumbered line
number reference. [Name clash with ZX Interface 1 system variable at $5CE7]

HD_0B EQU $5B72 2 Used by RAM disk to store header info - length of block.
Used as half row counter in COPY routine.
Used by renumber routine to generate ASCII representation of a new line number.

HD_0D EQU $5B74 2 Used by RAM disk to store file header information (see RAM disk Catalogue section
below for details). [Name clash with ZX Interface 1 system variable at $5CE9]
HD_OF EQU $5B76 2 Used by RAM disk to store file header information (see RAM disk Catalogue section

below for details). [Name clash with ZX Interface 1 system variable at $5CEB]
Used by renumber routine to store the address of a referenced BASIC line.

HD_11 EQU $5B78 2 Used by RAM disk to store file header information (see RAM disk Catalogue section
below for details). [Name clash with ZX Interface 1 system variable at $5CED]

Used by renumber routine to store existing VARS address/current address within a

line.

SC_00 EQU $5B7A 1 Used by RAM disk to store alternate file header information (see RAM disk
Catalogue section below for details).

SC_0B EQU $5B7B 2 Used by RAM disk to store alternate file header information (see RAM disk
Catalogue section below for details).

SC_0D EQU $5B7D 2 Used by RAM disk to store alternate file header information (see RAM disk
Catalogue section below for details).

SC_OF EQU $5B7F 2 Used by RAM disk to store alternate file header information (see RAM disk

Catalogue section below for details).

OLDSP EQU $5B81 2 Stores old stack pointer when TSTACK in use.

SFNEXT EQU $5B83 2 End of RAM disk catalogue marker. Pointer to first empty catalogue entry.
SFSPACE EQU $5B85 3 Number of bytes free in RAM disk (3 bytes, 17 bit, LSB first).

ROWO01 EQU $5B88 1 Stores keypad data for row 3, and flags:

Bit 0 : 1=Key '+' pressed.

Bit 1 : 1=Key '6' pressed.

Bit 2 : 1=Key '5' pressed.

Bit 3 : 1=Key '4' pressed.

Bits 4-5: Always 0.

Bit 6 : 1=Indicates successful communications to the keypad.
Bit 7 : 1=If communications to the keypad established.

13

SPECTRUM +2 ROM o DISASSEMBLY

ROW23 EQU $5B89 1 Stores keypad key press data for rows 1 and 2:
Bit 0: 1=Key ")' pressed.
Bit 1: 1=Key '(‘ pressed.
Bit 2: 1=Key "' pressed.
Bit 3: 1=Key '/ pressed.
Bit 4: 1=Key - pressed.
Bit 5: 1=Key '9' pressed.
Bit 6: 1=Key '8' pressed.
Bit 7: 1=Key '7' pressed.
ROW45 EQU $5B8A 1 Stores keypad key press data for rows 4 and 5:
Bit 0: Always 0.
Bit 1: 1=Key ".' pressed.
Bit 2: Always 0.
Bit 3: 1=Key '0' pressed.
Bit 4: 1=Key 'ENTER' pressed.
Bit 5: 1=Key '3' pressed.
Bit 6: 1=Key '2' pressed.
Bit 7: 1=Key '1' pressed.

SYNRET EQU $5B8B 2 Return address for ONERR routine.

LASTV EQU $5B8D 5 Last value printed by calculator.

RNLINE EQU $5B92 2 Address of the length bytes in the line currently being renumbered.
RNFIRST EQU $5B94 2 Starting line number when renumbering. Default value of 10.
RNSTEP EQU $5B96 2 Step size when renumbering. Default value of 10.

STRIP1 EQU $5B98 32 Used as RAM disk transfer buffer (32 bytes to $5BB7).
Used to hold Sinclair stripe character patterns (16 bytes to $5BA7).

TSTACK EQU $5BFF n Temporary stack (grows downwards). The byte at $5BFF is not actually used.

Standard System Variables

These occupy addresses $5C00-$5CB5.
See the end of this document for descriptions of the standard system variables.

RAM Disk Catalogue

The catalogue can occupy addresses $C000-$EBFF in physical RAM bank 7, starting at $EBFF and growing downwards.

Each entry contains 20 bytes:

Bytes $00-$09: Filename.

Bytes $0A-$0C: Start address of file in RAM disk area.

Bytes $0D-$0F: Length of file in RAM disk area.

Bytes $10-$12: End address of file in RAM disk area (used as current position indicator when loading/saving).

Byte $13 : Flags:

Bit 0 : 1=Entry requires updating.

Bits 1-7: Not used (always hold 0).

The catalogue can store up to 562 entries, and hence the RAM disk can never hold more than 562 files no matter how small the files themselves are.
Note that filenames are case sensitive.

The shadow screen (SCREEN 1) also resides in physical RAM bank 7 and so if more than 217 catalogue entries are created then SCREEN 1 will become
corrupted [Credit: Toni Baker, ZX Computing Monthly].

However, since screen 1 cannot be used from BASIC, it may have been a design decision to allow the RAM disk to overwrite it.

The actual files are stored in physical RAM banks 1, 3, 4 and 6 (logical banks 0, 1, 2, 3), starting from $C000 in physical RAM bank 1 and growing upwards.
A file consists of a 9 byte header followed by the data for the file. The header bytes have the following meaning:

Byte $00 : File type - $00=Program, $01=Numeric array, $02=Character array, $03=Code/Screen$.

Bytes $01-$02: Length of program/code block/screen$/array ($1B00 for screen$).

Bytes $03-$04: Start of code block/screen$ ($4000 for screen$).

Bytes $05-$06: Offset to the variables (i.e. length of program) if a program. For an array, $05 holds the variable name.

Bytes $07-$08: Auto-run line number for a program ($80 in high byte if no auto-run).

Editor Workspace Variables

These occupy addresses $EC00-$FFFF in physical RAM bank 7, and form a workspace used by 128 BASIC Editor.
$ECO00 3 Byte O: Flags used when inserting a line into the BASIC program (first 4 bits are
mutually exclusive).

Bit 0: 1=First row of the BASIC line off top of screen.
Bit 1: 1=0On first row of the BASIC line.

14

$ECO03

$ECO06

$ECO08
$ECOC
$ECOD

$ECOE

$ECOF
$EC10
$EC11
$EC12
$EC13

$EC14
$EC15
$EC16

[e

735

SPECTRUM +2 ROM o DISASSEMBLY

Bit 2: 1=Using lower screen and only first row of the BASIC line visible.
Bit 3: 1=At the end of the last row of the BASIC line.

Bit 4: Not used (always 0).

Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: 1=Column with cursor not yet found.

Byte 1: Column number of current position within the BASIC line being inserted.
Used when fetching characters.

Byte 2: Row number of current position within the BASIC line is being inserted.
Used when fetching characters.

Byte 0: Flags used upon an error when inserting a line into the BASIC program (first
4 bits are mutually exclusive).

Bit 0: 1=First row of the BASIC line off top of screen.

Bit 1: 1=0On first row of the BASIC line.

Bit 2: 1=Using lower screen and only first row of the BASIC line visible.

Bit 3: 1=At the end of the last row of the BASIC line.

Bit 4: Not used (always 0).

Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: 1=Column with cursor not yet found.

Byte 1: Start column number where BASIC line is being entered. Always holds 0.
Byte 2: Start row number where BASIC line is being entered.

Count of the number of editable characters in the BASIC line up to the cursor within
the Screen Line Edit Buffer.

Version of E_PPC used by BASIC Editor to hold last line number entered.
Current menu index.

Flags used by 128 BASIC Editor:

Bit 0: 1=Screen Line Edit Buffer (including Below-Screen Line Edit Buffer) is full.
Bit 1: 1=Menu is displayed.

Bit 2: 1=Using RAM disk.

Bit 3: 1=Current line has been altered.

Bit 4: 1=Return to calculator, 0=Return to main menu.

Bit 5: 1=Do not process the BASIC line (used by the Calculator).

Bit 6: 1=Editing area is the lower screen, O=Editing area is the main screen.
Bit 7: 1=Waiting for key press, 0=Got key press.

Mode:

$00 = Edit Menu mode.

$04 = Calculator mode.

$07 = Tape Loader mode. [Effectively not used as overwritten by $FF]

$FF = Tape Loader mode.

Main screen colours used by the 128 BASIC Editor - alternate ATTR_P.

Main screen colours used by the 128 BASIC Editor - alternate MASK_P.
Temporary screen colours used by the 128 BASIC Editor - alternate ATTR_T.
Temporary screen colours used by the 128 BASIC Editor - alternate MASK_T.
Temporary store for P_FLAG:

Bit 0: 1=OVER 1, 0=OVER 0.

Bit 1: Not used (always 0).

Bit 2: 1=INVERSE 1, INVERSE 0.

Bit 3: Not used (always 0).

Bit 4: 1=Using INK 9.

Bit 5: Not used (always 0).

Bit 6: 1=Using PAPER 9.

Bit 7: Not used (always 0).

Not used.

Holds the number of editing lines: 20 for the main screen, 1 for the lower screen.

Screen Line Edit Buffer. This represents the text on screen that can be edited. It
holds 21 rows,

with each row consisting of 32 characters followed by 3 data bytes. Areas of white

space that do not contain any editable characters (e.g. the indent that starts
subsequent

rows of a BASIC line) contain the value $00.
Data Byte 0:

15

$EEF5

$EEF6
$EEF7
$EEF9
$EEFA
$EEFC
$EEFE
$EF00
$EFO1
$EF03
$EFO5
$EF06
$EFO7
$EFO08
$EF09

$F4F1-$F6E9
$F6EA
$F6EC
$F6EE
$F6EF
$F6FO0

$F6F1
$F6F2
$F6F3
$F6F4

$F6F5
$F6F6

$F6F8

PP RPRPNRPNMNNMNNNRRR

1512

RP R R NN

[S S =

735

SPECTRUM +2 ROM o DISASSEMBLY

Bit 0: 1=The first row of the BASIC line.
Bit 1: 1=Spans onto next row.

Bit 2: Not used (always 0).

Bit 3: 1=The last row of the BASIC line.
Bit 4: 1=Associated line number stored.
Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: Not used (always 0).

Data Bytes 1-2: Line number of corresponding BASIC line (stored for the first row of
the BASIC line only, holds $0000).

Flags used when listing the BASIC program:

Bit 0 : 0=Not on the current line, 1=0On the current line.

Bit 1 : 0=Previously found the current line, 1=Not yet found the current line.
Bit 2 : 0=Enable display file updates, 1=Disable display file updates.

Bits 3-7: Not used (always 0).

Store for temporarily saving the value of TVFLAG.

Store for temporarily saving the value of COORDS.

Store for temporarily saving the value of P_POSN.

Store for temporarily saving the value of PR_CC.

Store for temporarily saving the value of ECHO_E.

Store for temporarily saving the value of DF_CC.

Store for temporarily saving the value of DF_CCL.

Store for temporarily saving the value of S_POSN.

Store for temporarily saving the value of SPOSNL.

Store for temporarily saving the value of SCR_CT.

Store for temporarily saving the value of ATTR_P.

Store for temporarily saving the value of MASK_P.

Store for temporarily saving the value of ATTR_T.

Used to store screen area (12 rows of 14 columns) where menu will be shown.
The rows are stored one after the other, with each row consisting of the following:
- 8 lines of 14 display file bytes.

- 14 attribute file bytes.

Not used. 505 bytes.

The jump table address for the current menu.

The text table address for the current menu.

Cursor position info - Current row number.

Cursor position info - Current column number.

Cursor position info - Preferred column number. Holds the last user selected column
position. The Editor will attempt to

place the cursor on this column when the user moves up or down to a new line.
Edit area info - Top row threshold for scrolling up.

Edit area info - Bottom row threshold for scrolling down.

Edit area info - Number of rows in the editing area.

Flags used when deleting:

Bit 0 : 1=Deleting on last row of the BASIC line, 0=Deleting on row other than the
last row of the BASIC line.

Bits 1-7: Not used (always 0).
Number of rows held in the Below-Screen Line Edit Buffer.

Intended to point to the next location to access within the Below-Screen Line Edit
Buffer, but incorrectly initialised to $0000 by the routine at $30FC (ROM 0) and then
never used.

Below-Screen Line Edit Buffer. Holds the remainder of a BASIC line that has
overflowed off the bottom of the Screen Line Edit Buffer. It can hold 21 rows, with
each row

consisting of 32 characters followed by 3 data bytes. Areas of white space that do
not contain any editable characters (e.g. the indent that starts subsequent rows of a
BASIC line)

contain the value $00.

Data Byte 0O:

Bit 0: 1=The first row of the BASIC line.
Bit 1: 1=Spans onto next row.

Bit 2: Not used (always 0).

16

$FID7

$FODB
$FIDC
$FIDE

$FC9A
$FCOE
$FCIF

$FCA1

$FCA3

$FCAE-$FCFC
$FCFD-$FD2D

$FD2E-$FD69

$FD6A

$FD6B
$FD6C
$FD6D
$FD6E

$FD6F

$FD70

$FD71

$FD72
$FD73
$FD74
$FD7D
$FD7F
$FD81

700

[N

11

e

P NN O F P

SPECTRUM +2 ROM o DISASSEMBLY

Bit 3: 1=The last row of the BASIC line.
Bit 4: 1=Associated line number stored.
Bit 5: Not used (always 0).
Bit 6: Not used (always 0).
Bit 7: Not used (always 0).

Data Bytes 1-2: Line number of corresponding BASIC line (stored for the first row of
the BASIC line only, holds $0000).

Line number of the BASIC line in the program area being edited (or $0000 for no
line).

Number of rows held in the Above-Screen Line Edit Buffer.

Points to the next location to access within the Above-Screen Line Edit Buffer.

Above-Screen Line Edit Buffer. Holds the rows of a BASIC line that has overflowed
off the top of the Screen Line Edit Buffer.

It can hold 20 rows, with each row consisting of 32 characters followed by 3 data
bytes. Areas of white space that do not

contain any editable characters (e.g. the indent that starts subsequent rows of a
BASIC line) contain the value $00.

Data Byte O:

Bit 0: 1=The first row of the BASIC line.
Bit 1: 1=Spans onto next row.

Bit 2: Not used (always 0).

Bit 3: 1=The last row of the BASIC line.
Bit 4: 1=Associated line number stored.
Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: Not used (always 0).

Data Bytes 1-2: Line number of corresponding BASIC line (stored for the first row of
the BASIC line only, holds $0000).

The line number at the top of the screen, or $0000 for the first line.
$00=Print a leading space when constructing keyword.

Address of the next character to fetch within the BASIC line in the program area, or
$0000 for no next character.

Address of the next character to fetch from the Keyword Construction Buffer, or
$0000 for no next character.

Keyword Construction Buffer. Holds either a line number or keyword string
representation.

Construct a BASIC Line routine. « RAM routine - See end of file for description »

Copy String Into Keyword Construction Buffer routine. « RAM routine - See end of
file for description »

Identify Character Code of Token String routine. « RAM routine - See end of file for
description »

Flags used when shifting BASIC lines within edit buffer rows [Redundant]:

Bit 0 : 1=Set to 1 but never reset or tested. Possibly intended to indicate the start of
a new BASIC line and hence whether indentation required.

Bit 1-7: Not used (always 0).

The number of characters to indent subsequent rows of a BASIC line by.
Cursor settings (indexed by IX+$00) - initialised to $00, but never used.
Cursor settings (indexed by IX+$01) - number of rows above the editing area.

Cursor settings (indexed by IX+$02) - initialised to $00 (when using lower screen) or
$14 (when using main screen), but never subsequently used.

Cursor settings (indexed by IX+$03) - initialised to $00, but never subsequently
used.

Cursor settings (indexed by IX+$04) - initialised to $00, but never subsequently
used.

Cursor settings (indexed by IX+$05) - initialised to $00, but never subsequently
used.

Cursor settings (indexed by IX+$06) - attribute colour.

Cursor settings (indexed by IX+$07) - screen attribute where cursor is displayed.
The Keyword Conversion Buffer holding text to examine to see if it is a keyword.
Address of next available location within the Keyword Conversion Buffer.

Address of the space character between words in the Keyword Conversion Buffer.
Keyword Conversion Buffer flags, used when tokenizing a BASIC line:

Bit 0 : 1=Buffer contains characters.

Bit 1 : 1=Indicates within quotes.

17

$FD82 2
$FD84 1
$FD85 2
$FD87 2
$FD89 1
$FDSA 1
$FD8B 2

$FD8C-$FF23
$FF24 2

$FF26 2
$FF28-$FF60

$FF61-$FFFF

SPECTRUM +2 ROM o DISASSEMBLY

Bit 2 : 1=Indicates within a REM.
Bits 3-7: Not used (always reset to 0).

Address of the position to insert the next character within the BASIC line workspace.
The BASIC line

is created at the spare space pointed to by E_LINE.

BASIC line insertion flags, used when inserting a characters into the BASIC line
workspace:

Bit 0 : 1=The last character was a token.

Bit 1 : 1=The last character was a space.

Bits 2-7: Not used (always 0).

Count of the number of characters in the typed BASIC line being inserted.

Count of the number of characters in the tokenized version of the BASIC line being
inserted.

Holds '<' or *>' if this was the previously examined character during tokenization of a
BASIC line, else $00.

Locate Error Marker flag, holding $01 is a syntax error was detected on the BASIC
line being inserted and the equivalent position within

the typed BASIC line needs to be found with, else it holds $00 when tokenizing a
BASIC line.

Stores the stack pointer for restoration upon an insertion error into the BASIC line
workspace.

Not used. 408 bytes.

Never used. An attempt is made to set it to $ECO00. This is a remnant from the
Spanish 128, which stored the address of the Screen Buffer here.

The value is written to RAM bank 0 instead of RAM bank 7, and the value never
subsequently accessed.

Not used.

Not used. On the Spanish 128 this memory holds a routine that copies a character
into the display file. The code to copy to routine into RAM,

and the routine itself are present in ROM 0 but are never executed. « RAM routine -
See end of file for description »

Not used. 159 bytes.

Called ROM 1 Subroutines

ERROR_1 EQU $0008
PRINT_ A_1 EQU $0010
GET_CHAR EQU $0018
NEXT_CHAR EQU $0020
BC_SPACES EQU $0030

TOKENS EQU $0095
BEEPER EQU $03B5
BEEP EQU $03F8
SA_ALL EQU $075A

ME_CONTRL EQU $08B6
SA_CONTROL EQU $0970
PRINT_OUT EQU $09F4
PO T UDG EQU $0B52

PO_MSG EQU $0CO0A
TEMPS EQU $0D4D
cLS EQU $0D6B
CLS_LOWER EQU $0D6E
CL_ALL EQU $0DAF
CL_ATTR EQU $0E88
CL_ADDR EQU $0E9B

CLEAR_PRB EQU $0EDF
ADD_CHAR EQU $0F81
ED_ERROR EQU $107F
CLEAR_SP EQU $1097
KEY_INPUT EQU $10A8
KEY_ M_CL EQU $10DB
MAIN_4 EQU $1303
ERROR_MSGS EQU $1391
MESSAGES EQU $1537

18

REPORT_J
OUT_CODE
CHAN_OPEN
CHAN_FLAG
POINTERS
CLOSE
MAKE_ROOM
LINE_NO
SET_MIN
SET_WORK
SET_STK
OPEN
LIST 5
NUMBER
LINE_ADDR
EACH_STMT
NEXT_ONE
RECLAIM
RECLAIM_2
E_LINE_NO
OUT_NUM_1
CLASS 01
VAL_FET 1
CLASS_04
EXPT_2NUM
EXPT_1INUM
EXPT_EXP
CLASS 09
FETCH_NUM
USE_ZERO
STOP
F_REORDER
LOOK_PROG
NEXT
PASS_BY
RESTORE
REST_RUN
RANDOMIZE
CONTINUE
GO_TO
couT
POKE
FIND_INT2
TEST_ROOM
PAUSE
PRINT 2
PR_ST_END
STR_ALTER
INPUT_1
IN_ITEM_1
CO_TEMP_4
BORDER
PIXEL_ADDR
PLOT
PLOT_SUB
CIRCLE
DR_3_PRMS
LINE_DRAW
SCANNING
SYNTAX_Z
LOOK_VARS
STK_VAR
STK_FETCH
D_RUN
ALPHA
NUMERIC
STACK_BC

EQU $15C4
EQU $15EF
EQU $1601
EQU $1615
EQU $1664
EQU $16E5
EQU $1655
EQU $1695
EQU $16B0
EQU $16BF
EQU $16C5
EQU $1736
EQU $1822
EQU $18B6
EQU $196E
EQU $198B
EQU $19B8
EQU $19E5
EQU $19E8
EQU $19FB
EQU $1A1B
EQU $1C1F
EQU $1C56
EQU $1C6C
EQU $1C7A
EQU $1C82
EQU $1C8C
EQU $1CBE
EQU $1CDE
EQU $1CE6
EQU $1CEE
EQU $1D16
EQU $1D86
EQU $1DAB
EQU $1E39
EQU $1E42
EQU $1E45
EQU $1E4F
EQU $1E5F
EQU $1E67
EQU $1E7A
EQU $1E80
EQU $1E99
EQU $1F05
EQU $1F3A
EQU $1FDF
EQU $2048
EQU $2070
EQU $2096
EQU $20C1
EQU $21FC
EQU $2294
EQU $22AA
EQU $22DC
EQU $22E5
EQU $2320
EQU $238D
EQU $2477
EQU $24FB
EQU $2530
EQU $28B2
EQU $2996
EQU $2BF1
EQU $2C15
EQU $2C8D
EQU $2D1B
EQU $2D2B

SPECTRUM +2 ROM o DISASSEMBLY

Should be OUT but renamed since some assemblers detect this as an instruction.

19

SPECTRUM +2 ROM o DISASSEMBLY

FP_TO BC EQU $2DA2
PRINT_FP EQU $2DE3
HL_MULT_DE EQU $30A9
STACK_NUM EQU $33B4
TEST_ZERO EQU $34E9
KP_SCAN EQU $3C01
TEST_SCREEN EQU $3C04
CHAR_SET EQU $3D00

RESTART ROUTINES — PART 1

RST $10, $18 and $20 call the equivalent subroutines in ROM 1, via RST $28.
RST $00 - Reset the machine.

RST $08 - Not used. Would have invoked the ZX Interface 1 if fitted.

RST $10 - Print a character (equivalent to RST $10 ROM 1).

RST $18 - Collect a character (equivalent to RST $18 ROM 1).

RST $20 - Collect next character (equivalent to RST $20 ROM 1).

RST $28 - Call routine in ROM 1.

RST $30 - Not used.

RST $38 - Not used.

RST $00 — Reset Machine

ORG $0000
L0000: DI Ensure interrupts are disabled.
LD BC,$692B
L0O004: DEC BC Delay about 0.2s to allow screen switching mechanism to settle.
LD AB
ORC
JR NZ,L0004 [There is no RST $08. No instruction fetch at $0008 hence ZX Interface 1 will not be
paged in from this ROM. Credit: Paul Farrow].
JP LOOC7 to the main reset routine.
LO0O0C: DEFB $00, $00 [Spare bytes]

DEFB $00, $00

RST $10 — Print A Character

LOO010: RST 28H Call corresponding routine in ROM 1.
DEFW PRINT_A_1 $0010.
RET

L0014: DEFB $00, $00 [Spare bytes]

DEFB $00, $00

RST $18 — Collect A Character

L0018: RST 28H Call corresponding routine in ROM 1.
DEFW GET_CHAR $0018.
RET

LO01C: DEFB $00, $00 [Spare bytes]

DEFB $00, $00

RST $20 — Collect Next Character

L0020: RST 28H Call corresponding routine in ROM 1.
DEFW NEXT_CHAR $0020.
RET

L0024: DEFB $00, $00 [Spare bytes]

20

SPECTRUM +2 ROM o DISASSEMBLY

DEFB $00, $00

RST $28 — Call Routine in ROM 1

RST 28 calls a routine in ROM 1 (or alternatively a routine in RAM while ROM 1 is paged in). Call as follows: RST 28 / DEFW address.

L0028: EX (SP),HL Get the address after the RST $28 into HL, saving HL on the stack.
PUSH AF Save the AF registers.
LD A,(HL) Fetch the first address byte.
INC HL Point HL to the byte after
INC HL the required address.
LD (RETADDR),HL $5B5A. Store this in RETADDR.
DEC HL (There is no RST $30)
LD H,(HL) Fetch the second address byte.
LDLA HL=Subroutine to call.
POP AF Restore AF.
JP LO05C Jump ahead to continue.

L0037: DEFB $00 [Spare byte]

MASKABLE INTERRUPT ROUTINE

This routine preserves the HL register pair. It then performs the following: - Execute the ROM switching code held in RAM to switch to ROM 1.
- Execute the maskable interrupt routine in ROM 1.

- Execute the ROM switching code held in RAM to return to ROM 0.

- Return to address $0048 (ROM 0).

L0038: PUSH HL Save HL register pair.

LD HL,L0048 Return address of $0048 (ROM 0).

PUSH HL

LD HL,SWAP $5B00. Address of swap ROM routine held in RAM at $5B00.

PUSH HL

LD HL,LO038 Maskable interrupt routine address $0038 (ROM 0).

PUSH HL

JP SWAP $5B00. Switch to other ROM (ROM 1) via routine held in RAM at $5B00.
L0048: POP HL Restore the HL register pair.

RET End of interrupt routine.

ERROR HANDLER ROUTINES — PART 1

128K Error Routine

LOO4A: LD BC,$7FFD
XOR A ROM 0, Bank 0, Screen 0, 128K mode.
DI Ensure interrupts are disabled whilst paging.
OUT (C),A
LD (BANK_M),A $5B5C. Note the new paging status.
El Re-enable interrupts.
DEC A A=$FF.
LD (1Y+$00),A Set ERR_NR to no error ($FF).
JP L0321 Jump ahead to continue.

RESTART ROUTINES — PART 2
Call ROM 1 Routine (RST $28 Continuation)
Continuation from routine at $0028 (ROM 0).

LOO5C: LD (TARGET),HL $5B58. Save the address in ROM 0 to call.

21

SPECTRUM +2 ROM o DISASSEMBLY

LD HL,YOUNGER $5B14. HL="Return to ROM 0' routine held in RAM.

EX (SP),HL Stack HL.

PUSH HL Save previous stack address.

LD HL,(TARGET) $5B58. HL=Retrieve address to call. [There is no NMI code. Credit: Andrew Owen].
EX (SP),HL Stack HL.

JP SWAP $5B00. Switch to other ROM (ROM 1) and return to address to call.

RAM ROUTINES

The following code will be copied to locations $5B00 to $5B57, within the old ZX Printer buffer.

Swap to Other ROM (copied to $5B00)

Switch to the other ROM from that currently paged in.

[The switching between the two ROMs invariably enables interrupts, which may not always be desired (see the bug at $09EC (ROM 0) in the PLAY
command). To overcome this issue would require a rewrite of the SWAP routine as follows, but this is larger than the existing routine and so cannot
simply be used in direct replacement of it. A work-around solution is to poke a JP instruction at the start of the SWAP routine in the ZX Printer buffer and
direct control to the replacement routine held somewhere else in RAM. Credit: Toni Baker, ZX Computing Monthly] [However, the PLAY commnad bug

may be fixed in another manner within the PLAY command itself, in which case there is no need to modify the SWAP routine.]

SWAP:
PUSH AF Stack AF.
PUSH BC Stack BC.
LD AR P/V flag=Interrupt status.
PUSH AF Stack interrupt status.
LD BC,$7FFD BC=Port number required for paging.
LD A,(BANK_M) A=Current paging configuration.
XOR $10 Complement 'ROM' bit.
DI Disable interrupts (in case an interrupt occurs between the next two instructions).
LD (BANK_M),A Store revised paging configuration.
OUT (C),A Page ROM.
POP AF P/V flag=Former interrupt status.
JP PO,SWAP_EXIT Jump if interrupts were previously disabled.
El Re-enable interrupts.
SWAP_EXIT:
POP BC Restore BC.
POP AF Restore AF.
RET
LOO06B: PUSH AF Save AF and BC.
PUSH BC
LD BC,$7FFD
LD A,(BANK_M) $5B5C.
XOR $10 Select other ROM.
DI Disable interrupts whilst switching ROMs.
LD (BANK_M),A $5B5C.
OUT (C),A Switch to the other ROM.
El
POP BC Restore BC and AF.
POP AF
RET

Return to Other ROM Routine (copied to $5B14)

Switch to the other ROM from that currently paged in

and then return to the address held in RETADDR.

YOUNGER

LOO7F: CALL SWAP $5B00. Toggle to the other ROM.
PUSH HL
LD HL,(RETADDR) $5B5A.
EX (SP),HL

22

SPECTRUM +2 ROM o DISASSEMBLY

RET Return to the address held in RETADDR.

Error Handler Routine (copied to $5B1D)

This error handler routine switches back to ROM 0 and then
executes the routine pointed to by system variable TARGET.

ONERR
L0088: DI Ensure interrupts are disabled whilst paging.
LD A,(BANK_M) $5B5C. Fetch current paging configuration.
AND $EF Select ROM 0.
LD (BANK_M),A $5B5C. Save the new configuration
LD BC,$7FFD
OuT (C),A Switch to ROM 0.
El
JP LO0C3 Jump to $00C3 (ROM 0) to continue.

'P' Channel Input Routine (copied to $5B2F)

Called when data is read from channel 'P".
It causes ROM 0 to be paged in so that the new RS232 routines can be accessed.
PIN

LO09A: LD HL,LO6F7 RS232 input routine within ROM 0.
JR LOOA2

'P' Channel Output Routine (copied to $5B34)

Called when data is written to channel 'P'.
It causes ROM 0 to be paged in so that the new RS232 routines can be accessed.
Entry: A=Byte to send.

POUT

LOO9F: LD HL,LO7E9 RS232 output routine within ROM 0.

LOOAZ2: EX AF,AF' Save AF registers.
LD BC,$7FFD
LD A,(BANK_M) $5B5C. Fetch the current paging configuration
PUSH AF and save it.
AND $EF Select ROM 0.
DI Ensure interrupts are disabled whilst paging.
LD (BANK_M),A $5B5C. Store the new paging configuration.
OuT (C),A Switch to ROM 0.
JP L0605 Jump to the RS232 channel input/output handler routine.

'P' Channel Exit Routine (copied to $5B4A)

Used when returning from a channel 'P' read or write operation.
It causes the original ROM to be paged back in and returns back to the calling routine.
POUT2

LOOBS: EX AF,AF' Save AF registers. For a read, A holds the byte read and the flags the success

status.

POP AF Retrieve original paging configuration.

LD BC,$7FFD

DI Ensure interrupts are disabled whilst paging.

LD (BANK_M),A $5B5C. Store original paging configuration.

OUT (C),A Switch back to original paging configuration.

El

EX AF,AF' Restore AF registers. For a read, A holds the byte read and the flags the success
status.

RET « End of RAM Routines »

23

SPECTRUM +2 ROM o DISASSEMBLY

ERROR HANDLER ROUTINES — PART 2

Call Subroutine

Called from ONERR ($5B1D) to execute the routine pointed
to by system variable SYNRET.

LOOC3:

LD HL,(SYNRET)
JP (HL)

$5B8B. Fetch the address to call.

and execute it.

INITIALISATION ROUTINES — PART 1

Reset Routine (RST $00 Continuation, Part 1)

Continuation from routine at $0000 (ROM 0). It performs a test on all RAM banks.
This test is crude and can fail to detect a variety of RAM errors.

LOOCT:
LOOC9:

LOOFF:

ROUTINE VECTOR TABLE

L0100:
L0103:
L0106:
L0109:
LO10C:
LO10F:

LD B,$08
LDAB

EXX

DEC A

LD BC,$7FFD
OUT (C),A
LD HL,$C000
LD DE,$C001
LD BC,$3FFF
LD A $FF

LD (HL),A
CP (HL)

JR NZ,L0131
XOR A

LD (HL),A
CP (HL)

JR NZ,L0131
LDIR

EXX

DJNZ LOOC9
LD (ROWO1),A
LD C,$FD

LD D,$FF

LD E,$BF

LD B,D

LD A $OE
OUT (C),A
LD B,E

LD A $FF
OUT (C),A

JR L0137
DEFB $00

JP L17CE
JP L1857
JP L1EEE
JP L1F23
JP LOO4A
JP LO3A2

Loop through all RAM banks.

Save B register.
RAM bank number 0 to 7. 128K mode, ROM 0, Screen 0.

Switch RAM bank.
Start of the current RAM bank.

All 16K of RAM bank.

Store $FF into RAM location.
Check RAM integrity.
Jump if RAM error found.

Store $00 into RAM location.

Check RAM integrity.

Jump if difference found.

Clear the whole page

Restore B registers.

Repeat for other RAM banks.

$5B88. Signal no communications in progress to the keypad.

BC=$FFFD, DE=$FFBF.

Select AY register 14.
BC=$BFFD.

Set AY register 14 to $FF. This will force a communications reset to the keypad if
present.

Jump ahead to continue.

[Spare byte]

BASIC interpreter parser.

'Line Run' entry point.

Transfer bytes to logical RAM bank 4.

Transfer bytes from logical RAM bank 4.

128K error routine.

Error routine. Called from patch at $3B3B in ROM 1.

24

L0112: JP L1849
LO115: JP L18C7
L0118: JP LO12D
LO11B: JP LOA24
LO11E: JP L11C2
L0121: JP LO6F7
L0124: JP LO7E9
L0127: JP LO8C2
LO12A: JP LO9OF
L012D: RST 28H

DEFW KP_SCAN-$0100

RET

SPECTRUM +2 ROM o DISASSEMBLY

'Statement Return' routine. Called from patch at $3B4D in ROM 1.

'Statement Next' routine. Called from patch at $3B5D in ROM 1.

Scan the keypad.

Play music strings.

MIDI byte output routine.

RS232 byte input routine.

RS232 text output routine.

RS232 byte output routine.

COPY (screen dump) routine.

Call keypad scan routine in ROM 1.

$3B01. [BUG - The address jumps into the middle of the keypad decode routine in
ROM 1. It

looks like it is supposed to deal with the keypad and so the most likely addresses
are $3A42 (read keypad) or $39A0 (scan keypad). At $3C01 in ROM 1 is a vector
jump command to $39A0 to scan the keypad and this is similar enough to the $3B01
to imply a simple error in one of the bytes. Credit: Paul Farrow]

INITIALISATION ROUTINES — PART 2

Fatal RAM Error
Set the border colour to indicate which RAM bank was found faulty: RAM bank 7 - Black.

RAM bank 6 - White.
RAM bank 5 - Yellow.
RAM bank 4 - Cyan.

RAM bank 3 - Green.

RAM bank 2 - Magenta.

RAM bank 1 - Red.
RAM bank O - Blue.

L0131: EXX

LDA,B

OUT ($FE),A
L0135: JR L0135

Retrieve RAM bank number + 1 in B.
Indicate which RAM bank failed by
setting the border colour.

Infinite loop.

Reset Routine (RST $00 Continuation, Part 2)

Continuation from routine at $00C7 (ROM 0).

L0137:

LD B,D
LD A $07

OUT (C),A

LD B,E

LD A $FF

OUT (C),A

LD DE,SWAP

LD HL,LO06B

LD BC,$0058
LDIR

LD A $CF

LD (RAMRST),A
LD SP,TSTACK
LD A,$04

CALL L1C83

LD IX,$EBEC

LD (SFNEXT),IX
LD (IX+$0A),$00
LD (IX+$0B),$C0
LD (IX+$0C),$00
LD HL,$2BEC

LD A,$01

LD (SFSPACE),HL
LD (SFSPACE+2),A

Complete setting up the sound chip registers.
Select AY register 7.
Disable AY-3-8912 sound channels.

$5B00. Copy the various paging routines to the old printer buffer.
The source is in this ROM.

There are eighty eight bytes to copy.

Copy the block of bytes.

Load A with the code for the Z80 instruction 'RST $08'.

$5B5D. Insert into new System Variable RAMRST.

$5BFF. Set the stack pointer to last location of old buffer.

Page in logical RAM bank 4 (physical RAM bank 7).
First free entry in RAM disk.
$5B83.

AHL=Free space in RAM disk.
$5B85. Current address.
$5B87. Current RAM bank.

25

Entry point for NEW with interrupts disabled and physical RAM bank 0 occupying the upper RAM region $C000 - $FFFF, i.e. the normal BASIC memory

configuration.

LO19D:

LD A,$05

CALL L1C83

LD HL,$FFFF

LD ($5CB4),HL

LD DE,CHAR_SET+$01AF
LD BC,$00A8

EX DE,HL

RST 28H

DEFW MAKE_ROOM+$000C

EX DE,HL
INC HL

LD ($5C7B),HL
DEC HL

LD BC,$0040
LD ($5C38),BC
LD ($5CB2),HL

LD HL,CHAR_SET-$0100
LD ($5C36),HL

LD HL,($5CB2)

INC HL

LD SP,HL

IM 1

LD IY,$5C3A

SET 4,(1Y+$01)

El
LD HL,$000B
LD (BAUD),HL
XOR A

LD (SERFL),A
LD (COL),A

LD (TVPARS),A
LD HL,$EC00

LD ($FF24),HL

LD A,$50

LD (WIDTH),A

LD HL,$000A

LD (RNFIRST),HL
LD (RNSTEP),HL
LD HL,$5CB6

LD ($5C4F),HL
LD DE,LO5A8

LD BC,$0015
EX DE,HL
LDIR

EX DE,HL
DEC HL

LD ($5C57),HL

SPECTRUM +2 ROM o DISASSEMBLY

Page in logical RAM bank 5 (physical RAM bank 0).

Load HL with known last working byte - 65535.

P_RAMT. Set physical RAM top to 65535.

$3EAF. Set DE to address of the last bitmap of 'U'in ROM 1.
There are 21 User Defined Graphics to copy.

Swap so destination is $FFFF.

Calling this address (LDDR/RET) in the main ROM cleverly copies the 21 characters
to the end of RAM.

Transfer DE to HL.

Increment to address first byte of UDG 'A'".

UDG. Update standard System Variable UDG.

Set values 0 for PIP and 64 for RASP.

RASP. Update standard System Variables RASP and PIP.

RAMTOP. Update standard System Variable RAMTOP - the last byte of the BASIC
system area. Any machine code and graphics above this address are protected from
NEW.

$3C00. Set HL to where, in theory character zero would be.

CHARS. Update standard System Variable CHARS.

RAMTOP. Load HL with value of System Variable RAMTOP.

Address next location.

Set the Stack Pointer.

Select Interrupt Mode 1.

Set the IY register to address the standard System Variables and many of the new
System Variables and even those of ZX Interface 1 in some cases.

FLAGS. Signal 128K mode. [This bit was unused and therefore never set by 48K
BASIC]

With a stack and the IY register set, interrupts can be enabled.

Set HL to eleven, timing constant for 9600 baud.

$5B5F. Select default RS232 baud rate of 9600 baud.

Clear accumulator.

$5B61. Indicate no byte waiting in RS232 receive buffer.

$5B63. Set RS232 output column position to 0.

$5B65. Indicate no control code parameters expected.

[BUG - Should write to RAM bank 7. Main RAM has now been corrupted. The value
stored is subsequently never used. Credit: Geoff Wearmouth]

This is a remnant from the Spanish 128, which used this workspace variable to hold
the location of the Screen Buffer, but it also suffered from this bug. In fact there was
never a need to write to the value at this point since it is written again later during the
initialisation process. [The 1985 Sinclair Research ESPAGNOL source code says
that this instruction will write to the (previously cleared) main BASIC RAM during
initialization but that a different page of RAM will be present during NEW. Stuff and
Nonsense! Assemblers and other utilities present above RAMTOP will be corrupted
by the BASIC NEW command since $FF24, and later $EC13, will be written to even
if they are above RAMTOP.]

Default to a printer width of 80 columns.

$5B64. Set RS232 printer output width.

Use 10 as the initial renumber line and increment.

$5B94. Store the initial line number when renumbering.

$5B96. Store the renumber line increment.

Address after the System Variables.

CHANS. Set the default location for the channel area.

Point to Initial Channel Information in this ROM. This is similar to that in main ROM
but channel 'P' has input and output addresses in the new $5Bxx region.

There are 21 bytes to copy.

Switch pointer so destination is CHANS.

Copy the block of bytes.

Decrement to point to channel information end-marker.
DATADD. Set the default address of the terminator for the last DATA item.

26

INC HL
LD ($5C53),HL
LD ($5C4B),HL
LD (HL),$80
INC HL

LD ($5C59),HL
LD (HL),$0D
INC HL

LD (HL),$80
INC HL

LD ($5C61),HL
LD ($5C63),HL
LD ($5C65),HL
LD A $38

LD ($5C8D),A
LD ($5C8F),A
LD ($5C48),A
XOR A

LD ($EC13),A

LD A $07

OUT ($FE),A
LD HL,$0523
LD ($5C09),HL
DEC (IY-$3A)
DEC (IY-$36)
LD HL,LO5BD

LD DE,$5C10

LD BC,$000E
LDIR

RES 1,(1Y+$01)
LD (IY+$00),$FF
LD (IY+$31),$02
RST 28H

DEFW CLS

RST 28H

DEFW TEST_SCREEN
LD DE,L0561
CALL L0O59C

LD (IY+$31),$02
SET 5,(1Y+$02)
LD HL,TSTACK
LD (OLDSP),HL
CALL L1F64

LD A,$38

LD ($EC11),A
LD ($ECOF),A

CALL L25A3
CALL L1F3F
JP L25BE

Execute Command Line

A typed in command resides in the editing workspace. Execute it.

SPECTRUM +2 ROM o DISASSEMBLY

PROG. Set the default address of the BASIC program area.
VARS. Set the default address of the BASIC variables area.
Insert the Variables end-marker.

E_LINE. Set the default address of the editing line area.
Insert a carriage return.

Insert the editing line end-marker.

WORKSP. Set the address of the workspace.

STKBOT. Set the address of the start of the calculator stack.
STKEND. Set the address of the end of the calculator stack.
Attribute colour of black ink on white paper.

ATTR_P. Set the permanent attribute colour.

MASK_P. Set the permanent attribute mask.

BORDCR. Set the default border colour.

Temporary P_FLAG. Clear the temporary store for P-FLAG. [BUG - Should write this
to RAM bank 7. Main RAM has now been corrupted again. The effect of the bug can
be seen by typing INVERSE 1: PRINT "Hello", followed by NEW, followed by PRINT
"World", and will cause the second word to also be printed in inverse. Credit: Geoff
Wearmouth]

Set the border white.

The values five and thirty five.

REPDEL. Set the default values for key delay and key repeat.

Set KSTATE+O to $FF.

Set KSTATE+4 to $FF.

Address of the Initial Stream Data within this ROM (which is identical to that in main
ROM).

STRMS. Address of the system variable holding the channels attached to streams
data.

Initialise the streams system variables.
FLAGS. Signal printer not is use.

ERR_NR. Signal no error.

DF_SZ. Set the lower screen size to two rows.

$0D6B. Clear the screen.

Attempt to display TV tuning test screen.

$3C04. Will return if BREAK is not being pressed.
Address of the Sinclair copyright message.

Display the copyright message.

DF_SZ. Set the lower screen size to two rows.
TV_FLAG. Signal lower screen will require clearing.
$5BFF.

$5B81. Use the temporary stack as the previous stack.
Use Workspace RAM configuration (physical RAM bank 7).
Set colours to black ink on white paper.

Temporary ATTR_T used by the 128 BASIC Editor.
Temporary ATTR_P used by the 128 BASIC Editor.

[Note this is where $EC13 (temporary P_FLAG) and $FF24 should be set]

Initialise mode and cursor settings. IX will point at editing settings information.
Use Normal RAM Configuration (physical RAM bank 0).
Jump to show the Main menu.

COMMAND EXECUTION ROUTINES — PART 1

27

SPECTRUM +2 ROM o DISASSEMBLY

The command could either be a new line to insert, or a line number to delete, or a numerical expression to evaluate.

L0O26B:

Calculator mode

LD HL,FLAGS3
SET 0,(HL)

LD (IY+$00),$FF
LD (IY+$31),$02
LD HL,ONERR
PUSH HL

LD ($5C3D),SP
LD HL,LO2BA
LD (SYNRET),HL
CALL L22AD
CALL L22EA

JP Z,L2217
cP(

JP Z,L2217

cp -

JP Z,L2217

CP '+

JP Z,L2217
CALL L22FF

JP Z,L2217
CALL L1F64

LD A,(3ECOE)
CALL L1F3F

CP $04

JP NZ,L17CE

CALL L22B6
JP Z,L17CE

Otherwise ignore the command

POP HL
RET

$5B66.

Select BASIC/Calculator mode.

ERR_NR. Set to '0 OK' status.

DF_SZ. Reset the number of rows in the lower screen.
$5B1D. Return address should an error occur.

Stack it.

Save the stack pointer in ERR_SP.

Return address in ROM 0 after syntax checking.

$5B8B. Store it in SYNRET.

Point to start of typed in BASIC command.

Is the first character a function token, i.e. the start of a numerical expression?
Jump if so to evaluate it.

$28. Is the first character the start of an expression?

Jump if so to evaluate it.

$2D. Is the first character the start of an expression?

Jump if so to evaluate it.

$2B. Is the first character the start of an expression?

Jump if so to evaluate it.

Is text just a number or a numerical expression?

Jump if a numerical expression to evaluate it.

Use Workspace RAM configuration (physical RAM bank 7).
Fetch mode.

Use Normal RAM Configuration (physical RAM bank 0).
Calculator mode?

Jump if not to parse and execute the BASIC command line, returning to $02BA
(ROM 0).

Is it a single LET command?
Jump if so to parse and execute the BASIC command line, returning to $02BA (ROM
0).

Drop ONERR return address.

Return from BASIC Line Syntax Check

This routine is returned to when a BASIC line has been syntax checked.

LO2BA:

BIT 7,(IY+$00)
JR NZ,L02C1
RET

Test ERR_NR.
Jump ahead if no error.
Simply return if an error.

The syntax check was successful, so now proceed to parse the line for insertion or execution

L02C1:

LD HL,($5C59)
LD ($5C5D),HL
RST 28H

DEFW E_LINE_NO

LDAB
ORC
JP NZ,LO3F7

ELINE. Point to start of editing area.
Store in CH_ADD.

$19FB. Call E_LINE_NO in ROM 1 to read the line number into editing area.

Jump ahead if there was a line number.

Parse a BASIC Line with No Line Number

RST 18H
CP $0D

Get character.
End of the line reached, i.e. no BASIC statement?

28

LO2DF:

LO2F4:

RET Z
CALL L220E
BIT 6,(1Y+$02)
JR NZ,LO2DF
RST 28H
DEFW CLS_LOWER
RES 6,(1Y+$02)
CALL L1F64

LD HL,$ECOD
BIT 6,(HL)

JR NZ,L02F4
INC HL

LD A,(HL)

CP $00

CALL Z,L38A2
CALL L1F3F

LD HL,$5C3C
RES 3,(HL)

LD A$19

SUB (IY+$4F)
LD ($5C8C),A
SET 7,(1Y+$01)
LD (IY+$0A),$01

SPECTRUM +2 ROM o DISASSEMBLY

Return if so.

Clear screen if it requires it.

TVFLAG. Clear lower screen?

Jump ahead if no need to clear lower screen.

$ODG6E. Clear the lower screen.

TVFLAG. Signal to clear lower screen.

Use Workspace RAM configuration (physical RAM bank 7).
Editor flags.

Using lower screen area for editing?

Jump ahead if so.

Fetch the mode.

In Edit Menu mode?

If so then clear lower editing area display.

Use Normal RAM Configuration (physical RAM bank 0).
TVFLAG.

Signal mode has not changed.

25.

S_POSN+1. Subtract the current print row position.
SCR_CT. Set the number of scrolls.

FLAGS. Not syntax checking.

NSPPC. Set line to be jumped to as line 1.

[BUG - Whenever a typed in command is executed directly from the editing workspace, a new GO SUB marker is set up on the stack. Any existing GO
SUB calls that were on the stack are lost and as a result attempting to continue the program (without the use of CLEAR or RUN) will likely lead to a "7
RETURN without GOSUB" error report message being displayed. However, the stack marker will already have been lost due to the error handler routine
at $0321. The first action it does is to reset the stack pointer to point to the location of RAMTOP, i.e. after the GO SUB marker. This is why it is necessary
for a new GO SUB marker needs to be set up. Credit: Michal Skrzypek]

LD HL,$3E00 The end of GO SUB stack marker.

PUSH HL Place it on the stack.

LD HL,ONERR $5B1D. The return address should an error occur.
PUSH HL Place it on the stack.

LD ($5C3D),SP ERR_SP. Store error routine address.
LD HL,L0321 Address of error handler routine in ROM 0.
LD (SYNRET),HL $5B8B. Store it in SYNRET.

JP L1857 Jump ahead to the main parser routine to execute the line.

ERROR HANDLER ROUTINES — PART 3

Error Handler Routine

[BUG - Upon terminating a BASIC program, either via reaching the end of the program or due to an error occurring, execution is passed to this routine.
The first action it does is to reset the stack pointer to point to the location of RAMTOP, i.e. after the GO SUB marker. However, this means that any
existing GO SUB calls that were on the stack are lost and so attempting to continue the program (without the use of CLEAR or RUN) will likely lead to
a "7 RETURN without GOSUB" error report message being displayed. When a new typed in command is executed, the code at $030C sets up a new

GO SUB marker on the stack. Credit: Michal Skrzypek]

L0321: LD SP,($5CB2) RAMTOP.
INC SP Reset SP to top of memory map.
LD HL,TSTACK $5BFF.

LD (OLDSP),HL
HALT
RES 5,(1Y+$01)

$5B81. Use the temporary stack as the previous stack.
Trap error conditions where interrupts are disabled.
FLAGS. Signal no new key.

LD HL,FLAGS3 $5B66.

BIT 2,(HL) Editing RAM disk catalogue?

JR Z,LO34A Jump if not.

CALL L1F64 Use Workspace RAM configuration (physical RAM bank 7).
LD IX,(SFNEXT) $5B83.

LD BC,$0014 Catalogue entry size.

ADD IX,BC Remove last entry.

CALL L1D75 Update catalogue entry (leaves logical RAM bank 4 paged in).
CALL L1F3F Use Normal RAM Configuration (physical RAM bank 0).

29

SPECTRUM +2 ROM o DISASSEMBLY

Display error code held in ERR_NR

LO34A: LD A,($5C3A) Fetch error number from ERR_NR.
INC A Increment to give true error code.
LO34E: PUSH AF Save the error code.
LD HL,$0000
LD (IY+$37),H FLAGX. Ensure not INPUT mode.
LD (IY+$26),H X_PTR_hi. Clear to suppress error '?' marker.
LD ($5C0B),HL DEFADD. Clear to signal no defined function is currently being evaluated.
LD HL,$0001 [Could have saved 2 bytes by using INC L].
LD ($5C16),HL STRMS+$0006. Ensure STRMS-00 specifies the keyboard.
RST 28H
DEFW SET_MIN $16B0. Clears editing area and areas after it.
RES 5,(1Y+$37) FLAGX. Signal not INPUT mode. [Redundant since all flags were reset earlier]
RST 28H
DEFW CLS_LOWER $OD6E. Clear lower editing screen.
SET 5,(1Y+$02) TVFLAG. Signal lower screen requires clearing.
POP AF Retrieve error code.
LD B,A Store error code in B.
CP $0A Is it a numeric error code (1-9), i.e. suitable for immediate display?
JR C,LO37F If so jump ahead to display it.
CP $1D Is it one of the standard errors (A-R)?
JR C,LO37D If so jump ahead to convert it into an upper case letter.
ADD A,$14 Otherwise convert it into a lower case letter.
JR LO37F Jump ahead to display it. [Could have saved 2 bytes by using ADD A,$0C instead of
these two instructions]
LO37D: ADD A,$07 Increase code to point to upper case letters.
LO37F: RST 28H
DEFW OUT_CODE $15EF. Display the character held in the A register.
LD A,$20 Display a space.
RST 10H
LD AB Retrieve the error code.
CP $1D Is it one of the standard errors (A-R)?
JR C,L039C Jump if an standard error message (A-R).

Display a new error message
[Note that there is no test to range check the error code value and therefore whether a message exists for it. Poking directly to system variable ERR_NR
with an invalid code (43 or above) will more than likely cause a crash]

SUB $1D A=Code $00 - $OE.

LD B,$00

LD C,A Pass code to BC.

LD HL,L046C Error message vector table.
ADD HL,BC

ADD HL,BC Find address in error message vector table.
LD E,(HL)

INC HL

LD D,(HL) DE=Address of message to print.
CALL LO59C Print error message.

JR LO3A2 Jump ahead.

Display a standard error message.

LO39C: LD DE,ERROR_MSGS $1391. Position of the error messages in ROM 1.
RST 28H A holds the error code.
DEFW PO_MSG $OCOA. Call message printing routine.

Continue to display the line and statement number

LO3A2: XOR A Select the first message ", " (a 'comma’ and a 'space’).
LD DE,MESSAGES-1 $1536. Message base address in ROM 1.
RST 28H
DEFW PO_MSG Print a comma followed by a space.
LD BC,($5C45) PPC. Fetch current line number.
RST 28H

30

LO3CC:
LO3CF:

LO3DD:
LO3DF:

DEFW OUT_NUM_1
LD A,$3A

RST 10H

LD C,(IY+$0D)

LD B,$00

RST 28H

DEFW OUT_NUM_1
RST 28H

DEFW CLEAR_SP
LD A,($5C3A)

INC A

JR Z,LO3DF

CP $09

JR Z,L03CC

CP $15

JR NZ,LO3CF

INC (IY+$0D)

LD BC,$0003

LD DE,$5C70

LD HL,$5C44

BIT 7,(HL)

JR Z,L03DD

ADD HL,BC

LDDR

LD (IY+$0A),$FF
RES 3,(1Y+$01)
LD HL,FLAGS3
RES 0,(HL)

JP L25EA

SPECTRUM +2 ROM o DISASSEMBLY

$1A1B. Print the line number.
Print ":".

SUBPPC. Fetch current statement number.

$1A1B. Print the statement number.

$1097. Clear editing and workspace areas.
ERR_NR. Fetch the error code.

Jump ahead for "0 OK".
Jump for "A Invalid argument", thereby advancing to the next statement.

Jump unless "M Ramtop no good".
SUBPPC. Advance to the next statement.

OSPPC. Continue statement number.
NSPPC. Next statement number.

Is there a statement number?

Jump if so.

HL=SUBPPC. The current statement number.
Copy SUBPPC and PPC to OSPPC and OLDPPC, for use by CONTINUE.
NSPPC. Signal no current statement number.
FLAGS. Select K-Mode.

$5B66.

Select 128 Editor mode.

Jump ahead to return control to the Editor.

Error Handler Routine When Parsing BASIC Line

LO3EF:

LD A$10
LD BC,$0000
JP LO34E

Error code 'G - No room for line'.

Jump to print the error code.

COMMAND EXECUTION ROUTINES — PART 2

Parse a BASIC Line with a Line Number

This routine handles insertion of a BASIC line specified with a line number, or just a line number specified on its own, i.e. delete the line.

LO3F7:

LO40A:

LD ($5C49),BC
CALL L1F64
LD A,B

ORC
JR Z,L040A
LD ($5C49),BC

LD ($EC08),BC
CALL L1F3F
LD HL,($5C5D)
EX DE,HL

LD HL,LO3EF
PUSH HL

LD HL,($5C61)
SCF

SBC HL,DE
PUSH HL

LD H,B

LDL,.C

E_PPC. Store the line as the current line number with the program cursor.

Use Workspace RAM configuration (physical RAM bank 7).

[This test could have been performed before paging in bank 7 and hence could have
benefited from a slight speed improvement.

The test is redundant since BC holds a non-zero line number]

Jump if no line number.

E_PPC. Current edit line number. [Redundant instruction - Line number has already
been stored]

Temporary E_PPC used by BASIC Editor.

Use Normal RAM Configuration (physical RAM bank 0).

CH_ADD. Point to the next character in the BASIC line.

Address of error handler routine should there be no room for the line.
Stack it.
WORKSP.

HL=Length of BASIC line.
Stack it.

Transfer edit line number to HL.

31

RST 28H
DEFW LINE_ADDR
JR NZ,L0429

The line already exists so delete it

RST 28H

DEFW NEXT_ONE

RST 28H

DEFW RECLAIM_2
L0429: POP BC

LDAC

DECA

ORB

JR NZ,L0442

SPECTRUM +2 ROM o DISASSEMBLY

$196E. Returns address of the line in HL.
Jump if the line does not exist.

$19B8. Find the address of the next line.

$19E8. Delete the line.
BC=Length of the BASIC line.

Isit 1, i.e. just an 'Enter' character, and hence only
a line number was entered?
Jump if there is a BASIC statement.

Just a line number entered. The requested line has already been deleted so move the program cursor to the next line

CALL L1F64

PUSH HL

LD HL,($5C49)

CALL L3370

LD ($5C49),HL

POP HL

CALL L1F3F

JR LO46A
L0442: PUSH BC

INC BC

INC BC

INC BC

INC BC

DEC HL

LD DE,($5C53)

PUSH DE

RST 28H

DEFW MAKE_ROOM

POP HL

LD ($5C53),HL

POP BC

PUSH BC

INC DE

LD HL,($5C61)

DEC HL

DEC HL

LDDR

LD HL,($5C49)

EX DE,HL

POP BC

LD (HL),B

DEC HL

LD (HL),C

DEC HL

LD (HL),E

DEC HL

LD (HL),D
LO46A: POP AF

RET

Use Workspace RAM configuration (physical RAM bank 7).

Save the address of the line.

E_PPC. Fetch current edit line number.

Find closest line number (or $0000 if no line).

E_PPC. Store current edit line number. Effectively refresh E_PPC.
HL=Address of the line.

Use Normal RAM Configuration (physical RAM bank 0).

Jump ahead to exit.

BC=Length of the BASIC line. Stack it.

BC=BC+4. Allow for line number and length bytes.

Point to before the current line, i.e. the location to insert bytes at.
PROG. Get start address of the BASIC program.

Stack it.

$1655. Insert BC spaces at address HL.
HL=Start address of BASIC program.

PROG. Save start address of BASIC program.
BC=Length of the BASIC line.

Point to the first location of the newly created space.
WORKSP. Address of end of the BASIC line in the workspace.

Skip over the newline and terminator bytes.
Copy the BASIC line from the workspace into the program area.
E_PPC. Current edit line number.

BC=Length of BASIC line.
Store the line length.

DE=line number.

Store the line number.
Drop item (address of error handler routine).
Exit with HL=Address of the line.

ERROR HANDLER ROUTINES — PART 4

New Error Message Vector Table

Pointers into the new error message table.

32

SPECTRUM +2 ROM o DISASSEMBLY

LO46C: DEFW L048C Error report 'a’.
DEFW L0497 Error report 'b'.
DEFW LO4A6 Error report 'c'.
DEFW L04B0 Error report 'd'.
DEFW L0O4C1 Error report 'e'.
DEFW L04D4 Error report 'f'.
DEFW LO4EO Error report'g'.
DEFW LO4EO Error report 'h'.
DEFW LO4F3 Error report 'i".
DEFW L0501 Error report 'j'.
DEFW L0512 Error report 'k
DEFW L0523 Error report 'I'
DEFW L0531 Error report 'm'.
DEFW L0542 Error report 'n'.
DEFW LO54E Error report 'o'.
DEFW L0561 Error report 'p'.

New Error Message Table

LO48C: DEFM "MERGE erro” Report 'a’.
DEFB 'r'+$80

L0497: DEFM "Wrong file typ" Report 'b'".
DEFB 'e'+$80

LO4AG6: DEFM "CODE erro" Report 'c'.
DEFB 'r'+$80

LO4BO0: DEFM "Too many bracket" Report 'd".
DEFB 's'+$80

LO4C1: DEFM "File already exist" Report 'e".
DEFB 's'+$80

L04D4: DEFM "“Invalid nam" Report 'f'.
DEFB 'e'+$80

LO4EOQ: DEFM "File does not exis" Report'g' & 'h'.
DEFB 't'+$80

LO4F3: DEFM "Invalid devic" Report 'i".
DEFB 'e'+$80

L0501: DEFM "Invalid baud rat" Report j'.
DEFB 'e'+$80

LO512: DEFM "Invalid note nam" Report 'k'.
DEFB 'e'+$80

L0523: DEFM "Number too bi" Report 'I'.
DEFB 'g'+$80

L0531: DEFM "Note out of rang" Report 'm'.
DEFB 'e'+$80

L0542: DEFM "Out of rang" Report 'n'.
DEFB 'e'+$80

LO54E: DEFM "Too many tied note" Report '0".
DEFB 's'+$80

L0561: DEFB $7F (c)
DEFM "1986, "
DEFB $7F (c)
DEFM "1982 Amstrad Consumer"Copyright / Report 'p'.
DEFB $0D
DEFM " Electronics pl"
DEFB 'c'+$80

Print Message

Print a message which is terminated by having bit 7 set, pointed at by DE.

LO59C: LD A,(DE) Fetch next byte.
AND $7F Mask off top bit.
PUSH DE Save address of current message byte.
RST 10H Print character.

33

SPECTRUM +2 ROM o DISASSEMBLY

POP DE Restore message byte pointer.

LD A,(DE)

INC DE

ADD A A Carry flag will be set if byte is $FF.
JR NC,L059C Else print next character.

RET

INITIALISATION ROUTINES — PART 3

The 'Initial Channel Information'

Initially there are four channels ('K', 'S', 'R', & 'P') for communicating with the 'keyboard', 'screen’, ‘work space' and 'printer'.

For each channel the output routine address comes before the input routine address and the channel's code.

This table is almost identical to that in ROM 1 at $15AF but with changes to the channel P routines to use the RS232 port instead of the ZX Printer.
Used at $01DD (ROM 0).

LO5A8: DEFW PRINT_OUT $09F4 - K channel output routine.
DEFW KEY_INPUT $10A8 - K channel input routine.
DEFB 'K' $4B - Channel identifier 'K'.
DEFW PRINT_OUT $09F4 - S channel output routine.
DEFW REPORT_J $15C4 - S channel input routine.
DEFB'S' $53 - Channel identifier 'S'.
DEFW ADD_CHAR $0F81 - R channel output routine.
DEFW REPORT_J $15C4 - R channel input routine.
DEFB 'R $52 - Channel identifier 'R'.
DEFW POUT $5B34 - P Channel output routine.
DEFW PIN $5B2F - P Channel input routine.
DEFB 'P' $50 - Channel identifier 'P".

DEFB $80 End marker.

The 'Initial Stream Data’

Initially there are seven streams - $FD to $03.
This table is identical to that in ROM 1 at $15C6.
Used at $0226 (ROM 0).

LO5BD: DEFB $01, $00 Stream $FD leads to channel 'K'.
DEFB $06, $00 Stream $FE leads to channel 'S'.
DEFB $0B, $00 Stream $FF leads to channel 'R'.
DEFB $01, $00 Stream $00 leads to channel 'K'.
DEFB $01, $00 Stream $01 leads to channel 'K'.
DEFB $06, $00 Stream $02 leads to channel 'S'.
DEFB $10, $00 Stream $03 leads to channel 'P'".

ERROR HANDLER ROUTINES — PART 5

Produce Error Report

LO5CB: POP HL Point to the error byte.
LD BC,$7FFD
XOR A ROM 0, Screen 0, Bank 0, 128 mode.
DI Ensure interrupts disable whilst paging.
LD (BANK_M),A $5B5C. Store new state in BANK_M.
OuT (C),A Switch to ROM 0.
El
LD SP,($5C3D) Restore SP from ERR_SP.
LD A,(HL) Fetch the error number.
LD (RAMERR),A $5B5E. Store the error number.
INC A

34

CP $1E

JR NC,LO5E7
Handle a standard error code

RST 28H
DEFW RAMRST

Handle a new error code

LOSET: DEC A
LD (IY+$00),A
LD HL,($5C5D)
LD ($5C5F),HL
RST 28H
DEFW SET_STK
RET

Check for BREAK into Program

LOSF5: LD A $7F
IN A,($FE)
RRA
RET C
LD A $FE
IN A,($FE)
RRA
RETC
CALL LO5CB
DEFB $14

SPECTRUM +2 ROM o DISASSEMBLY

[BUG - This should be $1D. As such, error code 'a’ will be diverted to ROM 1 for
handling. Credit: Paul Farrow]
Jump if not a standard error code.

$5B5D. Call the error handler routine in ROM 1.

Store in ERR_NR.
CH_ADD.
X_PTR. Set up the address of the character after the '?' marker.

$16C5. Set the calculator stack.
Return to the error routine.

Read keyboard row B - SPACE.

Extract the SPACE key.
Return if SPACE not pressed.
Read keyboard row CAPS SHIFT - V.

Extract the CAPS SHIFT key.
Return if CAPS SHIFT not pressed.
Produce an error.

"L Break into program"

RS232 PRINTER ROUTINES

RS232 Channel Handler Routines

This routine handles input and output RS232 requested. It is similar to the routine in the ZX Interface 1 ROM at $0D5A, but in that ROM the routine

is only used for input.

LO605: El
EX AF AF'
LD DE,POUT2
PUSH DE
RES 3,(1Y+$02)
PUSH HL
LD HL,($5C3D)
LD E,(HL)
INC HL
LD D,(HL)
AND A
LD HL,ED_ERROR
SBC HL,DE
JR NZ,L0656

Handle INPUT#

POP HL
LD SP,($5C3D)
POP DE
POP DE

Enabled interrupts.

Save AF registers.

$5B4A. Address of the RS232 exit routine held in RAM.
Stack it.

TVFLAG. Indicate not automatic listing.

Save the input/output routine address.

Fetch location of error handler routine from ERR_SP.

DE=Address of error handler routine.
$107F in ROM 1.

Jump if error handler address is different, i.e. due to INKEY$# or PRINT#.

Retrieve the input/output routine address.

ERR_SP.

Discard the error handler routine address.

Fetch the original address of ERR_SP (this was stacked at the beginning of the
INPUT routine in ROM 1).

35

LD ($5C3D),DE

SPECTRUM +2 ROM o DISASSEMBLY

ERR_SP.

L0629: PUSH HL Save the input/output routine address.
LD DE,LO62F Address to return to.
PUSH DE Stack the address.
JP (HL) Jump to the RS232 input/output routine.

Return here from the input/output routine

LO62F: JR C,LO63A Jump if a character was received.
JR Z,L0637 Jump if a character was not received.
L0633: CALL LO5CB Produce an error "8 End of file".
DEFB $07

A character was not received

L0637: POP HL
JR L0629

A character was received

Retrieve the input routine address.
Jump back to await another character.

LO63A: CP $0D Is it a carriage return?
JR Z,L064C Jump ahead if so.
LD HL,(RETADDR) $5B5A. Fetch the return address.
PUSH HL
RST 28H

DEFW ADD_CHAR+4

POP HL

LD (RETADDR),HL

POP HL
JR L0629

Enter was received so end reading the stream

LO64C: POP HL

LD A,(BANK_M)

$0F85. Insert the character into the INPUT line.

$5B5A. Restore the return address.
Retrieve the input routine address.
Jump back to await another character.

Discard the input routine address.
$5B5C. Fetch current paging configuration.

OR $10 Select ROM 1.
PUSH AF Stack the required paging configuration.
JP POUT2 $5B4A. Exit.

Handle INKEY$# and PRINT#

L0656: POP HL Retrieve the input/output routine address.
LD DE,L065C
PUSH DE Stack the return address.
JP (HL) Jump to input or output routine.

Return here from the input/output routine. When returning from the output routine, either the carry or zero flags should always be set to avoid the false
generation of error report "8 End of file" [though this is not always the case - see bugs starting at $088B (ROM 0)].

LO65C: RET C Return if a character was received.
RET Z Return if a character was not received or was written.
JR L0633 Produce error report "8 End of file".

FORMAT Routine

The format command sets the RS232 baud rate, e.g. FORMAT "P"; 9600.
It attempts to match against one of the supported baud rates, or uses the next higher baud rate if a non-standard value is requested. The maximum baud
rate supported is 9600, and this is used for any rates specified that are higher than this.

L0660: RST 28H [Could just do RST $18]
DEFW GET_CHAR $0018.
RST 28H Get an expression.
DEFW EXPT_EXP $1C8C.

36

LO678:

L0680:

LO69C:

LOGAS:

BIT 7,(1Y+$01)

JR Z,L0680

RST 28H

DEFW STK_FETCH
LDAC

DEC A

ORB

JR Z,L0678

CALL LO5CB
DEFB $24

LD A,(DE)

AND $DF

CP'P

JP NZ,L1931

LD HL,($5C5D)

LD A,(HL)

CP $3B

JP NZ,L1931

RST 28H

DEFW NEXT_CHAR
RST 28H

DEFW EXPT_1NUM
BIT 7,(1Y+$01)

JR Z,L069C

RST 28H

DEFW FIND_INT2
LD (HD_00),BC
RST 28H

DEFW GET_CHAR
CP $0D

JR Z,L06A8

cp

JP NZ,L1931
CALL L18CO

LD BC,(HD_00)
LDAB

ORC

JR NZ,L06B7
CALL LO5CB
DEFB $25

SPECTRUM +2 ROM o DISASSEMBLY

FLAGS.
Jump ahead if syntax checking.

$2BF1. Fetch the expression.

Jump ahead if string is 1 character long.

Produce error report.

"i Invalid device".

Get character.

Convert to upper case.

$50. Is it channel 'P'?

Jump if not to produce error report "C Nonsense in BASIC".
CH_ADD. Next character to be interpreted.

Next character must be ';'.

Jump if not to produce error report "C Nonsense in BASIC".
Skip past the ';' character.

$0020. [Could just do RST $20]

Get a numeric expression from the line.

$1C82.

FLAGS. Checking syntax mode?

Jump ahead if so.

Get the result as an integer.

$1E99.

$5B71. Store the result temporarily for use later.

[Could just do RST $18]

$0018. Get the next character in the BASIC line.

It should be ENTER.

Jump ahead if it is.

$3A. Or the character is allowed to be ":'.

Jump if not to produce error report "C Nonsense in BASIC".
Check for end of line.

$5B71. Get the baud rate saved earlier.

Is it zero?

Jump if not, i.e. a numeric value was specified.
Produce error report.
"j invalid baud rate"

Lookup the timing constant to use for the specified baud rate

LO6B7:
LOGBA:

LD HL,L0O6D7
LD E,(HL)
INC HL

LD D,(HL)
INC HL

EX DE,HL

LD AH

CP $25

JR NC,LO6CE
AND A

SBC HL,BC
JR NC,LO6CE
EX DE,HL
INC HL

INC HL

JR LO6BA

The baud rate has been matched

LO6CE:

EX DE,HL
LD E,(HL)
INC HL

LD D,(HL)

Table of supported baud rates.

HL=Supported baud rate value.

Reached the last baud rate value in the table?
Jump is so to use a default baud rate of 9600.

Table entry matches or is higher than requested baud rate?
Jump ahead if so to use this baud rate.

Skip past the timing constant value
for this baud rate entry.

HL points to timing value for the baud rate.

DE=Timing value for the baud rate.

37

SPECTRUM +2 ROM o DISASSEMBLY

LD (BAUD),DE $5B71. Store new value in system variable BAUD.
RET

Baud Rate Table

Consists of entries of baud rate value followed by timing constant to use in the RS232 routines.

LO6D7: DEFW $0032, $0AA5 Baud=50.
DEFW $006E, $04D4 Baud=110.
DEFW $012C, $01C3 Baud=300.
DEFW $0258, $00E0 Baud=600.
DEFW $04B0, $006E Baud=1200.
DEFW $0960, $0036 Baud=2400.
DEFW $12C0, $0019 Baud=4800.
DEFW $2580, $000B Baud=9600.

RS232 Input Routine

Exit: Carry flag set if a byte was read with the byte in A. Carry flag reset upon error.

LO6F7: LD HL,SERFL $5B61. SERFL holds second char that can be received
LD A,(HL) Is the second-character received flag set?
AND A i.e. have we already received data?
JR Z,L0704 Jump ahead if not.
LD (HL),$00 Otherwise clear the flag
INC HL
LD A,(HL) and return the data which we received earlier.
SCF Set carry flag to indicate success
RET

Read Byte from RS232 Port

The timing of the routine is achieved using the timing constant held in system variable BAUD.
Exit: Carry flag set if a byte was read, or reset upon error.
A=Byte read in.

LO704: CALL LO5F5 Check the BREAK key, and produce error message if it is being pressed.
DI Ensure interrupts are disabled to achieve accurate timing.
EXX
LD DE,(BAUD) $5B71. Fetch the baud rate timing constant.

LD HL,(BAUD) $5B71.

SRLH

RR L HL=BAUD/2. So that will sync to half way point in each bit.
ORA [Redundant byte]

LD B,$FA Waiting time for start bit.

EXX Save B.

LD C,$FD

LD D,$FF

LD E,$BF

LD B,D

LD A,$0E

OUT (C),A Selects register 14, port /O of AY-3-8912.

IN A,(C) Read the current state of the 1/O lines.

OR $FO %11110000. Default all input lines to 1.

AND $FB %11111011. Force CTS line to 0.

LD B,E B=$BF.

OUT (C),A Make CTS (Clear To Send) low to indicate ready to receive.
LD H,A Store status of other I/O lines.

Look for the start bit

LO72D: LD B,D

38

LO734:

LO73D:

IN A,(C)
AND $80

JR Z,L073D
EXX

DEC B

EXX

JR NZ,L072D
XOR A
PUSH AF

JR LO776

IN A,(C)
AND $80

JR NZ,L0734
INA,(C)
AND $80

JR NZ,L0734

SPECTRUM +2 ROM o DISASSEMBLY

Read the input line.

%210000000. Test TXD (input) line.

Jump if START BIT found.

Fetch timeout counter

and decrement it.

Store it.

Continue to wait for start bit if not timed out.
Reset carry flag to indicate no byte read.
Save the failure flag.

Timed out waiting for START BIT.

Second test of START BIT - it should still be 0.
Test TXD (input) line.

Jump back if it is no longer 0.

Third test of START BIT - it should still be 0.
Test TXD (input) line.

Jump back if it is no longer 0.

A start bit has been found, so the 8 data bits are now read in.

As each bit is read in, it is shifted into the msb of A. Bit 7 of A is preloaded with a 1 to represent the start bit and when this is shifted into the carry flag
it signifies that 8 data bits have been read in.

LO750:

BD-DELAY

LO755:

Received one 1

Received one 0

LO76A:

EXX

LD BC,$FFFD
LD A,$80

EX AF,AF'
ADD HL,DE
NOP

NOP

NOP

NOP

DEC HL

LD AH

ORL

JR NZ,L0755
IN A,(C)
AND $80

JP Z,LO76A

EX AF,AF'
SCF

RRA

JR C,LO773
EX AF,AF'
JP L0750

EX AF,AF'
ORA

RRA

JR C,LO773
EX AF,AF'
JP L0750

Preload A with the START BIT. It forms a shift counter used to count
the number of bits to read in.

HL=1.5*(BAUD).

(4) Fine tune the following delay.

(6) Delay for 26*BAUD.

4

4

(12) Jump back to until delay completed.
Read a bit.

Test TXD (input) line.

Jump if a O received.

Fetch the bit counter.

Set carry flag to indicate received a 1.

Shift received bit into the byte (C->76543210->C).

Jump if START BIT has been shifted out indicating all data bits have been received.
Save the bit counter.

Jump back to read the next bit.

Fetch the bit counter.

Clear carry flag to indicate received a 0.

Shift received bit into the byte (C->76543210->C).

Jump if START BIT has been shifted out indicating all data bits have been received.
Save the bit counter.

Jump back to read next bit.

After looping 8 times to read the 8 data bits, the start bit in the bit counter will be shifted out and hence A will contain a received byte.

LO773:

SCF
PUSH AF
EXX

Signal success.
Push success flag.

39

The success and failure paths converge here

LO776:

LO785:

LD AH
OR $04

LD B,E

OUT (C),A
EXX

LD H,D
LDL,E

LD BC,$0007
ORA

SBC HL,BC
DEC HL

LD AH

ORL

JR NZ,L0785
LD BC,$FFFD
ADD HL,DE
ADD HL,DE
ADD HL,DE

SPECTRUM +2 ROM o DISASSEMBLY

A=%1111x1xx. Force CTS line to 1.
B=$BF.
Make CTS (Clear To Send) high to indicate not ready to receive.

HL=(BAUD).

HL=(BAUD)-7.
Delay for the stop bit.

Jump back until delay completed.
HL will be $0000.
DE=(BAUD).

HL=3*(BAUD). This is how long to wait for the next start bit.

The device at the other end of the cable may send a second byte even though CTS is low. So repeat the procedure to read another byte.

LO790:

INA(C)
AND $80

JR Z,LO79E
DEC HL

LD AH

ORL

JR NZ,L0790

Read the input line.

%10000000. Test TXD (input) line.
Jump if START BIT found.
Decrement timeout counter.

Jump back looping for a start bit until a timeout occurs.

No second byte incoming so return status of the first byte read attempt

LO79E:

POP AF
El

RET

IN A,(C)
AND $80

JR NZ,L0790
IN A,(C)
AND $80

JR NZ,L0790

Return status of first byte read attempt - carry flag reset for no byte received or
carry flag set and A holds the received byte.

Second test of START BIT - it should still be 0.
Test TXD (input) line.

Jump back if it is no longer 0.

Third test of START BIT - it should still be 0.
Test TXD (input) line.

Jump back if it is no longer 0.

A second byte is on its way and is received exactly as before

LO7BC:

LO7C1:

LD H,D
LDL,E

LD BC,$0002
SRL H

RR L

ORA

SBC HL,BC
LD BC,$FFFD
LD A,$80

EX AF,AF'
NOP

NOP

NOP

NOP

ADD HL,DE
DEC HL

LD AH

ORL

JR NZ,L07C1
IN A,(C)

HL=(BAUD).

HL=(BAUD)/2.
HL=(BAUD)/2 - 2.
Preload A with the START BIT. It forms a shift counter used to count

the number of bits to read in.
Fine tune the following delay.

HL=1.5*(BAUD).
Delay for 26*(BAUD).

Jump back to until delay completed.
Read a bit.

40

Received one 1

Received one 0

LO7D6:

AND $80
JP Z,L07D6

EX AF,AF'
SCF

RRA

JR C,LO7DF
EX AF,AF'
JP LO7BC

EX AF,AF'
ORA

RRA

JR C,LO7DF
EX AF,AF'
JP LO7BC

Exit with the byte that was read in

LO7DF:

RS232 Output Routine

This routine handles control codes, token expansion, graphics and UDGs. It therefore cannot send binary data and hence cannot support EPSON format
ESC control codes [Credit: Andrew Owen].
The routine suffers from a number of bugs as described in the comments below. It also suffers from a minor flaw in the design, which prevents interlacing

LD HL,SERFL
LD (HL),$01
INC HL

LD (HL),A
POP AF

El

RET

SPECTRUM +2 ROM o DISASSEMBLY

Test TXD (input) line.
Jump if a O received.

Fetch the bit counter.

Set carry flag to indicate received a 1.

Shift received bit into the byte (C->76543210->C).

Jump if START BIT has been shifted out indicating all data bits have been received.
Save the bit counter.

Jump back to read the next bit.

Fetch the bit counter.

Clear carry flag to indicate received a 0.

Shift received bit into the byte (C->76543210->C).

Jump if START BIT has been shifted out indicating all data bits have been received.
Save the bit counter.

Jump back to read next bit.

$5B61.
Set the flag indicating a second byte is in the buffer.

Store the second byte read in the buffer.
Return the first byte.
Re-enable interrupts.

screen and printer control codes and their parameters. For example, the following will not work correctly: 10 LPRINT CHR$ 16
20 PRINT AT 0,0
30 LPRINT CHR$ 0;"ABC"

The control byte 16 gets stored in TVDATA so that the system knows how to interpret its parameter byte. However, the AT control code 22 in line 20
will overwrite it. When line 30 is executed, TVDATA still holds the control code for 'AT' and so this line is interpreted as PRINT AT instead of PRINT

INK. [Credit: lan Collier (+3)]

Entry: A=character to output.
Exit : Carry flag reset indicates success.

LO7EQ:

PUSH AF
LD A,(TVPARS)
ORA

JR Z,LO7FF
DEC A

LD (TVPARS),A
JR NZ,LO7FA

All parameters processed

LO7FA:

LO7FF:

POP AF
JP L0891
POP AF

LD ($5COF),A
RET

POP AF

CP $A3

JR C,L0811

Save the character to print.
$5B65. Number of parameters expected.

Jump if no parameters.

Ignore the parameter.

$5B65.

Jump ahead if we have not processed all parameters.

Retrieve character to print.

Jump ahead to continue.
Retrieve character to print.
TVDATA+1. Store it for use later.

Retrieve character to print.

Test against code for 'SPECTRUM'.
Jump ahead if not a token.

41

Process tokens

LD HL,(RETADDR)
PUSH HL
RST 28H
DEFW PO_T_UDG
POP HL
LD (RETADDR),HL
SCF
RET
L0811: LD HL,$5C3B
RES 0,(HL)
cp"
JR NZ,L081C
SET 0,(HL)
LO81C: CP $7F
JR C,L0822
LD A,
L0822: CP $20
JR C,L083D

Printable character

L0826: PUSH AF
LD HL,COL
INC (HL)
LD A,(WIDTH)
CP (HL)
JR NC,L0839
CALL L0841
LD A,$01
LD (COL),A
L0839: POP AF
JP LO8C2

Process control codes

L083D: CP $0D
JR NZ,L084F

Handle a carriage return

L0841: XOR A
LD (COL),A
LD A,$0D
CALL L0O8C2
LD A,$0A
JP LOSC2
LOBAF: CP $06
JR NZ,L0872

Handle a comma

LD BC,(COL)

LD E,$00
L0859: INCE

INC C

LDAC

CcPB

JR Z,L0867
LO85F: SUB $08

JR Z,L0867

JR NC,LO85F

JR L0859

SPECTRUM +2 ROM o DISASSEMBLY

$5B5A. Save RETADDR temporarily.

$0B52. Print tokens via call to ROM 1 routine PO-T&UDG.

$5B5A. Restore the original contents of RETADDR.

FLAGS.

Suppress printing a leading space.

$20. Is character to output a space?

Jump ahead if not a space.

Signal leading space required.

Compare against copyright symbol.

Jump ahead if not a graphic or UDG character.
$3F. Print a '?' for all graphic and UDG characters.
Is it a control character?

Jump ahead if so.

Save the character to print.

$5B63. Point to the column number.
Increment the column number.
$5B64. Fetch the number of columns.

Jump if end of row not reached.
Print a carriage return and line feed.

$5B63. Set the print position to column 1.
Retrieve character to print.
Jump ahead to print the character.

Is it a carriage return?
Jump ahead if not.

$5B63. Set the print position back to column 0.
Print a carriage return.

Print a line feed.
Is it a comma?
Jump ahead if not.

$5B63. Fetch the column position.

Will count number of columns to move across to reach next comma position.
Increment column counter.

Increment column position.

End of row reached?
Jump if so.

Jump if column 8, 16 or 32 reached.

Column position greater so subtract another 8.
Jump back and increment column position again.

42

SPECTRUM +2 ROM o DISASSEMBLY

Column 8, 16 or 32 reached. Output multiple spaces until the desired column position is reached.

LO867:

L0872:

PUSH DE
LD A,$20
CALL LO7E9
POP DE
DECE
RET Z

JR L0867
CP $16

JR Z,LO87F
CP $17

JR Z,LO87F
CP $10
RET C

JR L0888

Handle AT and TAB

LO87F:

LD ($5COE),A

LD A,$02

LD (TVPARS),A

RET

Save column counter in E.

Output a space via a recursive call.

Retrieve column counter to E.

More spaces to output?

Return if no more to output.

Repeat for the next space to output.

Is it AT?

Jump ahead to handle AT.

Is it TAB?

Jump ahead to handle TAB.

Check for INK, PAPER, FLASH, BRIGHT, INVERSE, OVER.
Ignore if not one of these.

Jump ahead to handle INK, PAPER, FLASH, BRIGHT, INVERSE, OVER.

TV_DATA. Store the control code for use later, $16 (AT) or $17 (TAB).
Two parameters expected (even for TAB).

$5B65.

Return with zero flag set.

Handle INK, PAPER, FLASH, BRIGHT, INVERSE, OVER

L0888:

LD ($5COE),A

LD A,$02

LD (TVPARS),A

RET

All parameters processed

L0891:

LD D,A
LD A,($5COE)
CP $16

JR Z,L08A1
CP $17

CCF

RET NZ

TV_DATA. Store the control code for use later.

Two parameters expected. [BUG - Should be 1 parameter. 'LPRINT INK 4" will
produce error report 'C Nonsense in BASIC'. Credit: Toni Baker, ZX Computing
Monthly].

$5B65.

[BUG - Should return with the carry flag reset and the zero flag set. It causes a
statement such as 'LPRINT INK 1;' to produce error report '8 End of file'. It is due
to the main RS232 processing loop using the state of the flags to determine the
success/failure response of the RS232 output routine. Credit: lan Collier (+3),
Andrew Owen (128)] [The bug can be fixed by inserting a XOR A instruction before
the RET instruction. Credit: Paul Farrow]

D=Character to print.

TV_DATA. Fetch the control code.

Isit AT?

Jump ahead to handle AT parameter.

Is it TAB?

[BUG - Should return with the carry flag reset and the zero flag set. It causes a
statement such as 'LPRINT INK 1;' to produce error report '8 End of file'. It is due
to the main RS232 processing loop using the state of the flags to determine the
success/failure response of the RS232 output routine. Credit: Toni Baker, ZX
Computing Monthly]

Ignore if not TAB.

[The bug can be fixed by replacing the instructions CCF and RET NZ with the following. Credit: Paul Farrow.

NOT_TAB

JR Z,NOT_TAB

XOR A
RET

Handle TAB parameter

LD A,($5COF)
LD D,A

TV_DATA+1. Fetch the saved parameter.
Fetch parameter to D.

43

Process AT and TAB

LO8AL:

LD A,(WIDTH)
CPD

JR Z,L08A9
JR NC,LOSAF

SPECTRUM +2 ROM o DISASSEMBLY

$5B64.

Reached end of row?

Jump ahead if so.

Jump ahead if before end of row.

Column position equal or greater than length of row requested

LO8A9: LD B,A (WIDTH).

LD AD TAB/AT column position.

SuB B TABJ/AT position - WIDTH.

LDD,A The new required column position.

JR LO8A1 Handle the new TAB/AT position.
LOBAF: LD AD Fetch the desired column number.

ORA

JP 7,L0841 Jump to output a carriage return if column O required.
LO8B4: LD A,(COL) $5B63. Fetch the current column position.

CPD Compare against desired column position.

RET Z Done if reached requested column.

PUSH DE Save the number of spaces to output.

LD A,$20

CALL LO7E9 Output a space via a recursive call.

POP DE Retrieve number of spaces to output.

JR LO8B4 Keep outputting spaces until desired column reached.

Write Byte to RS232 Port

The timing of the routine is achieved using the timing constant held in system variable BAUD.

Entry: A holds character to send.
Exit: Carry and zero flags reset.
L0O8C2: PUSH AF Save the byte to send.
LD C,$FD
LD D,$FF
LD E,$BF
LD B,D
LD A,$0E
OUT (C),A Select AY register 14 to control the RS232 port.
LO8CE: CALL LO5F5 Check the BREAK key, and produce error message if it is being pressed.
IN A,(C) Read status of data register.
AND $40 %01000000. Test the DTR line.
JR NZ,LO8CE Jump back until device is ready for data.
LD HL,(BAUD) $5B5F. HL=Baud rate timing constant.
LD DE,$0002
ORA
SBC HL,DE
EX DE,HL DE=(BAUD)-2.
POP AF Retrieve the byte to send.
CPL Invert the bits of the byte (RS232 logic is inverted).
SCF Carry is used to send START BIT.
LD B,$0B B=Number of bits to send (1 start + 8 data + 2 stop).
DI Disable interrupts to ensure accurate timing.

Transmit each bit

LOBE7:

PUSH BC
PUSH AF

LD A SFE

LD H,D
LDL,E

LD BC,$BFFD
JP NC,LO8F9

Save the number of bits to send.
Save the data bits.

HL=(BAUD)-2.
AY-3-8912 data register.

Branch to transmit a 1 or a 0 (initially sending a O for the start bit).

44

SPECTRUM +2 ROM o DISASSEMBLY

Transmita 0

AND $F7 Clear the RXD (out) line.

OuT (C),A Send out a 0 (high level).

JR LO8FF Jump ahead to continue with next bit.
Transmita 1
LO8F9: OR $08 Set the RXD (out) line.

OuT (C),A Send out a 1 (low level).

JR LO8FF Jump ahead to continue with next bit.

Delay the length of a bit

LO8FF: DEC HL (6) Delay 26*BAUD cycles.
LD AH 4
ORL 4)
JR NZ,LO8FF (12) Jump back until delay is completed.
NOP (4) Fine tune the timing.
NOP 4)
NOP 4
POP AF Retrieve the data bits to send.
POP BC Retrieve the number of bits left to send.
ORA Clear carry flag.
RRA Shift the next bit to send into the carry flag.
DJNZ LO8E7 Jump back to send next bit until all bits sent.
El Re-enable interrupts.
RET Return with carry and zero flags reset.

COPY Command Routine

This routine copies 22 rows of the screen, outputting them to the printer a half row at a time. It is designed for EPSON compatible printers supporting
double density bit graphics and 7/72 inch line spacing.
Only the pixel information is processed; the attributes are ignored.

LO90F: LD HL,HD_OB Half row counter.

LD (HL),$2B Set the half row counter to 43 half rows (will output 44 half rows in total).
L0914: LD HL,L0998 Point to printer configuration data (7/72 inch line spacing, double density bit

graphics).

CALL LO97E Send the configuration data to printer.

CALL L0934 Output a half row, at double height.

LD HL,LO99F Table holds a line feed only.

CALL LO97E Send a line feed to printer.

LD HL,HD_0OB $5B72. The half row counter is tested to see if it is zero

XOR A and if so then the line spacing is reset to its

CP (HL) original value.

JR Z,L092D Jump if done, resetting printer line spacing.

DEC (HL) Decrement half row counter.

JR L0914 Repeat for the next half row.

Copy done so reset printer line spacing before exiting

L092D: LD HL,L09A1 Point to printer configuration data (1/6 inch line spacing).
CALL LO97E Send the configuration data to printer.
RET [Could have saved 1 byte by using JP $097E (ROM 0)]

Output Half Row

L0934: LD HL,HD_00 $5B71. Pixel column counter.
LD (HL),$FF Set pixel column counter to 255 pixels.
L0939: CALL L0945 Output a column of pixels, at double height.
LD HL,HD_00 $5B71. Pixel column counter.

45

XOR A
CP (HL)
RET Z
DEC (HL)
JR L0939

Output a column of pixels (at double height)

L0945:

L0959:

L0963:

LD DE,$C000
LD BC,(HD_00)
SCF

RL B

SCF

RL B

LDAC

CPL

LD CA

XOR A

PUSH AF
PUSH DE
PUSH BC
CALL L098C
POP BC

POP DE

LD E,$00

JR Z,L0963
LD E,D

POP AF
ORE
PUSH AF
DECB
SRLD
SRLD
PUSH DE
PUSH BC
JR NC,L0959
POP BC
POP DE
POP AF
LD B,$03

Output Nibble of Pixels

Send each nibble of pixels (i.e. column of 4 pixels) output 3 times so that the width of a pixel is the same size as its height.

L0O974:

Output Characters from Table

PUSH BC
PUSH AF
CALL LO8C2
POP AF
POP BC
DJINZ L0974
RET

SPECTRUM +2 ROM o DISASSEMBLY

Check if all pixels in this row have been output.
Return if so.

Decrement pixel column counter.

Repeat for all pixels in this row.

D=%211000000. Used to hold the double height pixel.
$5B71. C=Pixel column counter, B=Half row counter.

B=2xB+1

B=4xB+3. The pixel row coordinate.
Pixel column counter.

C=255-C. The pixel column coordinate.

Clear A. Used to generate double height nibble of pixels to output.

Save registers.

Test whether pixel (B,C) is set

Restore registers.

Set double height pixel = 0.

Jump if pixel is reset.

The double height pixel to output (%11000000, %00110000, %00001100 or
%00000011).

Add the double height pixel value to the byte to output.

Decrement half row coordinate.

Create next double height pixel value (%00110000, %00001100 or %00000011).

Repeat for all four pixels in the half row.
Unload the stack.

Send double height nibble of pixels output 3 times.

Send byte to RS232 port.

This routine is used to send a sequence of EPSON printer control codes out to the RS232 port.
It sends (HL) characters starting from HL+1.

LO97E:

L0980:

LD B,(HL)
INC HL

LD A,(HL)
PUSH HL
PUSH BC

Get number of bytes to send.
Point to the data to send.
Retrieve value.

46

SPECTRUM +2 ROM o DISASSEMBLY

CALL LO8C2 Send byte to RS232 port.

POP BC

POP HL

INC HL Point to next data byte to send.
DJNZ L0980 Repeat for all bytes.

RET

Test Whether Pixel (B,C) is Set

LO98C: RST 28H Get address of (B,C) pixel into HL and pixel position within byte into A.
DEFW PIXEL_ADDR $22AA.
LD B,A B=Pixel position within byte (0-7).
INC B
XOR A Pixel mask.
SCF Carry flag holds bit to be rotated into the mask.
L0993: RRA Shift the mask bit into the required bit position.
DJNZ L0993
AND (HL) Isolate this pixel from A.
RET

EPSON Printer Control Code Tables

L0998: DEFB $06 6 characters follow.

DEFB $1B, $31 ESC '1' - 7/72 inch line spacing.

DEFB $1B, $4C, $00, $03 ESC 'L' 0 3 - Double density (768 bytes per row).
LO99F: DEFB $01 1 character follows.

DEFB $0A Line feed.
LO9A1: DEFB $02 2 characters follow.

DEFB $1B, $32 ESC '2' - 1/6 inch line spacing.

PLAY COMMAND ROUTINES

Up to 3 channels of music/noise are supported by the AY-3-8912 sound generator.

Up to 8 channels of music can be sent to support synthesisers, drum machines or sequencers via the MIDI interface, with the first 3 channels also played
by the AY-3-8912 sound generator. For each channel of music, a MIDI channel can be assigned to it using the "Y' command.

The PLAY command reserves and initialises space for the PLAY command. This comprises a block of $003C bytes used to manage the PLAY command
(IY points to this command data block) and a block of $0037 bytes for each channel string (IX is used to point to the channel data block for the current
channel). [Note that the command data block is $04 bytes larger than it needs to be, and each channel data block is $11 bytes larger than it needs to be]
Entry: B=The number of strings in the PLAY command (1..8).

Command Data Block Format

1Y+$00 / 1Y+$01 Channel 0 data block pointer. Points to the data for channel O (string 1).
1Y+$02 / 1Y+$03 Channel 1 data block pointer. Points to the data for channel 1 (string 2).
1Y+$04 / 1Y+$05 Channel 2 data block pointer. Points to the data for channel 2 (string 3).
1Y+$06 / 1Y+$07 Channel 3 data block pointer. Points to the data for channel 3 (string 4).
1Y+$08 / IY+$09 Channel 4 data block pointer. Points to the data for channel 4 (string 5).

IY+$0A / IY+$0B Channel 5 data block pointer. Points to the data for channel 5 (string 6).
1Y+$0C / 1Y+$0D Channel 6 data block pointer. Points to the data for channel 6 (string 7).
IY+$0E / IY+$0F Channel 7 data block pointer. Points to the data for channel 7 (string 8).

1Y+$10 Channel bitmap. Initialised to $FF and a 0 rotated in to the left for each string parameters
of the PLAY command, thereby indicating the channels in use.

IY+$11 /1Y+$12 Channel data block duration pointer. Points to duration length store in channel 0 data block (string 1).
IY+$13 /1Y+$14 Channel data block duration pointer. Points to duration length store in channel 1 data block (string 2).
IY+$15 / 1Y+$16 Channel data block duration pointer. Points to duration length store in channel 2 data block (string 3).
IY+$17 / 1Y+$18 Channel data block duration pointer. Points to duration length store in channel 3 data block (string 4).
IY+$19 / IY+$1A Channel data block duration pointer. Points to duration length store in channel 4 data block (string 5).
IY+$1B / IY+$1C Channel data block duration pointer. Points to duration length store in channel 5 data block (string 6).

IY+$1D / IY+$1E Channel data block duration pointer. Points to duration length store in channel 6 data block (string 7).

47

IY+$1F / 1Y+$20
1Y+$21

1Y+$22
1Y+$23 / 1Y+$24

1Y+$25 / IY+$26
IY+$27 / 1IY+$28
1Y+$29
IY+$2A
IY+$2B..IY+$37
1Y+$38..1Y+$3B

SPECTRUM +2 ROM o DISASSEMBLY

Channel data block duration pointer. Points to duration length store in channel 7 data block (string 8).
Channel selector. It is used as a shift register with bit O initially set and then shift to the left

until a carry occurs, thereby indicating all 8 possible channels have been processed.

Temporary channel bitmap, used to hold a working copy of the channel bitmap at 1Y+$10.
Address of the channel data block pointers, or address of the channel data block duration pointers
(allows the routine at $0A8D (ROM 0) to be used with both set of pointers).

Stores the smallest duration length of all currently playing channel notes.

The current tempo timing value (derived from the tempo parameter 60..240 beats per second).
The current effect waveform value.

Temporary string counter selector.

Holds a floating point calculator routine.

Not used.

Channel Data Block Format

IX+$00
IX+$01
IX+$02
IX+$03
IX+$04
IX+$05
IX+3$06 / IX+$07
IX+$08 / IX+$09
IX+$0A

IX+$0B

IX+$0C / IX+$0D
IX+$0E / IX+$0F
IX+$10 / IX+$11
IX+$12 / IX+$13
IX+$14 / IX+$15
IX+$16

IX+$17...1X+$18
IX+$19...IX+$1A
IX+$1B...IX+$1C
IX+$1D...IX+$1E
IX+$1F...IX+$20
IX+$21

IX+$22 / IX+$23
IX+$24...IX+$25
IX+$26...I1X+$36

LO9A4: DI

The note number being played on this channel (equivalent to index offset into the note table).
MIDI channel assigned to this string (range 0 to 15).

Channel number (range 0 to 7), i.e. index position of the string within the PLAY command.
12*Octave number (0, 12, 24, 36, 48, 60, 72, 84 or 96).

Current volume (range 0 to 15, or if bit 4 set then using envelope).

Last note duration value as specified in the string (range 1 to 9).

Address of current position in the string.

Address of byte after the end of the string.

Flags:

Bit O : 1=Single closing bracket found (repeat string indefinitely).

Bits 1-7: Not used (always 0).

Open bracket nesting level (range $00 to $04).

Return address for opening bracket nesting level 0 (points to character after the bracket).
Return address for opening bracket nesting level 1 (points to character after the bracket).
Return address for opening bracket nesting level 2 (points to character after the bracket).
Return address for opening bracket nesting level 3 (points to character after the bracket).
Return address for opening bracket nesting level 4 (points to character after the bracket).
Closing bracket nesting level (range $FF to $04).

Return address for closing bracket nesting level 0 (points to character after the bracket).
Return address for closing bracket nesting level 1 (points to character after the bracket).
Return address for closing bracket nesting level 2 (points to character after the bracket).
Return address for closing bracket nesting level 3 (points to character after the bracket).
Return address for closing bracket nesting level 4 (points to character after the bracket).
Tied notes counter (for a single note the value is 1).

Duration length, specified in 96ths of a note.

Subsequent note duration length (used only with triplets), specified in 96ths of a note.
Not used.

Disable interrupts to ensure accurate timing.

Create a workspace for the play channel command strings

PUSH BC B=Number of channel string (range 1 to 8). Also used as string index number in the
following loop.
LD DE,$0037
LD HL,$003C
LO9AC: ADD HL,DE Calculate HL=$003C + ($0037 * B).
DJINZ LO9AC
LDC,L
LD B,H BC=Space required (maximum = $01F4).
RST 28H

DEFW BC_SPACES

$0030. Make BC bytes of space in the workspace.

DI Interrupts get re-enabled by the call mechanism to ROM 1 so disable them again.
PUSH DE

POP IY IY=Points at first new byte - the command data block.

PUSH HL

POP IX IX=Points at last new byte - byte after all channel information blocks.

48

LD (IY+$10),$FF

Loop over each string to be played

LO9BF:

[BUG - At this point interrupts are disabled and 1Y is now being used as a pointer to the master PLAY information block. Unfortunately, interrupts are
enabled during the STK_FETCH call and 1Y is left containing the wrong value. This means that if an interrupt were to occur during execution of the
subroutine then there would be a one in 65536 chance that (I'Y+$40) will be corrupted - this corresponds to the volume setting for music channel A.
Rewriting the SWAP routine to only re-enable interrupts if they were originally enabled would cure this bug (see end of file for description of her suggested
fix). Credit: Toni Baker, ZX Computing Monthly] [An alternative and simpler solution to the fix Toni Baker describes would be to stack 1Y, set Y to point

LD BC,$FFC9
ADD IX,BC

LD (IX+$03),$3C
LD (IX+$01),$FF
LD (IX+$04),$0F
LD (IX+$05),$05
LD (IX+$21),$00
LD (IX+$0A),$00
LD (IX+$0B),$00
LD (IX+$16),$FF
LD (IX+$17),$00
LD (IX+$18),$00

SPECTRUM +2 ROM o DISASSEMBLY

Initial channel bitmap with value meaning ‘zero strings'

$-37 ($37 bytes is the size of a play channel string information block).
IX points to start of space for the last channel.

Default octave is 5.

No MIDI channel assigned.

Default volume is 15.

Default note duration.

Count of the number of tied notes.

Signal not to repeat the string indefinitely.

No opening bracket nesting level.

No closing bracket nesting level.

Return address for closing bracket nesting level 0.

[No need to initialise this since it is written to before it is ever tested]

to the system variables at $5C3A, call STK_FETCH, disable interrupts, then pop the stacked value back to IY. Credit: Paul Farrow]

RST 28H
DEFW STK_FETCH
DI

LD (IX+$06),E
LD (IX+$07),D
LD (IX+$0C),E
LD (IX+$0D),D
EX DE,HL
ADD HL,BC
LD (IX+$08),L
LD (IX+$09),H
POP BC
PUSH BC
DEC B
LDC,B

LD B,$00
SLAC

PUSH IY

POP HL

ADD HL,BC
PUSH IX

POP BC

LD (HL),C

INC HL

LD (HL),B
ORA

RL (IY+$10)

POP BC
DECB

PUSH BC

LD (IX+$02),B
JR NZ,LO9BF
POP BC

Entry point here from the vector table at $011B

LOA24:

LD (IY+$27),$1A
LD (IY+$28),$0B
PUSH IY
POP HL

Get the details of the string from the stack.

$2BF1.

Interrupts get re-enabled by the call mechanism to ROM 1 so disable them again.
Store the current position within in the string, i.e. the beginning of it.

Store the return position within the string for a closing bracket,

which is initially the start of the string in case a single closing bracket is found.
HL=Points to start of string. BC=Length of string.

HL=Points to address of byte after the string.

Store the address of the character just

after the string.

B=String index number (range 1 to 8).

Save it on the stack again.

Reduce the index so it ranges from O to 7.

BC=String index*2.

HL=Address of the command data block.
Skip 8 channel data pointer words.

BC=Address of current channel information block.
Store the pointer to the channel information block.

Clear the carry flag.

Rotate one zero-bit into the least significant bit of the channel bitmap. This initially
holds $FF but once this loop is over, this byte has a zero bit for each string
parameter of the PLAY command.

B=Current string index.

Decrement string index so it ranges from O to 7.

Save it for future use on the next iteration.

Store the channel number.

Jump back while more channel strings to process.

Drop item left on the stack.

Set the initial tempo timing value.
Corresponds to a 'T' command value of 120, and gives two crotchets per second.

HL=Points to the command data block.

49

LD BC,$002B
ADD HL,BC
EX DE,HL
LD HL,LOA50
LD BC,$000D
LDIR

LD D,$07

LD E,$F8
CALL LOESB
LD D,$0B

LD E,$FF
CALL LOESB
INC D

CALL LOESB
JR LOA9C

SPECTRUM +2 ROM o DISASSEMBLY

DE=Address to store RAM routine.
HL=Address of the RAM routine bytes.

Copy the calculator routine to RAM.

Register 7 - Mixer.

1/O ports are inputs, noise output off, tone output on.
Write to sound generator register.

Register 11 - Envelope Period (Fine).

Set period to maximum.

Write to sound generator register.

Register 12 - Envelope Period (Coarse).

Write to sound generator register.

Jump ahead to continue. [Could have saved these 2 bytes by having the code at
$0A9C (ROM 0) immediately follow]

Calculate Timing Loop Counter « RAM Routine »

This routine is copied into the command data block (offset $2B..$37) by the routine at $0A24 (ROM 0).

It uses the floating point calculator found in ROM 1, which is usually invoked via a RST $28 instruction. Since ROM 0 uses RST $28 to call a routine in
ROM 1, it is unable to invoke the floating point calculator this way. It therefore copies the following routine to RAM and calls it with ROM 1 paged in.
The routine calculates (10/x)/7.33e-6, where x is the tempo 'T' parameter value multiplied by 4. The result is used an inner loop counter in the wait

routine at $0F95 (ROM 0).

Each iteration of this loop takes 26 T-states. The time taken by 26 T-states is 7.33e-6 seconds. So the total time for the loop to execute is 2.5/TEMPO

seconds.
Entry: The value 4*TEMPO exists on the calculator stack (where TEMPO is in the range 60..240).
Exit : The calculator stack holds the result.
LOAS50: RST 28H Invoke the floating point calculator.
DEFB $A4 stk-ten. = x, 10
DEFB $01 exchange. = 10, x
DEFB $05 division. = 10/x
DEFB $34 stk-data. = 10/x, 7.33e-6
DEFB $DF - exponent $6F (floating point number 7.33e-6).
DEFB $75 - mantissa byte 1
DEFB $F4 - mantissa byte 2
DEFB $38 - mantissa byte 3
DEFB $75 - mantissa byte 4
DEFB $05 division. = (10/x)/7.33e-6
DEFB $38 end-calc.
RET

Test BREAK Key

Test for BREAK being pressed.
Exit: Carry flag reset if BREAK is being pressed.

LOA5D: LD A $7F
IN A,($FE)
RRA
RET C
LD A $FE
IN A,($FE)
RRA
RET

Return with carry flag set if SPACE not pressed.

Return with carry flag set if CAPS not pressed.

Select Channel Data Block Duration Pointers

Point to the start of the channel data block duration pointers within the command data block.
Entry: IY=Address of the command data block.
Exit : HL=Address of current channel pointer.

50

LOAGO:

LD BC,$0011
JR LOA71

SPECTRUM +2 ROM o DISASSEMBLY

Offset to the channel data block duration pointers table.
Jump ahead to continue.

Select Channel Data Block Pointers

Point to the start of the channel data block pointers within the command data block.

Entry:
Exit :

LOAGE:
LOA71:

LD BC,$0000
PUSH IY
POP HL

ADD HL,BC
LD (IY+$23),L
LD (IY+$24),H
LD A,(IY+$10)
LD (IY+$22),A

LD (IY+$21),$01

RET

IY=Address of the command data block.
HL=Address of current channel pointer.

Offset to the channel data block pointers table.

HL=Point to the command data block.
Point to the desired channel pointers table.

Store the start address of channels pointer table.

Fetch the channel bitmap.

Initialise the working copy.

Channel selector. Set the shift register to indicate the first channel.

Get Channel Data Block Address for Current String

LOA86:

Next Channel Data Pointer

LOA8D:

PLAY Command (Continuation)

LD E,(HL)
INC HL
LD D,(HL)
PUSH DE
POP IX
RET

LD L,(IY+$23)
LD H,(IY+$24)
INC HL

INC HL

LD (IY+$23),L
LD (IY+$24),H
RET

Fetch the address of the current channel data block.

Returnitin IX.

The address of current channel data pointer.

Advance to the next channel data pointer.

The address of new channel data pointer.

This section is responsible for processing the PLAY command and is a continuation of the routine at $09A4 (ROM 0). It begins by determining the first
note to play on each channel and then enters a loop to play these notes, fetching the subsequent notes to play at the appropriate times.

LOA9C:
LOAOF:

HL=Address of channel data pointer.

LOAAB:

CALL LOAGE
RR (IY+$22)
JR C,LOAAB

CALL LOA86
CALL LOB7B
SLA (IY+$21)
JR C,LOAB6

CALL LOASD
JR LOAQF

Select channel data block pointers.
Working copy of channel bitmap. Test if next string present.
Jump ahead if there is no string for this channel.

Get address of channel data block for the current string into IX.
Find the first note to play for this channel from its play string.
Have all channels been processed?

Jump ahead if so.

Advance to the next channel data block pointer.

Jump back to process the next channel.

The first notes to play for each channel have now been determined. A loop is entered that coordinates playing the notes and fetching subsequent notes
when required. Notes across channels may be of different lengths and so the shortest one is determined, the tones for all channels set and then a waiting

51

SPECTRUM +2 ROM o DISASSEMBLY

delay entered for the shortest note delay. This delay length is then subtracted from all channel note lengths to leave the remaining lengths that each
note needs to be played for. For the channel with the smallest note length, this will now have completely played and so a new note is fetched for it. The
smallest length of the current notes is then determined again and the process described above repeated. A test is made on each iteration to see if all
channels have run out of data to play, and if so this ends the PLAY command.

LOABG6: CALL LOFBO Find smallest duration length of the current notes across all channels.
PUSH DE Save the smallest duration length.
CALL LOF61 Play a note on each channel.
POP DE DE=The smallest duration length.
LOABE: LD A,(IY+$10) Channel bitmap.
CP $FF Is there anything to play?
JR NZ,LOACA Jump if there is.
CALL LOEB2 Turn off all sound and restore Y.
El Re-enable interrupts.
RET End of play command.
LOACA: DEC DE DE=Smallest channel duration length, i.e. duration until the next channel state
change.
CALL LOF95 Perform a wait.
CALL LOFEO Play a note on each channel and update the channel duration lengths.
CALL LOFBO Find smallest duration length of the current notes across all channels.
JR LOABE Jump back to see if there is more to process.

PLAY Command Character Table

Recognised characters in PLAY commands.

LOADG:

DEFM "HZYXWUVMT)(NO!"

Get Play Character

Get the current character from the PLAY string and then increment the character pointer within the string.
Exit: Carry flag set if string has been fully processed.

Carry flag reset if character is available.

A=Character available.

LOAE4: CALL LOF02 Get the current character from the play string for this channel.
RET C Return if no more characters.
INC (IX+$06) Increment the low byte of the string pointer.
RET Nz Return if it has not overflowed.
INC (IX+$07) Else increment the high byte of the string pointer.
RET Returns with carry flag reset.

Get Next Note in Semitones

Finds the number of semitones above C for the next note in the string,

Entry: IX=Address of the channel data block.
Exit : A=Number of semitones above C, or $80 for a rest.
LOAFO: PUSH HL Save HL.
LD C,$00 Default is for a 'natural' note, i.e. no adjustment.
LOAF3: CALL LOAE4 Get the current character from the PLAY string, and advance the position pointer.
JR C,LOB0OO Jump if at the end of the string.
CP'& $26. Is it a rest?
JR NZ,LOBOB Jump ahead if not.
LD A,$80 Signal that it is a rest.
LOAFE: POP HL Restore HL.
RET
LOBOO: LD A,(IY+$21) Fetch the channel selector.
OR (IY+$10) Clear the channel flag for this string.
LD (IY+$10),A Store the new channel bitmap.
JR LOAFE Jump back to return.
LOBOB: CP'# $23. Is it a sharpen?

52

JR NZ,LOB12
INC C
JR LOAF3
LOB12: CP'$
JR NZ,LOB19
DEC C
JR LOAF3
LOB19: BIT 5,A
JR NZ,LOB23
PUSH AF
LD A,$0C
ADDA,C
LDC.A
POP AF
LOB23: AND $DF
SUB $41
JP C,LOF41
CP $07
JP NC,LOF41
PUSH BC
LD B,$00
LDC.A
LD HL,LOE18
ADD HL,BC
LD A,(HL)
POP BC
ADDA,C
POP HL
RET

SPECTRUM +2 ROM o DISASSEMBLY

Jump ahead if not.

Increment by a semitone.

Jump back to get the next character.
$24. Is it a flatten?

Jump ahead if not.

Decrement by a semitone.

Jump back to get the next character.
Is it a lower case letter?

Jump ahead if lower case.

It is an upper case letter so

increase an octave

by adding 12 semitones.

Convert to upper case.

Reduce to range 'A'->0 .. 'G'->6.

Jump if below 'A' to produce error report "k Invalid note name".
Is it 7 or above?

Jump if so to produce error report "k Invalid note name".
C=Number of semitones.

BC holds 0..6 for 'a'..'g".
Look up the number of semitones above note C for the note.

A=Number of semitones above note C.

C=Number of semitones due to sharpen/flatten characters.

Adjust number of semitones above note C for the sharpen/flatten characters.
Restore HL.

Get Numeric Value from Play String

Get a numeric value from a PLAY string, returning O if no numeric value present.

Entry: IX=Address of the channel data block.
Exit : BC=Numeric value, or 0 if no numeric value found.
LOB3C: PUSH HL Save registers.

PUSH DE
LD L,(IX+$06)
LD H,(IX+$07)
LD DE,$0000
LOB4T7: LD A,(HL)
CPO
JR C,LOB64
cp
JR NC,LOB64
INC HL
PUSH HL
CALL LOB6F
SUB 0’
LD H,$00
LD L,A
ADD HL,DE
JR C,LOB61
EX DE,HL
POP HL
JR LOB47
LOB61: JP LOF39

The end of the numeric value was reached

LOB64: LD (IX+$086),L
LD (IX+$07),H

Get the pointer into the PLAY string.
Initialise result to 0.

$30. Is character numeric?

Jump ahead if not.

$3A. Is character numeric?

Jump ahead if not.

Advance to the next character.

Save the pointer into the string.

Multiply result so far by 10.

$30. Convert ASCII digit to numeric value.

HL=Numeric digit value.

Add the numeric value to the result so far.

Jump ahead if an overflow to produce error report "l number too big".

Transfer the result into DE.

Retrieve the pointer into the string.

Loop back to handle any further numeric digits.

Jump to produce error report "| number too big". [Could have saved 1 byte by
directly using JP C,$0F39 (ROM 0) instead of using this JP and the two JR C,$0B61
(ROM 0) instructions that come here]

Store the new pointer position into the string.

53

PUSH DE
POP BC
POP DE
POP HL
RET

Multiply DE by 10

LOBGF:

LOB74:

LD HL,$0000
LD B,$0A
ADD HL,DE
JR C,LOB61
DJINZ LOB74
EX DE,HL
RET

SPECTRUM +2 ROM o DISASSEMBLY

Return the result in BC.
Restore registers.

Add DE to HL ten times.
Jump ahead if an overflow to produce error report "l number too big".

Transfer the result into DE.

Find Next Note from Channel String

LOB7B:

LOB88:

CALL LOASD
JR C,LOB8S
CALL LOEB2
El

CALL LO5CB
DEFB $14
CALL LOAE4
JP C,LODC1
CALL LOEOF
LD B,$00
SLAC

LD HL,LODE9
ADD HL,BC
LD E,(HL)
INC HL

LD D,(HL)

EX DE,HL
CALL LOBA3
JR LOB7B

Test for BREAK being pressed.

Jump ahead if not pressed.

Turn off all sound and restore Y.

Re-enable interrupts.

Produce error report. [Could have saved 1 byte by using JP $05F5 (ROM 0)]

"L Break into program"

Get the current character from the PLAY string, and advance the position pointer.
Jump if at the end of the string.

Find the handler routine for the PLAY command character.

Generate the offset into the
command vector table.
HL points to handler routine for this command character.

Fetch the handler routine address.

HL=Handler routine address for this command character.
Make an indirect call to the handler routine.

Jump back to handle the next character in the string.

Comes here after processing a non-numeric digit that does not have a specific command routine handler Hence the next note to play has been determined
and so a return is made to process the other channels.

LOBAZ2:
LOBA3:

Play Command '!" (Comment)

RET
JP (HL)

Just make a return.
Jump to the command handler routine.

A comment is enclosed within exclamation marks, e.g. "! A comment !".

Entry:

LOBAA4:

Play Command 'O’ (Octave)

IX=Address of the channel data block.

CALL LOAE4
JP C,LODCO
cpr

RET Z

JR LOBA4

Get the current character from the PLAY string, and advance the position pointer.
Jump if at the end of the string.

$21. Is it the end-of-comment character?

Return if it is.

Jump back to test the next character.

The 'O' command is followed by a numeric value within the range 0 to 8, although due to loose range checking the value MOD 256 only needs to be
within 0 to 8. Hence 0256 operates the same as OO0.

54

SPECTRUM +2 ROM o DISASSEMBLY

Entry: IX=Address of the channel data block.

LOBAF: CALL LOB3C Get following numeric value from the string into BC.
LD A,C Is it between O and 8?
CP $09
JP NC,LOF31 Jump if above 8 to produce error report "n Out of range".
SLAA Multiply A by 12.
SLAA
LD B,A
SLAA
ADD A,B
LD (IX+$03),A Store the octave value.
RET

Play Command 'N' (Separator)

The 'N' command is simply a separator marker and so is ignored.
Entry: IX=Address of the channel data block.

LOBC4: RET Nothing to do so make an immediate return.

Play Command '(* (Start of Repeat)

A phrase can be enclosed within brackets causing it to be repeated, i.e. played twice.

Entry: IX=Address of the channel data block.
LOBCS: LD A,(IX+$0B) A=Current level of open bracket nesting.
INC A Increment the count.
CP $05 Only 4 levels supported.
JP Z,LOF49 Jump if this is the fifth to produce error report "d Too many brackets".
LD (IX+$0B),A Store the new open bracket nesting level.
LD DE,$000C Offset to the bracket level return position stores.
CALL LOC46 HL=Address of the pointer in which to store the return location of the bracket.
LD A,(IX+$06) Store the current string position as the return address of the open bracket.
LD (HL),A
INC HL
LD A,(IX+$07)
LD (HL),A
RET

Play Command ')’ (End of Repeat)

A phrase can be enclosed within brackets causing it to be repeated, i.e. played twice.

Brackets can also be nested within each other, to 4 levels deep.

If a closing bracket if used without a matching opening bracket then the whole string up until that point is repeated indefinitely.
Entry: IX=Address of the channel data block.

LOBE1: LD A,(IX+$16) Fetch the nesting level of closing brackets.
LD DE,$0017 Offset to the closing bracket return address store.
ORA Is there any bracket nesting so far?
JP M,LOCOF Jump if none. [Could have been faster by jumping to $0C12 (ROM 0)]

Has the bracket level been repeated, i.e. re-reached the same position in the string as the closing bracket return address?

CALL LOC46 HL=Address of the pointer to the corresponding closing bracket return address store.
LD A,(IX+$06) Fetch the low byte of the current address.

CP (HL) Re-reached the closing bracket?

JR NZ,LOCOF Jump ahead if not.

INC HL Point to the high byte.

LD A,(IX+$07) Fetch the high byte address of the current address.

CP (HL) Re-reached the closing bracket?

55

JR NZ,LOCOF

SPECTRUM +2 ROM o DISASSEMBLY

Jump ahead if not.

The bracket level has been repeated. Now check whether this was the outer bracket level.

The outer bracket level has been repeated

DEC (IX+$16)
LD A,(IX+$16)

ORA
RET P

BIT 0,(IX+$0A)

RET Z

Decrement the closing bracket nesting level since this level has been repeated.
[There is no need for the LD A,(IX+$16) and OR A instructions since the DEC (IX+
$16) already set the flags]

Reached the outer bracket nesting level?

Return if not the outer bracket nesting level such that the character after the closing
bracket is processed next.

Was this a single closing bracket?
Return if it was not.

The repeat was caused by a single closing bracket so re-initialise the repeat

A new level of closing bracket nesting

LOCOF:

LOC2A:

LD (IX+$16),$00

XOR A
JR LOC2A

LD A,(IX+$16)
INC A
CP $05

JP Z,LOF49
LD (IX+$16),A
CALL LOC46
LD A,(IX+$06)
LD (HL),A
INC HL

LD A,(IX+$07)
LD (HL),A

LD A,(IX+$0B)
LD DE,$000C
CALL LOC46
LD A,(HL)

LD (IX+$06),A
INC HL

LD A,(HL)

LD (IX+$07),A
DEC (IX+$0B)
RET P

Restore one level of closing bracket nesting.
Select closing bracket nesting level 0.
Jump ahead to continue.

Fetch the nesting level of closing brackets.

Increment the count.

Only 5 levels supported (4 to match up with opening brackets and a 5th to repeat
indefinitely).

Jump if this is the fifth to produce error report "d Too many brackets".

Store the new closing bracket nesting level.

HL=Address of the pointer to the appropriate closing bracket return address store.
Store the current string position as the return address for the closing bracket.

Fetch the nesting level of opening brackets.

HL=Address of the pointer to the opening bracket nesting level return address store.
Set the return address of the nesting level's opening bracket

as new current position within the string.

For a single closing bracket only, this will be the start address of the string.

Decrement level of open bracket nesting.
Return if the closing bracket matched an open bracket.

There is one more closing bracket then opening brackets, i.e. repeat string indefinitely

LD (IX+$0B),$00
SET 0,(IX+$0A)

RET

Set the opening brackets nesting level to 0.
Signal a single closing bracket only, i.e. to repeat the string indefinitely.

Get Address of Bracket Pointer Store

LOCA46:

PUSH IX
POP HL
ADD HL,DE
LD B,$00
LDCA
SLAC
ADD HL,BC

HL=IX.
HL=IX+DE.

HL=IX+DE+2*A.

56

Play Command 'T' (Tempo)

RET

SPECTRUM +2 ROM o DISASSEMBLY

A temp command must be specified in the first play string and is followed by a numeric value in the range 60 to 240 representing the number of beats
(crotchets) per minute.

Entry:

LOC51:

A holds a value in the range 60 to 240

Tempo Command Return

IX=Address of the channel data block.

CALL LOB3C
LDAB

ORA

JP NZ,LOF31
LD AC

CP $3C

JP C,LOF31
CP $F1

JP NC,LOF31

LD A,(IX+$02)
ORA

RET NZ

LD B,$00
PUSH BC
POP HL

ADD HL,HL
ADD HL,HL
PUSH HL
POP BC

PUSH IY
RST 28H

DEFW STACK_BC
DI

POP IY

PUSH IY

PUSH IY

POP HL

LD BC,$002B

ADD HL,BC

LD IY,$5C3A
PUSH HL

LD HL,LOC95

LD (RETADDR),HL
LD HL,YOUNGER
EX (SP),HL

PUSH HL

JP SWAP

Get following numeric value from the string into BC.

Jump if 256 or above to produce error report "n Out of range".

Jump if 59 or below to produce error report "n Out of range".

Jump if 241 or above to produce error report "n Out of range".

Fetch the channel number.

Tempo 'T' commands have to be specified in the first string.
If it is in a later string then ignore it.

[Redundant instruction - B is already zero]

C=Tempo value.

HL=Tempo*4.

BC=Tempo*4. [Would have been quicker to use the combination LD B,H and LD
C.L]
Save the pointer to the play command data block.

$2D2B. Place the contents of BC onto the stack. The call restores 1Y to $5C3A.
Interrupts get re-enabled by the call mechanism to ROM 1 so disable them again.
Restore IY to point at the play command data block.

Save the pointer to the play command data block.

HL=pointer to the play command data block.

HL =1Y+$002B.

Reset 1Y to $5C3A since this is required by the floating point calculator.
HL=Points to the calculator RAM routine.

$5B5A. Set up the return address.

Stack the address of the swap routine used when returning to this ROM.

Re-stack the address of the calculator RAM routine.
$5B00. Toggle to other ROM and make a return to the calculator RAM routine.

The calculator stack now holds the value (10/(Tempo*4))/7.33e-6 and this is stored as the tempo value.
The result is used an inner loop counter in the wait routine at $0F95 (ROM 0). Each iteration of this loop takes 26 T-states. The time taken by 26 T-states
is 7.33e-6 seconds. So the total time for the loop to execute is 2.5/TEMPO seconds.

LOC95:

DI
RST 28H

DEFW FP_TO_BC
DI

POP IY

LD (IY+$27),C

LD (IY+$28),B

Interrupts get re-enabled by the call mechanism to ROM 1 so disable them again.

$2DA2. Fetch the value on the top of the calculator stack.

Interrupts get re-enabled by the call mechanism to ROM 1 so disable them again.
Restore |Y to point at the play command data block.

Store tempo timing value.

57

SPECTRUM +2 ROM o DISASSEMBLY

RET

Play Command 'M' (Mixer)

This command is used to select whether to use tone and/or noise on each of the 3 channels.
It is followed by a numeric value in the range 1 to 63, although due to loose range checking the value MOD 256 only needs to be within 0 to 63. Hence
M256 operates the same as MO.

Entry: IX=Address of the channel data block.

LOCA3: CALL LOB3C Get following numeric value from the string into BC.
LDA,C A=Mixer value.
CP $40 Is it 64 or above?
JP NC,LOF31 Jump if so to produce error report "n Out of range".

Bit 0: 1=Enable channel A tone.
Bit 1: 1=Enable channel B tone.
Bit 2: 1=Enable channel C tone.
Bit 3: 1=Enable channel A noise.
Bit 4: 1=Enable channel B noise.
Bit 5: 1=Enable channel C noise.

CPL Invert the bits since the sound generator's mixer register uses active low enable.
This also sets bit 6 1, which selects the I/O port as an output.

LD E,A E=Mixer value.

LD D,$07 D=Register 7 - Mixer.

CALL LOE9B Write to sound generator register to set the mixer.

RET [Could have saved 1 byte by using JP $0E9B (ROM 0)]

Play Command 'V' (Volume)

This sets the volume of a channel and is followed by a numeric value in the range 0 (minimum) to 15 (maximum), although due to loose range checking
the value MOD 256 only needs to be within 0 to 15. Hence V256 operates the same as V0.

Entry: IX=Address of the channel data block.

LOCB4: CALL LOB3C Get following numeric value from the string into BC.
LDA,C
CP $10 Is it 16 or above?
JP NC,LOF31 Jump if so to produce error report "n Out of range".
LD (IX+$04),A Store the volume level.

[BUG - An attempt to set the volume for a sound chip channel is now made. However, this routine fails to take into account that it is also called to set the
volume for a MIDI only channel, i.e. play strings 4 to 8. As a result, corruption occurs to various sound generator registers, causing spurious sound output.
There is in fact no need for this routine to set the volume for any channels since this is done every time a new note is played - see routine at $0AB6 (ROM
0). the bug fix is to simply to make a return at this point. This routine therefore contains 11 surplus bytes. Credit: lan Collier (+3), Paul Farrow (128)]

LD E,(IX+$02) E=Channel number.

LD A,$08 Offset by 8.

ADD AE A=8+index.

LDD,A D=Sound generator register number for the channel.

LD E,C E=Volume level.

CALL LOE9B Write to sound generator register to set the volume for the channel.
RET [Could have saved 1 byte by using JP $0E9B (ROM 0)]

Play Command 'U' (Use Volume Effect)

This command turns on envelope waveform effects for a particular sound chip channel. The volume level is now controlled by the selected envelope
waveform for the channel, as defined by the ‘W' command. MIDI channels do not support envelope waveforms and so the routine has the effect of setting
the volume of a MIDI channel to maximum, i.e. 15. It might seem odd that the volume for MIDI channels is set to 15 rather than just filtered out. However,
the three sound chip channels can also drive three MIDI channels and so it would be inconsistent for these MIDI channels to have their volume set to 15
but have the other MIDI channels behave differently. However, it could be argued that all MIDI channels should be unaffected by the 'U' command.
There are no parameters to this command.

Entry: IX=Address of the channel data block.

58

SPECTRUM +2 ROM o DISASSEMBLY

LOCCC: LD E,(IX+$02) Get the channel number.
LD A,$08 Offset by 8.
ADD AE A=8+index.
LD D,A D=Sound generator register number for the channel. [This is not used and so there

is no need to generate it. It was probably a left over from copying and modifying the
'V' command routine. Deleting it would save 7 bytes. Credit: lan Collier (+3), Paul

Farrow (128)]

LD E,$1F E=Select envelope defined by register 13, and reset volume bits to maximum
(though these are not used with the envelope).

LD (IX+$04),E Store that the envelope is being used (along with the reset volume level).

RET

Play command ‘W' (Volume Effect Specifier)

This command selects the envelope waveform to use and is followed by a numeric value in the range 0 to 7, although due to loose range checking the
value MOD 256 only needs to be within 0 to 7.
Hence W256 operates the same as WO.

Entry: IX=Address of the channel data block.

LOCD9: CALL LOB3C Get following numeric value from the string into BC.
LDA,C
CP $08 Is it 8 or above?
JP NC,LOF31 Jump if so to produce error report "n Out of range".
LD B,$00
LD HL,LOEQ7 Envelope waveform lookup table.
ADD HL,BC HL points to the corresponding value in the table.
LD A,(HL)
LD (IY+$29),A Store new effect waveform value.
RET

Play Command 'X' (Volume Effect Duration)

This command allows the duration of a waveform effect to be specified, and is followed by a numeric value in the range 0 to 65535. A value of 1
corresponds to the minimum duration, increasing up to 65535 and then maximum duration for a value of 0. If no numeric value is specified then the
maximum duration is used.

Entry: IX=Address of the channel data block.
LOCED: CALL LOB3C Get following numeric value from the string into BC.
LD D,$0B Register 11 - Envelope Period Fine.
LDE,C
CALL LOE9B Write to sound generator register to set the envelope period (low byte).
INC D Register 12 - Envelope Period Coarse.
LD E,B
CALL LOE9B Write to sound generator register to set the envelope period (high byte).
RET [Could have saved 1 byte by using JP $0E9B (ROM 0)]

Play Command 'Y' (MIDI Channel)

This command sets the MIDI channel number that the string is assigned to and is followed by a nhumeric value in the range 1 to 16, although due to loose
range checking the value MOD 256 only needs to be within 1 to 16.
Hence Y257 operates the same as Y1.

Entry: IX=Address of the channel data block.
LOCFC: CALL LOB3C Get following numeric value from the string into BC.
LDA,C
DEC A Is it 0?
JP M,LOF31 Jump if so to produce error report "n Out of range".
CP $10 Is it 10 or above?
JP NC,LOF31 Jump if so to produce error report "n Out of range".
LD (IX+$01),A Store MIDI channel number that this string is assigned to.
RET

59

SPECTRUM +2 ROM o DISASSEMBLY

Play Command 'Z' (MIDI Programming Code)

This command is used to send a programming code to the MIDI port. It is followed by a numeric value in the range 0 to 255, although due to loose range
checking the value MOD 256 only needs to be within 0 to 255. Hence Z256 operates the same as Z0.

Entry: IX=Address of the channel data block.

LODOD: CALL LOB3C Get following numeric value from the string into BC.
LDA,C A=(low byte of) the value.
CALL L11C2 Write byte to MIDI device.
RET [Could have saved 1 byte by using JP $0E9B (ROM 0)]

Play Command 'H' (Stop)

This command stops further processing of a play command. It has no parameters.
Entry: IX=Address of the channel data block.

LOD15: LD (IY+$10),$FF Indicate no channels to play, thereby causing
RET the play command to terminate.

Play Commands 'a'..'g’, 'A"..'"G', '1'.."12",'&" and ' '
This handler routine processes commands 'a'..'g', 'A"..'G', '1".."12", '& and '_', and determines the length of the next note to play. It provides the handling
of triplet and tied notes.
It stores the note duration in the channel data block's duration length entry, and sets a pointer in the command data block's duration lengths pointer table
to point at it. A single note letter is deemed to be a tied note count of 1. Triplets are deemed a tied note count of at least 2.
Entry: IX=Address of the channel data block.

A=Current character from play string.

LOD1A:

CALL LOES38
JP C,LODAO

The character is a number digit

Is the current character a number?
Jump if not number digit.

CALL LODCB HL=Address of the duration length within the channel data block.

CALL LODD3 Store address of duration length in command data block's channel duration length
pointer table.

XOR A

LD (IX+$21),A Set no tied notes.

CALL LOEE7 Get the previous character in the string, the note duration.

CALL LOB3C Get following numeric value from the string into BC.

LDAC

ORA Is the value 0?

JP Z,LOF31 Jump if so to produce error report "n Out of range".

CP $0D Is it 13 or above?

JP NC,LOF31 Jump if so to produce error report "n Out of range".

CP $0A Is it below 10?

JR C,LOD51 Jump if so.

It is a triplet semi-quaver (10), triplet quaver (11) or triplet crotchet (12)

CALL LOE1F DE=Note duration length for the duration value.
CALL LOD93 Increment the tied notes counter.
LD (HL),E HL=Address of the duration length within the channel data block.
INC HL
LD (HL),D Store the duration length.
LODA47: CALL LOD93 Increment the counter of tied notes.
INC HL
LD (HL),E
INC HL Store the subsequent note duration length in the channel data block.
LD (HL),D
INC HL

60

JR LOD57

The note duration was in the range 1 to 9

LOD51:

LOD57:
LOD5A:

LD (IX+$05),C
CALL LOELF
CALL LOD93
CALL LOF02
cp'

JR NZ,LOD8D
CALL LOAE4
CALL LOB3C
LDAC

CP $0A

JR C,LOD7E

A triplet note was found as part of a tied note

PUSH HL
PUSH DE
CALL LOELF
POP HL
ADD HL,DE
LD C,E

LD B,D

EX DE,HL
POP HL

LD (HL),E
INC HL

LD (HL),D
LDE,C

LD D,B

JR LODA47

A non-triplet tied note

LOD7E:

LD (IX+$05),C
PUSH HL
PUSH DE
CALL LOELF
POP HL

ADD HL,DE
EX DE,HL
POP HL

JP LOD5A

SPECTRUM +2 ROM o DISASSEMBLY

Jump ahead to continue.

C=Note duration value (1..9).

DE=Duration length for this duration value.

Increment the tied notes counter.

Get the current character from the play string for this channel.
$5F. Is it a tied note?

Jump ahead if not.

Get the current character from the PLAY string, and advance the position pointer.
Get following numeric value from the string into BC.

Place the value into A.

Is it below 10?

Jump ahead for 1 to 9 (semiquaver ... semibreve).

HL=Address of the duration length within the channel data block.
DE=First tied note duration length.

DE=Note duration length for this new duration value.
HL=Current tied note duration length.

HL=Current+new tied note duration lengths.

BC=Note duration length for the duration value.
DE=Current+new tied note duration lengths.
HL=Address of the duration length within the channel data block.

Store the combined note duration length in the channel data block.

DE=Note duration length for the second duration value.
Jump back.

Store the note duration value.

HL=Address of the duration length within the channel data block.

DE=First tied note duration length.

DE=Note duration length for this new duration value.

HL=Current tied note duration length.

HL=Current+new tied not duration lengths.

DE=Current+new tied not duration lengths.

HL=Address of the duration length within the channel data block.

Jump back to process the next character in case it is also part of a tied note.

The number found was not part of a tied note, so store the duration value

LOD8D:

LD (HL),E
INC HL

LD (HL),D
JP LODBB

HL=Address of the duration length within the channel data block.
(For triplet notes this could be the address of the subsequent note duration length)
Store the duration length.

Jump forward to make a return.

This subroutine is called to increment the tied notes counter

LOD93:

The character is not a number digit so is 'A’

LD A,(IX+$21)
INC A

CP $0B

JP Z,LOF59
LD (IX+$21),A
RET

Increment counter of tied notes.

Has it reached 11?
Jump if so to produce to error report "o too many tied notes".
Store the new tied notes counter.

G & or'

61

LODAQ:

SPECTRUM +2 ROM o DISASSEMBLY

CALL LOEE7 Get the previous character from the string.
LD (IX+$21),$01 Set the number of tied notes to 1.

Store a pointer to the channel data block's duration length into the command data block

LODBB:

CALL LODCB HL=Address of the duration length within the channel data block.

CALL LODD3 Store address of duration length in command data block's channel duration length
pointer table.

LD C,(IX+$05) C=The duration value of the note (1 to 9).

PUSH HL [Not necessary]

CALL LOE1F Find the duration length for the note duration value.

POP HL [Not necessary]

LD (HL),E Store it in the channel data block.

INC HL

LD (HL),D

JP LODBB Jump to the instruction below. [Redundant instruction]

POP HL

INC HL

INC HL Modify the return address to point to the RET instruction at $0BA2 (ROM 0).

PUSH HL

RET [Over elaborate when a simple POP followed by RET would have sufficed, saving 3
bytes]

End of String Found

This routine is called when the end of string is found within a comment. It marks the string as having been processed and then returns to the main loop

to process the next string.

LODCO:

POP HL Drop the return address of the call to the comment command.

Enter here if the end of the string is found whilst processing a string.

LODC1:

LD A,(IY+$21) Fetch the channel selector.

OR (IY+$10) Clear the channel flag for this string.
LD (IY+$10),A Store the new channel bitmap.

RET

Point to Duration Length within Channel Data Block

LODCB:

PUSH IX

POP HL HL=Address of the channel data block.

LD BC,$0022

ADD HL,BC HL=Address of the store for the duration length.
RET

Store Entry in Command Data Block's Channel Duration Length Pointer Table

LODD3:

PUSH HL Save the address of the duration length within the channel data block.

PUSH IY

POP HL HL=Address of the command data block.

LD BC,$0011

ADD HL,BC HL=Address within the command data block of the channel duration length pointer
table.

LD B,$00

LD C,(IX+$02) BC=Channel number.

SLAC BC=2*Index number.

ADD HL,BC HL=Address within the command data block of the pointer to the current channel's
data block duration length.

POP DE DE=Address of the duration length within the channel data block.

62

SPECTRUM +2 ROM o DISASSEMBLY

LD (HL),E Store the pointer to the channel duration length in the command data block's
channel duration pointer table.

INC HL

LD (HL),D

EX DE,HL

RET

PLAY Command Jump Table

Handler routine jump table for all PLAY commands.

LODE9: DEFW LOD1A Command handler routine for all other characters.
DEFW LOBA4 "I command handler routine.
DEFW LOBAF 'O’ command handler routine.
DEFW LOBC4 'N' command handler routine.
DEFW LOBC5 ‘(' command handler routine.
DEFW LOBE1 ") command handler routine.
DEFW LOC51 "T' command handler routine.
DEFW LOCA3 'M' command handler routine.
DEFW LOCB4 'V' command handler routine.
DEFW LOCCC 'U' command handler routine.
DEFW LOCD9 'W' command handler routine.
DEFW LOCED 'X' command handler routine.
DEFW LOCFC "Y' command handler routine.
DEFW LODOD 'Z' command handler routine.
DEFW LOD15 'H' command handler routine.

Envelope Waveform Lookup Table

Table used by the play ‘W' command to find the corresponding envelope value to write to the sound generator envelope shape register (register 13). This
filters out the two duplicate waveforms possible from the sound generator and allows the order of the waveforms to be arranged in a more logical fashion.

LOEOQ7: DEFB $00 WO - Single decay then off. (Continue off, attack off, alternate off, hold off)
DEFB $04 W1 - Single attack then off. (Continue off, attack on, alternate off, hold off)
DEFB $0B W?2 - Single decay then hold. (Continue on, attack off, alternate on, hold on)
DEFB $0D W3 - Single attack then hold. (Continue on, attack on, alternate off, hold on)
DEFB $08 W4 - Repeated decay. (Continue on, attack off, alternate off, hold off)
DEFB $0C W5 - Repeated attack. (Continue on, attack on, alternate off, hold off)
DEFB $0E W6 - Repeated attack-decay. (Continue on, attack on, alternate on, hold off)
DEFB $0A W7 - Repeated decay-attack. (Continue on, attack off, alternate on, hold off)

Identify Command Character

This routines attempts to match the command character to those in a table.
The index position of the match indicates which command handler routine is required to process the character. Note that commands are case sensitive.
Entry: A=Command character.
Exit : Zero flag set if a match was found.
BC=Indentifying the character matched, 1 to 15 for match and 0 for no match.

LOEOF: LD BC,$000F Number of characters + 1 in command table.
LD HL,LOAD6 Start of command table.
CPIR Search for a match.
RET

Semitones Table

This table contains an entry for each note of the scale, A to G, and is the number of semitones above the note C.

LOE18: DEFB $09 ‘A
DEFB $0B 'B'
DEFB $00 'C

63

SPECTRUM +2 ROM o DISASSEMBLY

DEFB $02 ‘D'
DEFB $04 'E'
DEFB $05 'F
DEFB $07 'G'

Find Note Duration Length

LOE1F: PUSH HL Save HL.
LD B,$00
LD HL,LOE2B Note duration table.
ADD HL,BC Index into the table.
LD D,$00
LD E,(HL) Fetch the length from the table.
POP HL Restore HL.
RET

Note Duration Table

A whole note is given by a value of 96d and other notes defined in relation to this.
The value of 96d is the lowest common denominator from which all note durations can be defined.

LOE2B: DEFB $80 Rest [Not used since table is always indexed into with a value of 1 or more]
DEFB $06 Semi-quaver (sixteenth note).
DEFB $09 Dotted semi-quaver (3/32th note).
DEFB $0C Quaver (eighth note).

DEFB $12 Dotted quaver (3/16th note).
DEFB $18 Crotchet (quarter note).

DEFB $24 Dotted crotchet (3/8th note).
DEFB $30 Minim (half note).

DEFB $48 Dotted minim (3/4th note).

DEFB $60 Semi-breve (whole note).

DEFB $04 Triplet semi-quaver (1/24th note).
DEFB $08 Triplet quaver (1/12th note).
DEFB $10 Triplet crochet (1/6th note).

Is Numeric Digit?

Tests whether a character is a number digit.

Entry: A=Character.
Exit : Carry flag reset if a number digit.
LOE38: CP'0O' $30. Is it '0' or less?
RET C Return with carry flag set if so.
cp" $3A. Is it more than '9'?
CCF
RET Return with carry flag set if so.

Play a Note On a Sound Chip Channel

This routine plays the note at the current octave and current volume on a sound chip channel. For play strings 4 to 8, it simply stores the note number
and this is subsequently played later.
Entry: IX=Address of the channel data block.

A=Note value as number of semitones above C (0..11).

LOE3F: LDC,A C=The note value.
LD A,(IX+$03) Octave number * 12.
ADD A,C Add the octave number and the note value to form the note number.
CP $80 Is note within range?
JP NC,LOF51 Jump if not to produce error report "m Note out of range"”.
LD CA C=Note number.

64

LD A,(IX+$02)
ORA
JR NZ,LOESE

SPECTRUM +2 ROM o DISASSEMBLY

Get the channel number.
Is it the first channel?
Jump ahead if not.

Only set the noise generator frequency on the first channel

LOESE:

LDAC
CPL

AND $7F

SRL A

SRL A

LD D,$06

LD E,A

CALL LOE9B
LD (IX+$00),C
LD A,(IX+$02)
CP $03

RET NC

Channel 0, 1 or 2

Note number 21 to 107 (range O to 86)

LOE76:

LOE7D:

Set Sound Generator Register

LOE9B:

LD HL,L10B5
LD B,$00

LD AC

SUB $15

JR NC,LOE76
LD DE,$0FBF
JR LOE7D

LD CA
SLAC

ADD HL,BC
LD E,(HL)
INC HL

LD D,(HL)

EX DE,HL

LD D,(IX+$02)
SLAD

LDE,L
CALL LOE9B
INC D

LD E,H

CALL LOE9B
BIT 4,(IX+$04)
RET Z

LD D,$0D

LD A,(IY+$29)
LD E,A

CALL LOE9B
RET

PUSH BC

LD BC,$FFFD
OUT (C),D
LD BC,$BFFD
OUT (C).E
POP BC

A=Note number (0..107), in ascending audio frequency.
Invert since noise register value is in descending audio frequency.
Mask off bit 7.

Divide by 4 to reduce range to 0..31.
Register 6 - Noise pitch.

Write to sound generator register.

Store the note number.

Get the channel number.

Is it channel 0, 1 or 2, i.e. a sound chip channel?
Do not output anything for play strings 4 to 8.

Start of note lookup table.

BC=Note number.

A=Note number.

A=Note number - 21.

Jump if note number was 21 or above.

Note numbers $00 to $14 use the lowest note value.

[Could have saved 4 bytes by using XOR A and dropping through to $0E76 (ROM
0)]

Generate offset into the table.
Point to the entry in the table.

DE=Word to write to the sound chip registers to produce this note.
HL=Register word value to produce the note.

Get the channel number.

D=2*Channel number, to give the tone channel register (fine control) number 0, 2, or
4.

E=The low value byte.

Write to sound generator register.

D=Tone channel register (coarse control) number 1, 3, or 5.
E=The high value byte.

Write to sound generator register.

Is the envelope waveform being used?

Return if it is not.

Register 13 - Envelope Shape.

Get the effect waveform value.

Write to sound generator register.
[Could have saved 4 bytes by dropping down into the routine below.]

Select the register.

Write out the value.

65

RET

SPECTRUM +2 ROM o DISASSEMBLY

Read Sound Generator Register

LOEAS:

PUSH BC
LD BC,$FFFD
OUT (C),A

IN A,(C)

POP BC

RET

Turn Off All Sound

LOEB2:

Turn off the sound from the AY-3-8912

Now reset all MIDI channels in use

LOECB:

LOED7:

LOEE2:

LD D,$07
LD E,$FF
CALL LOESB

LD D,$08
LD E,$00
CALL LOESB
INC D

CALL LOESB
INC D

CALL LOESB
CALL LOAGE

RR (IY+$22)
JR C,LOED7
CALL LOA86
CALL L11AC
SLA (IY+$21)
JR C,LOEE2
CALL LOASD
JR LOECB
LD IY,$5C3A
RET

Select the register.
Read the register's value.

Register 7 - Mixer.
1/0 ports are inputs, noise output off, tone output off.
Write to sound generator register.

Register 8 - Channel A volume.

Volume of 0.

Write to sound generator register to set the volume to 0.
Register 9 - Channel B volume.

Write to sound generator register to set the volume to 0.
Register 10 - Channel C volume.

Write to sound generator register to set the volume to 0.
Select channel data block pointers.

Working copy of channel bitmap. Test if next string present.

Jump ahead if there is no string for this channel.

Get address of channel data block for the current string into IX.
Turn off the MIDI channel sound assigned to this play string.

Have all channels been processed?

Jump ahead if so.

Advance to the next channel data block pointer.
Jump back to process the next channel.
Restore IY.

Get Previous Character from Play String

Get the previous character from the PLAY string, skipping over spaces and 'Enter' characters.

Entry:

LOEE7:

LOEEF:

IX=Address of the channel data block.

PUSH HL
PUSH DE

LD L, (IX+$06)
LD H,(IX+$07)
DEC HL

LD A,(HL)
cp"

JR Z,LOEEF
CP $0D

JR Z,LOEEF
LD (IX+$086),L
LD (IX+$07),H
POP DE

POP HL

Save registers.
Get the current pointer into the PLAY string.

Point to previous character.

Fetch the character.

$20. Is it a space?

Jump back if a space.

Is it an 'Enter'?

Jump back if an 'Enter".

Store this as the new current pointer into the PLAY string.

Restore registers.

66

RET

SPECTRUM +2 ROM o DISASSEMBLY

Get Current Character from Play String

Get the current character from the PLAY string, skipping over spaces and 'Enter' characters.
Exit: Carry flag set if string has been fully processed.

Carry flag reset if character is available.
A=Character available.

LOFO02:

LOFOB:

LOF1A:

LOF24:

LOF28:

PUSH HL
PUSH DE
PUSH BC

LD L,(IX+$06)
LD H,(IX+$07)
LD AH

CP (IX+$09)
JR NZ,LOF1A
LDAL

CP (IX+$08)
JR NZ,LOF1A
SCF

JR LOF24

LD A,(HL)
cp"

JR Z,LOF28
CP $0D

JR Z,LOF28
ORA

POP BC

POP DE

POP HL

RET

INC HL

LD (IX+$086),L
LD (IX+$07),H
JR LOFOB

Produce Play Error Reports

LOF31:

LOF39:

LOF41:

LOF49:

LOF51:

LOF59:

CALL LOEB2
El

CALL LO5CB
DEFB $29
CALL LOEB2
El

CALL LO5CB
DEFB $27
CALL LOEB2
El

CALL LO5CB
DEFB $26
CALL LOEB2
El

CALL LO5CB
DEFB $1F
CALL LOEB2
El

CALL LO5CB
DEFB $28
CALL LOEB2
El

CALL LO5CB
DEFB $2A

Save registers.

HL=Pointer to next character to process within the PLAY string.

Reached end-of-string address high byte?
Jump forward if not.

Reached end-of-string address low byte?

Jump forward if not.

Indicate string all processed.

Jump forward to return.

Get the next play character.

$20. Is it a space?

Ignore the space by jumping ahead to process the next character.
Is it 'Enter'?

Ignore the 'Enter' by jumping ahead to process the next character.
Clear the carry flag to indicate a new character has been returned.
Restore registers.

Point to the next character.

Update the pointer to the next character to process with the PLAY string.
Jump back to get the next character.

Turn off all sound and restore 1Y.

Produce error report.
"n Out of range”
Turn off all sound and restore 1Y.

Produce error report.
"I Number too big"
Turn off all sound and restore 1Y.

Produce error report.
"k Invalid note name"
Turn off all sound and restore 1Y.

Produce error report.
"d Too many brackets"
Turn off all sound and restore 1Y.

Produce error report.
"m Note out of range"
Turn off all sound and restore 1Y.

Produce error report.
"o Too many tied notes"

67

SPECTRUM +2 ROM o DISASSEMBLY

Play Note on Each Channel

Play a note and set the volume on each channel for which a play string exists.

LOF61: CALL LOAGE Select channel data block pointers.

LOF64: RR (IY+$22) Working copy of channel bitmap. Test if next string present.
JR C,LOF8B Jump ahead if there is no string for this channel.
CALL LOA86 Get address of channel data block for the current string into IX.
CALL LOAFO Get the next note in the string as number of semitones above note C.
CP $80 Is it a rest?
JR Z,LOF8B Jump ahead if so and do nothing to the channel.
CALL LOE3F Play the note if a sound chip channel.
LD A,(IX+$02) Get channel number.
CP $03 Is it channel 0, 1 or 2, i.e. a sound chip channel?
JR NC,LOF88 Jump if not to skip setting the volume.

One of the 3 sound chip generator channels so set the channel's volume for the new note

LD D,$08

ADD A,D A=0to 2.

LDD,A D=Register (8 + string index), i.e. channel A, B or C volume register.

LD E,(IX+$04) E=Volume for the current channel.

CALL LOE9B Write to sound generator register to set the output volume.
LOF88: CALL L118D Play a note and set the volume on the assigned MIDI channel.
LOF8B: SLA (IY+$21) Have all channels been processed?

RETC Return if so.

CALL LOASD Advance to the next channel data block pointer.

JR LOF64 Jump back to process the next channel.

Wait Note Duration

This routine is the main timing control of the PLAY command.

It waits for the specified length of time, which will be the lowest note duration of all active channels.
The actual duration of the wait is dictated by the current tempo.

Entry: DE=Note duration, where 96d represents a whole note.

Enter a loop waiting for (135+ ((26*(tempo-100))-5))*DE+5 T-states

LOF95: PUSH HL (11) Save HL.
LD L,(IY+$27) (19) Get the tempo timing value.
LD H,(IY+$28) 19)
LD BC,$0064 (10) BC=100
ORA 4
SBC HL,BC (15) HL=tempo timing value - 100.
PUSH HL (11)
POP BC (10) BC=tempo timing value - 100.
POP HL (10) Restore HL.

Tempo timing value = (10/(TEMPO*4))/7.33e-6, where 7.33e-6 is the time for 26 T-states.

The loop below takes 26 T-states per iteration, where the number of iterations is given by the tempo timing value.

So the time for the loop to execute is 2.5/TEMPO seconds.

For a TEMPO of 60 beats (crotchets) per second, the time per crotchet is 1/24 second.

The duration of a crotchet is defined as 24 from the table at $0EOC, therefore the loop will get executed 24 times and hence the total time taken will
be 1 second.

The tempo timing value above has 100 subtracted from it, presumably to approximately compensate for the overhead time previously taken to prepare
the notes for playing. This reduces the total time by 2600 T-states, or 733us.

LOFAS: DEC BC (6) Wait for tempo-100 loops.
LDAB (4)
ORC (4)
JR NZ,LOFA5 1217)
DEC DE (6) Repeat DE times
LD AD (4)
ORE 4

68

JR NZ,LOF95
RET

SPECTRUM +2 ROM o DISASSEMBLY

(12/7)
(10)

Find Smallest Duration Length

This routine finds the smallest duration length for all current notes being played across all channels.
Exit: DE=Smallest duration length.

LOFBO: LD DE,$FFFF Set smallest duration length to 'maximum’.
CALL LOAG69 Select channel data block duration pointers.

LOFB6: RR (1Y+$22) Working copy of channel bitmap. Test if next string present.
JR C,LOFCE Jump ahead if there is no string for this channel.

HL=Address of channel data pointer. DE holds the smallest duration length found so far.

PUSH DE Save the smallest duration length.

LD E,(HL)

INC HL

LD D,(HL)

EX DE,HL DE=Channel data block duration length.

LD E,(HL)

INC HL

LD D,(HL) DE=Channel duration length.

PUSH DE

POP HL HL=Channel duration length.

POP BC Last channel duration length.

ORA

SBC HL,BC Is current channel's duration length smaller than the smallest so far?
JR C,LOFCE Jump ahead if so, with the new smallest value in DE.

The current channel's duration was not smaller so restore the last smallest into DE.

PUSH BC
POP DE DE=Smallest duration length.
LOFCE: SLA (IY+$21) Have all channel strings been processed?
JR C,LOFD9 Jump ahead if so.
CALL LOA8SD Advance to the next channel data block duration pointer.
JR LOFB6 Jump back to process the next channel.
LOFD9: LD (IY+$25),E

LD (IY+$26),D
RET

Store the smallest channel duration length.

Play a Note on Each Channel and Update Channel Duration Lengths

This routine is used to play a note and set the volume on all channels.

It subtracts an amount of time from the duration lengths of all currently playing channel note durations. The amount subtracted is equivalent to the smallest
note duration length currently being played, and as determined earlier.

Hence one channel's duration will go to 0 on each call of this routine, and the others will show the remaining lengths of their corresponding notes.

Entry: IY=Address of the command data block.
LOFEO: XOR A
LD (IY+$2A),A Holds a temporary channel bitmap.
CALL LOAGE Select channel data block pointers.
LOFE7: RR (1Y+$22) Working copy of channel bitmap. Test if next string present.
JP C,L1079 Jump ahead if there is no string for this channel.
CALL LOA86 Get address of channel data block for the current string into IX.
PUSH IY
POP HL HL=Address of the command data block.
LD BC,$0011
ADD HL,BC HL=Address of channel data block duration pointers.
LD B,$00

LD C,(IX+$02)
SLAC

BC=Channel number.
BC=2*Channel number.

69

SPECTRUM +2 ROM o DISASSEMBLY

ADD HL,BC HL=Address of channel data block duration pointer for this channel.
LD E,(HL)

INC HL

LD D,(HL) DE=Address of duration length within the channel data block.

EX DE,HL HL=Address of duration length within the channel data block.
PUSH HL Save it.

LD E,(HL)

INC HL

LD D,(HL) DE=Duration length for this channel.

EX DE,HL HL=Duration length for this channel.

LD E,(IY+$25)
LD D,(IY+$26)
ORA

DE=Smallest duration length of all current channel notes.

SBC HL,DE HL=Duration length - smallest duration length.

EX DE,HL DE=Duration length - smallest duration length.

POP HL HL=Address of duration length within the channel data block.
JRZ,L101B Jump if this channel uses the smallest found duration length.

LD (HL),E

INC HL Update the duration length for this channel with the remaining length.
LD (HL),D

JR L1079 Jump ahead to update the next channel.

The current channel uses the smallest found duration length

[A note has been completed and so the channel volume is set to O prior to the next note being played. This occurs on both sound chip channels and MIDI
channels. When a MIDI channel is assigned to more than one play string and a rest is used in one of those strings. As soon as the end of the rest period
is encountered, the channel's volume is set to off even though one of the other play strings controlling the MIDI channel may still be playing. This can
be seen using the command PLAY "Y1a&", "Y1N9a". Here, string 1 starts playing 'a’ for the period of a crotchet (1/4 of a note), where as string 2 starts
playing 'a’ for nine periods of a crotchet (9/4 of a note). When string 1 completes its crotchet, it requests to play a period of silence via the rest '&'". This
turns the volume of the MIDI channel off even though string 2 is still timing its way through its nine crotchets. The play command will therefore continue
for a further seven crotchets but in silence. This is because the volume for note is set only at its start and no coordination occurs between strings to turn
the volume back on for the second string. It is arguably what the correct behaviour should be in such a circumstance where the strings are providing
conflicting instructions, but having the latest command or note take precedence seems a logical approach. Credit: lan Collier (+3), Paul Farrow (128)]

L101B: LD A,(IX+$02) Get the channel number.
CP $03 Is it channel 0, 1 or 2, i.e. a sound chip channel?
JR NC,L102B Jump ahead if not a sound generator channel.
LD D,$08
ADD A,D
LDD,A D=Register (8+channel number) - Channel volume.
LD E,$00 E=Volume level of 0.
CALL LOE9B Write to sound generator register to turn the volume off.
L102B: CALL L11AC Turn off the assigned MIDI channel sound.
PUSH IX
POP HL HL=Address of channel data block.
LD BC,$0021
ADD HL,BC HL=Points to the tied notes counter.
DEC (HL) Decrement the tied notes counter. [This contains a value of 1 for a single note]
JR NZ,L1045 Jump ahead if there are more tied notes.
CALL LOB7B Find the next note to play for this channel from its play string.
LD A,(IY+$21) Fetch the channel selector.
AND (IY+$10) Test whether this channel has further data in its play string.
JR NZ,L1079 Jump to process the next channel if this channel does not have a play string.
JR L105C The channel has more data in its play string so jump ahead.

The channel has more tied notes

L1045: PUSH IY
POP HL HL=Address of the command data block.
LD BC,$0011
ADD HL,BC HL=Address of channel data block duration pointers.
LD B,$00

LD C,(IX+$02)
SLAC

ADD HL,BC
LD E,(HL)
INC HL

BC=Channel number.
BC=2*Channel number.
HL=Address of channel data block duration pointer for this channel.

70

SPECTRUM +2 ROM o DISASSEMBLY

LD D,(HL) DE=Address of duration length within the channel data block.

INC DE

INC DE Point to the subsequent note duration length.

LD (HL),D

DEC HL

LD (HL),E Store the new duration length.

L105C: CALL LOAFO Get next note in the string as number of semitones above note C.

LD CA C=Number of semitones.

LD A,(IY+$21) Fetch the channel selector.

AND (IY+$10) Test whether this channel has a play string.

JR NZ,L1079 Jump to process the next channel if this channel does not have a play string.

LDA,C A=Number of semitones.

CP $80 Is it a rest?

JR Z,L1079 Jump to process the next channel if it is.

CALL LOE3F Play the new note on this channel at the current volume if a sound chip channel, or
simply store the note for play strings 4 to 8.

LD A,(IY+$21) Fetch the channel selector.

OR (IY+$2A) Insert a bit in the temporary channel bitmap to indicate this channel has more to
play.

LD (IY+$2A),A Store it.

Check whether another channel needs its duration length updated

L1079: SLA (IY+$21) Have all channel strings been processed?
JR C,L1085 Jump ahead if so.
CALL LOA8D Advance to the next channel data pointer.
JP LOFE7 Jump back to update the duration length for the next channel.

[BUG - By this point, the volume for both sound chip and MIDI channels has been set to 0, i.e. off. So although the new notes have been set playing on
the sound chip channels, no sound is audible. For MIDI channels, no new notes have yet been output and hence these are also silent. If the time from
turning the volume off for the current note to the time to turn the volume on for the next note is short enough, then it will not be noticeable. However, the
code at $1085 (ROM 0) introduces a 1/96th of a note delay and as a result a 1/96th of a note period of silence between notes. The bug can be resolved
by simply deleting the two instructions below that introduce the delay. A positive side effect of the bug in the 'V' volume command at $0CB4 (ROM 0) is
that it can be used to overcome the gaps of silence between notes for sound chip channels. By interspersing volume commands between notes, a new
volume level is immediately set before the 1/96th of a note delay is introduced for the new note. Therefore, the delay occurs when the new note is audible
instead of when it is silent. For example, PLAY "cV15cV15c" instead of PLAY "ccc". The note durations are still 1/96th of a note longer than they should
be though. This technique will only work on the sound chip channels and not for any MIDI channels. Credit: lan Collier (+3), Paul Farrow (128)]

L1085:

All channel durations have been updated. Update the volume on each sound chip channel, and the volume and note on each MIDI channel

L108E:

L10A8:
L10AB:

LD DE,$0001
CALL LOF95
CALL LOAGE

RR (IY+$2A)
JR NC,L10AB
CALL LOAS6
LD A,(IX+$02)
CP $03

JR NC,L10A8
LD D,$08
ADD A,D

LD D,A

LD E,(IX+$04)
CALL LOE9B
CALL L118D
SLA (IY+$21)
RET C

CALL LOASD
JR L108E

Note Lookup Table

Each word gives the value of the sound generator tone registers for a given note.

Delay for 1/96th of a note.

Select channel data block pointers.

Temporary channel bitmap. Test if next string present.

Jump ahead if there is no string for this channel.

Get address of channel data block for the current string into IX.
Get the channel number.

Is it channel 0, 1 or 2, i.e. a sound chip channel?

Jump ahead if so to process the next channel.

D=Register (8+channel number) - Channel volume.

Get the current volume.

Write to sound generator register to set the volume of the channel.
Play a note and set the volume on the assigned MIDI channel.
Have all channels been processed?

Return if so.

Advance to the next channel data pointer.

Jump back to process the next channel.

71

SPECTRUM +2 ROM o DISASSEMBLY

There are 9 octaves, containing a total of 108 notes. These represent notes 21 to 128. Notes 0 to 20 cannot be reproduced on the sound chip and so
note 21 will be used for all of these (they will however be sent to a MIDI device if one is assigned to a channel). [Note that both the sound chip and the
MIDI port can not play note 128 and so its inclusion in the table is a waste of 2 bytes]. The PLAY command does not allow octaves higher than 8 to
be selected directly. Using PLAY "O8G" will select note 115. To select higher notes, sharps must be included, e.g. PLAY "O8#G" for note 116, PLAY
"O8##G" for note 117, etc, up to PLAY "O8####H#HHH#HH#G" for note 127. Attempting to access note 128 using PLAY "O8##H#HH#HH#H##G" will lead
to error report "m Note out of range”.

L10B5: DEFW $0FBF Octave 1, Note 21 - A (27.50 Hz, Ideal=27.50 Hz, Error=-0.01%) CO
DEFW $0EDC Octave 1, Note 22 - A# (29.14 Hz, Ideal=29.16 Hz, Error=-0.08%)
DEFW $0EOQ7 Octave 1, Note 23 - B (30.87 Hz, Ideal=30.87 Hz, Error=-0.00%)
DEFW $0D3D Octave 2, Note 24 - C (32.71 Hz, Ideal=32.70 Hz, Error=+0.01%) C1
DEFW $0C7F Octave 2, Note 25 - C# (34.65 Hz, Ideal=34.65 Hz, Error=-0.00%)
DEFW $0BCC Octave 2, Note 26 - D (36.70 Hz, Ideal=36.71 Hz, Error=-0.01%)
DEFW $0B22 Octave 2, Note 27 - D# (38.89 Hz, Ideal=38.89 Hz, Error=+0.01%)
DEFW $0A82 Octave 2, Note 28 - E (41.20 Hz, Ideal=41.20 Hz, Error=+0.00%)
DEFW $09EB Octave 2, Note 29 - F (43.66 Hz, Ideal=43.65 Hz, Error=+0.00%)
DEFW $095D Octave 2, Note 30 - F# (46.24 Hz, Ideal=46.25 Hz, Error=-0.02%)
DEFW $08D6 Octave 2, Note 31 - G (49.00 Hz, Ideal=49.00 Hz, Error=+0.00%)
DEFW $0857 Octave 2, Note 32 - G# (51.92 Hz, Ideal=51.91 Hz, Error=+0.01%)
DEFW $07DF Octave 2, Note 33 - A (55.01 Hz, Ideal=55.00 Hz, Error=+0.01%)
DEFW $076E Octave 2, Note 34 - A# (58.28 Hz, Ideal=58.33 Hz, Error=-0.08%)
DEFW $0703 Octave 2, Note 35 - B (61.75 Hz, Ideal=61.74 Hz, Error=+0.02%)
DEFW $069F Octave 3, Note 36 - C (65.39 Hz, Ideal= 65.41 Hz, Error=-0.02%) C2
DEFW $0640 Octave 3, Note 37 - C# (69.28 Hz, Ideal= 69.30 Hz, Error=-0.04%)
DEFW $05E6 Octave 3, Note 38 - D (73.40 Hz, Ideal= 73.42 Hz, Error=-0.01%)
DEFW $0591 Octave 3, Note 39 - D# (77.78 Hz, Ideal= 77.78 Hz, Error=+0.01%)
DEFW $0541 Octave 3, Note 40 - E (82.41 Hz, Ideal= 82.41 Hz, Error=+0.00%)
DEFW $04F6 Octave 3, Note 41 - F (87.28 Hz, Ideal= 87.31 Hz, Error=-0.04%)
DEFW $04AE Octave 3, Note 42 - F# (92.52 Hz, Ideal= 92.50 Hz, Error=+0.02%)
DEFW $046B Octave 3, Note 43 - G (98.00 Hz, Ideal= 98.00 Hz, Error=+0.00%)
DEFW $042C Octave 3, Note 44 - G# (103.78 Hz, |deal=103.83 Hz, Error=-0.04%)
DEFW $03F0 Octave 3, Note 45 - A (109.96 Hz, Ideal=110.00 Hz, Error=-0.04%)
DEFW $03B7 Octave 3, Note 46 - A# (116.55 Hz, Ideal=116.65 Hz, Error=-0.08%)
DEFW $0382 Octave 3, Note 47 - B (123.43 Hz, Ideal=123.47 Hz, Error=-0.03%)
DEFW $034F Octave 4, Note 48 - C (130.86 Hz, |deal=130.82 Hz, Error=+0.04%) C3
DEFW $0320 Octave 4, Note 49 - C# (138.55 Hz, Ideal=138.60 Hz, Error=-0.04%)
DEFW $02F3 Octave 4, Note 50 - D (146.81 Hz, |deal=146.83 Hz, Error=-0.01%)
DEFW $02C8 Octave 4, Note 51 - D# (155.68 Hz, Ideal=155.55 Hz, Error=+0.08%)
DEFW $02A1 Octave 4, Note 52 - E (164.70 Hz, Ideal=164.82 Hz, Error=-0.07%)
DEFW $027B Octave 4, Note 53 - F (174.55 Hz, Ideal=174.62 Hz, Error=-0.04%)
DEFW $0257 Octave 4, Note 54 - F# (185.04 Hz, Ideal=185.00 Hz, Error=+0.02%)
DEFW $0236 Octave 4, Note 55 - G (195.83 Hz, Ideal=196.00 Hz, Error=-0.09%)
DEFW $0216 Octave 4, Note 56 - G# (207.57 Hz, |deal=207.65 Hz, Error=-0.04%)
DEFW $01F8 Octave 4, Note 57 - A (219.92 Hz, Ideal=220.00 Hz, Error=-0.04%)
DEFW $01DC Octave 4, Note 58 - A# (232.86 Hz, Ideal=233.30 Hz, Error=-0.19%)
DEFW $01C1 Octave 4, Note 59 - B (246.86 Hz, Ideal=246.94 Hz, Error=-0.03%)
DEFW $01A8 Octave 5, Note 60 - C (261.42 Hz, Ideal=261.63 Hz, Error=-0.08%) C4 Middle C
DEFW $0190 Octave 5, Note 61 - C# (277.10 Hz, Ideal=277.20 Hz, Error=-0.04%)
DEFW $0179 Octave 5, Note 62 - D (294.01 Hz, Ideal=293.66 Hz, Error=+0.12%)
DEFW $0164 Octave 5, Note 63 - D# (311.35 Hz, Ideal=311.10 Hz, Error=+0.08%)
DEFW $0150 Octave 5, Note 64 - E (329.88 Hz, Ideal=329.63 Hz, Error=+0.08%)
DEFW $013D Octave 5, Note 65 - F (349.65 Hz, Ideal=349.23 Hz, Error=+0.12%)
DEFW $012C Octave 5, Note 66 - F# (369.47 Hz, Ideal=370.00 Hz, Error=-0.14%)
DEFW $011B Octave 5, Note 67 - G (391.66 Hz, Ideal=392.00 Hz, Error=-0.09%)
DEFW $010B Octave 5, Note 68 - G# (415.13 Hz, |deal=415.30 Hz, Error=-0.04%)
DEFW $00FC Octave 5, Note 69 - A (439.84 Hz, Ideal=440.00 Hz, Error=-0.04%)
DEFW $00EE Octave 5, Note 70 - A# (465.72 Hz, Ideal=466.60 Hz, Error=-0.19%)
DEFW $00EO Octave 5, Note 71 - B (494.82 Hz, Ideal=493.88 Hz, Error=+0.19%)
DEFW $00D4 Octave 6, Note 72 - C (522.83 Hz, |deal=523.26 Hz, Error=-0.08%) C5
DEFW $00C8 Octave 6, Note 73 - C# (554.20 Hz, Ideal=554.40 Hz, Error=-0.04%)
DEFW $00BD Octave 6, Note 74 - D (586.46 Hz, |deal=587.32 Hz, Error=-0.15%)
DEFW $00B2 Octave 6, Note 75 - D# (622.70 Hz, Ideal=622.20 Hz, Error=+0.08%)
DEFW $00A8 Octave 6, Note 76 - E (659.77 Hz, Ideal=659.26 Hz, Error=+0.08%)
DEFW $009F Octave 6, Note 77 - F (697.11 Hz, Ideal=698.46 Hz, Error=-0.19%)
DEFW $0096 Octave 6, Note 78 - F# (738.94 Hz, Ideal=740.00 Hz, Error=-0.14%)
DEFW $008D Octave 6, Note 79 - G (786.10 Hz, Ideal=784.00 Hz, Error=+0.27%)
DEFW $0085 Octave 6, Note 80 - G# (833.39 Hz, Ideal=830.60 Hz, Error=+0.34%)

72

SPECTRUM +2 ROM o DISASSEMBLY

DEFW $007E Octave 6, Note 81 - A (879.69 Hz, Ideal=880.00 Hz, Error=-0.04%)

DEFW $0077 Octave 6, Note 82 - A# (931.43 Hz, Ideal=933.20 Hz, Error=-0.19%)
DEFW $0070 Octave 6, Note 83 - B (989.65 Hz, Ideal=987.76 Hz, Error=+0.19%)

DEFW $006A Octave 7, Note 84 - C (1045.67 Hz, Ideal=1046.52 Hz, Error=-0.08%) C6
DEFW $0064 Octave 7, Note 85 - C# (1108.41 Hz, |deal=1108.80 Hz, Error=-0.04%)
DEFW $005E Octave 7, Note 86 - D (1179.16 Hz, Ideal=1174.64 Hz, Error=+0.38%)
DEFW $0059 Octave 7, Note 87 - D# (1245.40 Hz, |deal=1244.40 Hz, Error=+0.08%)
DEFW $0054 Octave 7, Note 88 - E (1319.53 Hz, Ideal=1318.52 Hz, Error=+0.08%)
DEFW $004F Octave 7, Note 89 - F (1403.05 Hz, Ideal=1396.92 Hz, Error=+0.44%)
DEFW $004B Octave 7, Note 90 - F# (1477.88 Hz, Ideal=1480.00 Hz, Error=-0.14%)
DEFW $0047 Octave 7, Note 91 - G (1561.14 Hz, Ideal=1568.00 Hz, Error=-0.44%)
DEFW $0043 Octave 7, Note 92 - G# (1654.34 Hz, Ideal=1661.20 Hz, Error=-0.41%)
DEFW $003F Octave 7, Note 93 - A (1759.38 Hz, Ideal=1760.00 Hz, Error=-0.04%)
DEFW $003B Octave 7, Note 94 - A# (1878.65 Hz, Ideal=1866.40 Hz, Error=+0.66%)
DEFW $0038 Octave 7, Note 95 - B (1979.30 Hz, Ideal=1975.52 Hz, Error=+0.19%)
DEFW $0035 Octave 8, Note 96 - C (2091.33 Hz, Ideal=2093.04 Hz, Error=-0.08%) C7
DEFW $0032 Octave 8, Note 97 - C# (2216.81 Hz, |deal=2217.60 Hz, Error=-0.04%)
DEFW $002F Octave 8, Note 98 - D (2358.31 Hz, Ideal=2349.28 Hz, Error=+0.38%)
DEFW $002D Octave 8, Note 99 - D# (2463.13 Hz, |deal=2488.80 Hz, Error=-1.03%)
DEFW $002A Octave 8, Note 100 - E (2639.06 Hz, Ideal=2637.04 Hz, Error=+0.08%)
DEFW $0028 Octave 8, Note 101 - F (2771.02 Hz, Ideal=2793.84 Hz, Error=-0.82%)
DEFW $0025 Octave 8, Note 102 - F# (2995.69 Hz, Ideal=2960.00 Hz, Error=+1.21%)
DEFW $0023 Octave 8, Note 103 - G (3166.88 Hz, Ideal=3136.00 Hz, Error=+0.98%)
DEFW $0021 Octave 8, Note 104 - G# (3358.81 Hz, Ideal=3322.40 Hz, Error=+1.10%)
DEFW $001F Octave 8, Note 105 - A (3575.50 Hz, Ideal=3520.00 Hz, Error=+1.58%)
DEFW $001E Octave 8, Note 106 - A# (3694.69 Hz, Ideal=3732.80 Hz, Error=-1.02%)
DEFW $001C Octave 8, Note 107 - B (3958.59 Hz, Ideal=3951.04 Hz, Error=+0.19%)
DEFW $001A Octave 9, Note 108 - C (4263.10 Hz, Ideal=4186.08 Hz, Error=+1.84%) C8
DEFW $0019 Octave 9, Note 109 - C# (4433.63 Hz, Ideal=4435.20 Hz, Error=-0.04%)
DEFW $0018 Octave 9, Note 110 - D (4618.36 Hz, |deal=4698.56 Hz, Error=-1.71%)
DEFW $0016 Octave 9, Note 111 - D# (5038.21 Hz, Ideal=4977.60 Hz, Error=+1.22%)
DEFW $0015 Octave 9, Note 112 - E (5278.13 Hz, Ideal=5274.08 Hz, Error=+0.08%)
DEFW $0014 Octave 9, Note 113 - F (5542.03 Hz, Ideal=5587.68 Hz, Error=-0.82%)
DEFW $0013 Octave 9, Note 114 - F# (5833.72 Hz, Ideal=5920.00 Hz, Error=-1.46%)
DEFW $0012 Octave 9, Note 115 - G (6157.81 Hz, Ideal=6272.00 Hz, Error=-1.82%)
DEFW $0011 Octave 9, Note 116 - G# (6520.04 Hz, Ideal=6644.80 Hz, Error=-1.88%)
DEFW $0010 Octave 9, Note 117 - A (6927.54 Hz, Ideal=7040.00 Hz, Error=-1.60%)
DEFW $000F Octave 9, Note 118 - A# (7389.38 Hz, Ideal=7465.60 Hz, Error=-1.02%)
DEFW $000E Octave 9, Note 119 - B (7917.19 Hz, Ideal=7902.08 Hz, Error=+0.19%)
DEFW $000D Octave 10, Note 120 - C (8526.20 Hz, Ideal= 8372.16 Hz, Error=+1.84%) C9
DEFW $000C Octave 10, Note 121 - C# (9236.72 Hz, Ideal= 8870.40 Hz, Error=+4.13%)
DEFW $000C Octave 10, Note 122 - D (9236.72 Hz, |deal= 9397.12 Hz, Error=-1.71%)
DEFW $000B Octave 10, Note 123 - D# (10076.42 Hz, Ideal= 9955.20 Hz, Error=+1.22%)
DEFW $000B Octave 10, Note 124 - E (10076.42 Hz, Ideal=10548.16 Hz, Error=-4.47%)
DEFW $000A Octave 10, Note 125 - F (11084.06 Hz, Ideal=11175.36 Hz, Error=-0.82%)
DEFW $0009 Octave 10, Note 126 - F# (12315.63 Hz, Ideal=11840.00 Hz, Error=+4.02%)
DEFW $0009 Octave 10, Note 127 - G (12315.63 Hz, Ideal=12544.00 Hz, Error=-1.82%)
DEFW $0008 Octave 10, Note 128 - G# (13855.08 Hz, Ideal=13289.60 Hz, Error=+4.26%)

Play Note on MIDI Channel

This routine turns on a note on the MIDI channel and sets its volume, if MIDI channel is assigned to the current string.
Three bytes are sent, and have the following meaning:

Byte 1: Channel number $00..$0F, with bits 4 and 7 set.

Byte 2: Note number $00..$7F.

Byte 3: Note velocity $00..$78.

Entry: IX=Address of the channel data block.

L118D: LD A,(IX+$01) Is a MIDI channel assigned to this string?
ORA
RET M Return if not.

A holds the assigned channel number ($00..$0F)

OR $90 Set bits 4 and 7 of the channel number. A=$90..$9F.

73

SPECTRUM +2 ROM o DISASSEMBLY

CALL L11C2 Write byte to MIDI device.

LD A,(IX+$00) The note number.

CALL L11C2 Write byte to MIDI device.

LD A,(IX+$04) Fetch the channel's volume.

RES 4,A Ensure the 'using envelope' bit is reset so

SLAA that A holds a value between $00 and $0F.

SLA A Multiply by 8 to increase the range to $00..$78.

SLAA A=Note velocity.

CALL L11C2 Write byte to MIDI device.

RET [Could have saved 1 byte by using JP $11C2 (ROM 0)]

Turn MIDI Channel Off

This routine turns off a note on the MIDI channel, if a MIDI channel is assigned to the current string.
Three bytes are sent, and have the following meaning:

Byte 1: Channel number $00..$0F, with bit 7 set.

Byte 2: Note number $00..$7F.

Byte 3: Note velocity $40.

Entry: IX=Address of the channel data block.

L11AC: LD A,(IX+$01) Is a MIDI channel assigned to this string?
ORA
RET M Return if not.

A holds the assigned channel number ($00..$0F)

Send Byte to MIDI Device

OR $80 Set bit 7 of the channel number. A=$80..$8F.

CALL L11C2 Write byte to MIDI device.

LD A,(IX+$00) The note number.

CALL L11C2 Write byte to MIDI device.

LD A,$40 The note velocity.

CALL L11C2 Write byte to MIDI device.

RET [Could have saved 1 byte by using JP $11C2 (ROM 0)]

This routine sends a byte to the MIDI port. MIDI devices communicate at 31250 baud, although this routine actually generates a baud rate of 31388,
which is within the 1% tolerance supported by MIDI devices.

Entry: A=Byte to send.
L11C2: LDLA Store the byte to send.
LD BC,$FFFD
LD A,$0E
OUT (C),A Select register 14 - 1/O port.
LD BC,$BFFD
LD A, $FA Set RS232 'RXD' transmit line to 0. (Keep KEYPAD 'CTS' output line low to prevent
the keypad resetting)
OuT (C),A Send out the START bit.
LD E,$03 (7) Introduce delays such that the next bit is output 113 T-states from now.
L11D3: DECE 4
JR NZ,L11D3 (12/7)
NOP 4
NOP 4
NOP 4)
NOP 4
LD AL (4) Retrieve the byte to send.
LD D,$08 (7) There are 8 bits to send.
L11DD: RRA (4) Rotate the next bit to send into the carry.
LDLA (4) Store the remaining bits.
JP NC,L11E8 (20) Jump if it is a O bit.
LD A $FE (7) Set RS232 'RXD' transmit line to 1. (Keep KEYPAD 'CTS' output line low to
prevent the keypad resetting)
OUT (C),A (11)

74

JR L11EE
L11ES: LD A $FA

OUT (C),A

JR L11EE
L11EE: LD E,$02
L11FO: DECE

JR NZ,L11F0

NOP

ADD A,$00

LD AL

DEC D

JR NZ,L11DD

NOP

NOP

ADD A,$00

NOP

NOP

LD A$FE

OUT (C),A

LD E,$06
L1206: DECE

JR NZ,L1206

RET

SPECTRUM +2 ROM o DISASSEMBLY

(12) Jump forward to process the next bit.

(7) Set RS232 'RXD' transmit line to 0. (Keep KEYPAD 'CTS' output line low to
prevent the keypad resetting)

(11)

(12) Jump forward to process the next bit.

(7) Introduce delays such that the next data bit is output 113 T-states from now.
4

(22/7)

4

]

(4) Retrieve the remaining bits to send.

(4) Decrement the bit counter.

(12/7) Jump back if there are further bits to send.

(4) Introduce delays such that the stop bit is output 113 T-states from now.

4

]

4

4

(7) Set RS232 'RXD' transmit line to 0. (Keep KEYPAD 'CTS' output line low to
prevent the keypad resetting)

(11) Send out the STOP bit.

(7) Delay for 101 T-states (28.5us).

4

(22/7)

(10)

CASSETTE / RAM DISK COMMAND ROUTINES — PART 1

SAVE Routine

L120A: LD HL,FLAGS3
SET 5,(HL)
JR L1224

LOAD Routine

L1211: LD HL,FLAGS3
SET 4,(HL)
JR L1224

VERIFY Routine

L1218: LD HL,FLAGS3
SET 7,(HL)
JR L1224

MERGE Routine

L121F: LD HL,FLAGS3
SET 6,(HL)
L1224 LD HL,FLAGS3
RES 3,(HL)
RST 18H
cp
JP NZ,L13DD

$5B66.
Indicate SAVE.

$5B66.
Indicate LOAD.

$5B66.
Indicate VERIFY.

$5B66.

Indicate MERGE.

$5B66.

Indicate using cassette.

Get current character.

$21. "

Jump ahead to handle cassette command.

75

SPECTRUM +2 ROM o DISASSEMBLY

RAM disk operation

LD HL,FLAGS3 $5B66.

SET 3,(HL) Indicate using RAM disk.

RST 20H Move on to next character.

JP L13DD Jump ahead to handle RAM disk command.
L1238: CALL LO5CB Produce error report.

DEFB $0B "C Nonsense in BASIC"

RAM Disk Command Handling

The information relating to the file is copied into memory in $5B66 (FLAGS3) to ensure that it is available once other RAM banks are switched in.
This code is very similar to that in the ZX Interface 1 ROM at $08F6.
Entry: HL=Start address.

IX=File header descriptor.

L123C: LD (HD_OD),HL $5B74. Save start address.
LD A,(IX+$00) Transfer header file information
LD (HD_00),A $5B71. from IX to HD_00 onwards.

LD L,(IX+$0B)
LD H,(IX+$0C)
LD (HD_0B),HL $5B72.
LD L,(IX+$0D)
LD H,(IX+$0E)
LD (HD_11),HL $5B78.
LD L,(IX+$0F)
LD H,(IX+$10)
LD (HD_OF),HL $5B76.

A copy of the header information has now been copied from IX+$00 onwards to HD_00 onwards

ORA Test file type.

JR Z,L126D Jump ahead for a program file.

CP $03

JR Z,L126D Jump ahead for a CODE/SCREENS$ file.
An array type

LD A,(IX+$0E)

LD (HD_OF),A $5B76. Store array name.
L126D: PUSH IX IX points to file header.

POP HL Retrieve into HL.

INC HL HL points to filename.

LD DE,N_STR1 $5B67.

LD BC,$000A

LDIR Copy the filename.

LD HL,FLAGS3 $5B66.

BIT 5,(HL) SAVE operation?

JP Nz,L1BCC Jump ahead if SAVE.

Load / Verify or Merge

LD HL,HD_00 $5B71.

LD DE,SC_00 $5B7A.

LD BC,$0007

LDIR Transfer requested details from HD_00 onwards into SC_00 onwards.
CALL L1C4D Find and load requested file header into HD_00 ($5B71).

The file exists else the call above would have produced an error “h file does not exist"

LD A,(SC_00) $5B7A. Requested file type.
LD B,A
LD A,(HD_00) $5B71. Loaded file type.

76

L129F:

L12A3:

CPB
JR NZ,L129F
CP $03

JR Z,L12AF

JR C,L12A3
CALL LO5CB
DEFB $1D

LD A,(FLAGS3)
BIT 6,A

JR NZ,L12E4
BIT 7,A

JP Z,L12FA

SPECTRUM +2 ROM o DISASSEMBLY

Error 'b' if file types do not match.

Is it a CODE file type?

Jump ahead to avoid MERGE program/array check.
Only file types 0, 1 and 2 are OK.
Produce error report.

"b Wrong file type"

$5B66.

Is it a MERGE program/array operation?
Jump ahead if so.

Is it a VERIFY program/array operation?
Jump ahead if LOAD.

Either a verify program/array or a load/verify CODE/SCREENS$ type file

L12AF:

LD A,(FLAGS3)
BIT 6,A
JR Z,L12BA

Cannot merge CODE/SCREEN$

RAM Disk VERIFY! Routine

L12BA:

CALL LO5CB
DEFB $1C

LD HL,(SC_0B)
LD DE,(HD_0B)
LD AH

ORL

JR Z,L12CD
SBC HL,DE

JR NC,L12CD

File was smaller than requested

L12CD:

L12D7:

L12E0:

RAM Disk

L12E4:

CALL LO5CB
DEFB $1E

LD HL,(SC_0D)
LD AH

ORL

JR NZ,L12D7
LD HL,(HD_OD)
LD A,(HD_00)
AND A

JR NZ,L12E0
LD HL,($5C53)
CALL L139D

RET

MERGE! Routine

LD BC,(HD_0B)
PUSH BC
INC BC

$5B66.
MERGE operation?
Jump ahead if VERIFY.

Produce error report.
"a MERGE error"

$5B7B. Length requested.
$5B72. File length.

Jump ahead if requested length is 0, i.e. not specified.
Is file length <= requested length?
Jump ahead if so; requested length is OK.

Produce error report.
"c CODE error"
$5B7D. Fetch start address.

Is length O, i.e. not provided?

Jump ahead if start address was provided.

$5B74. Not provided so use file's start address.

$5B71. File type.

Is it a program?

Jump ahead if not.

PROG. Set start address as start of program area.

Load DE bytes at address pointed to by HL. [The Spectrum 128 manual states

that the VERIFY keyword is not used with the RAM disk yet it clearly is, although
verifying a RAM disk file simply loads it in just as LOAD would do. To support
verifying, the routine at $1E56 (ROM 0) which loads blocks of data would need to be
able to load or verify a block. The success status would then need to be propagated
back to here via routines at $139D (ROM 0), $1C6A (ROM 0) and $1E56 (ROM 0)]
[Could have saved 1 byte by using JP $139D (ROM 0), although could have saved a
lot more by not supporting the VERIFY keyword at all]

$5B72. File length.
Save the length.
Increment for terminator $80 (added later).

I

RST 28H
DEFW BC_SPACES

LD (HL),$80

EX DE,HL

POP DE

PUSH HL

CALL L139D

POP HL

RST 28H

DEFW ME_CONTRL+$0018
RET

RAM Disk LOAD! Routine

L12FA: LD DE,(HD_0B)
LD HL,(SC_0D)
PUSH HL
LD AH
ORL
JR NZ,L130C

Start address was not specified

INC DE
INC DE
INC DE
EX DE,HL
JR L1315

A start address was specified

L130C: LD HL,(SC_OB)
EX DE,HL
SCF
SBC HL,DE
JR C,L131E

SPECTRUM +2 ROM o DISASSEMBLY

$0030. Create room in the workspace for the file.
Insert terminator.

HL=Start address.

DE=File length.

Save start address.

Load DE bytes to address pointed to by HL.
Retrieve start address.

$08CE. Delegate actual merge handling to ROM 1.

$5B72. File length.
$5B7D. Requested start address.
Save requested start address.

Was start address specified? (0 if not).
Jump ahead if start address specified.

Allow for variable overhead.

HL=File Length+3.
Jump ahead to test if there is room.

$5B7B. Requested length.
DE=Requested length. HL=File length.

File length-Requested Length-1
Jump if file is smaller than requested.

Test if there is room since file is bigger than requested

L1315: LD DE,$0005
ADD HL,DE
LD B,H
LDC,L
RST 28H
DEFW TEST_ROOM

Test file type
L131E: POP HL
LD A,(HD_00)

L1322: AND A
JR Z,L1354

Array type
LD AH
ORL
JR Z,L1334

Start address of existing array was specified

DEC HL

Space required in BC.

$1F05. Will automatically produce error '4' if out of memory.

Requested start address.
$5B71. Get requested file type.
Test file type.

Jump if program file type.

Was start address of existing array specified?
Jump ahead if not.

78

Insert new array entry into variables area

L1334:

L1350:

Program type

L1354:

L138F:

LD B,(HL)

DEC HL

LD C,(HL)

DEC HL

INC BC

INC BC

INC BC

RST 28H

DEFW RECLAIM_2

LD HL,($5C59)
DEC HL

LD BC,(HD_0B)
PUSH BC

INC BC

INC BC

INC BC

LD A,(SC_OF)
PUSH AF

RST 28H
DEFW MAKE_ROOM
INC HL

POP AF

LD (HL),A
POP DE

INC HL

LD (HL),E

INC HL

LD (HL),D

INC HL

CALL L139D
RET

LD HL,FLAGS3
RES 1,(HL)

LD DE,($5C53)
LD HL,($5C59)
DEC HL

RST 28H

DEFW RECLAIM
LD BC,(HD_0B)
LD HL,($5C53)
RST 28H

DEFW MAKE_ROOM
INC HL

LD BC,(HD_OF)
ADD HL,BC

LD ($5C4B),HL
LD A,(HD_11+1)
LD H,A

AND $CO

JR NZ,L138F
LD A,(HD_11)
LD L,A

LD ($5C42),HL
LD (IY+$0A),$00
LD HL,FLAGS3
SET 1,(HL)

LD HL,($5C53)
LD DE,(HD_0B)
DEC HL

LD ($5C57),HL

SPECTRUM +2 ROM o DISASSEMBLY

Fetch array length.

Allow for variable header.

$19E8. Delete old array.

E_LINE.
Point to end

$5B72. Array length.
Save array length.

Allow for variable header.

$5B7F. Get array name.
Save array name.

$1655. Create room for new array.

Store array hame.

Store array length.

Load DE bytes to address pointed to by HL.
[Could have saved 1 byte by using JP $139D (ROM 0)]

$5B66.

Signal do not auto-run BASIC program.
PROG. Address of start of BASIC program.
E_LINE. Address of end of program area.
Point before terminator.

$19ES5. Delete current BASIC program.
$5B72. Fetch file length.
PROG. Address of start of BASIC program.

$1655. Create room for the file.

Allow for terminator.

$5B76. Length of variables.

Determine new address of variables.

VARS.

$5B79. Fetch high byte of auto-run line number.

If holds $80 then no auto-run line number specified.
$5B78. Low byte of auto-run line number.

NEWPPC. Set line number to run.

NSPPC. Statement 0.

$5B66.

Signal auto-run BASIC program.

PROG. Address of start of BASIC program.
$5B72. Program length.

NXTLIN. Set the address of next line to the end of the program.

79

SPECTRUM +2 ROM o DISASSEMBLY

INC HL
JR L1350 Jump back to load program bytes.

RAM Disk Load Bytes

Make a check that the requested length is not zero before proceeding to perform the LOAD, MERGE or VERIFY. Note that VERIFY simply performs
a LOAD.
Entry: HL=Destination address.

DE=Length.

IX=Address of catalogue entry.

HD_00-HD_11 holds file header information.

L139D: LD AD
ORE
RET Z Return if length is zero.
CALL L1C6A Load bytes
RET [Could have used JP $1C6A (ROM 0) to save 1 byte]

Get Expression from BASIC Line

Returns in BC.

L13A4: RST 28H Expect an expression on the BASIC line.
DEFW EXPT_EXP $1C8C.
BIT 7,(1Y+$01) Return early if syntax checking.
RET z
PUSH AF Get the item off the calculator stack
RST 28H
DEFW STK_FETCH $2BF1.
POP AF
RET

Check Filename and Copy

Called to check a filename for validity and to copy it into N_STR1 ($5B67).

L13B2: RST 20H Advance the pointer into the BASIC line.
CALL L13A4 Get expression from BASIC line.
RET Z Return if syntax checking.
PUSH AF [No need to save AF - see comment below]
LDAC Check for zero length.
ORB
JR Z,L13D9 Jump if so to produce error report "f Invalid name".
LD HL,$000A Check for length greater than 10.
SBC HL,BC
JR C,L13D9 Jump if so to produce error report "f Invalid name".
PUSH DE Save the filename start address.
PUSH BC Save the filename length.
LD HL,N_STR1 $5B67. HL points to filename buffer.
LD B,$0A
LD A,$20
L13CC: LD (HL),A Fill it with 10 spaces.
INC HL
DJNZ L13CC
POP BC Restore filename length.
POP HL Restore filename start address.
LD DE,N_STR1 $5B67. DE points to where to store the filename.
LDIR Perform the copy.
POP AF [No need to have saved AF as not subsequently used]
RET
L13D9: CALL LO5CB Produce error report.
DEFB $21 “f Invalid name"

80

SPECTRUM +2 ROM o DISASSEMBLY

Cassette / RAM Disk Command Handling

Handle SAVE, LOAD, MERGE, VERIFY commands.
Bit 3 of FLAGS3 indicates whether a cassette or RAM disk command.
This code is very similar to that in ROM 1 at $0605.

L13DD:

L13F1:

L13FB:

Continue to handle the name of the program.

L1418:

RST 28H
DEFW EXPT_EXP
BIT 7,(IY+$01)

JR Z,L1426

LD BC,$0011

LD A,($5C74)
AND A

JR Z,L13F1

LD C,$22

RST 28H
DEFW BC_SPACES
PUSH DE

POP IX

LD B,$0B

LD A,$20

LD (DE),A

INC DE

DJINZ L13FB

LD (IX+$01),$FF
RST 28H

DEFW STK_FETCH
LD HL,$FFF6

DEC BC

ADD HL,BC

INC BC

JR NC,L141F

LD A,($5C74)

AND A
JRNZ,L1418

CALL LO5CB

DEFB $0E

LDAB

ORC

JR Z,L1426
LD BC,$000A

$1C8C. Pass the parameters of the 'name' to the calculator stack.

Jump ahead if checking syntax.

Size of save header, 17 bytes.

T_ADDR. Indicates which BASIC command.

Is it SAVE?

Jump ahead if so.

Otherwise need 34d bytes for LOAD, MERGE and VERIFY commands. 17 bytes for
the header of the requested file, and 17 bytes for the files tested from tape.

$0030. Create space in workspace.
Get start of the created space into IX.

Clear the filename.

Set all characters to spaces.

Indicate a null name.

The parameters of the name are fetched.
$2BF1.

=-10.

Jump ahead if filename length within 10 characters.

T_ADDR. Indicates which BASIC command.

Is it SAVE?

Jump ahead if not since LOAD, MERGE and VERIFY can have null filenames.
Produce error report.

"F Invalid file name"

Jump forward if the name has a null length.
Truncate longer filenames.

The name is now transferred to the work space (second location onwards)

L141F:

PUSH IX
POP HL
INC HL
EX DE,HL
LDIR

Transfer address of the workspace to HL.
Step to the second location.

Copy the filename.

The many different parameters, if any, that follow the command are now considered.
Start by handling 'xxx "name" DATA'".

L1426:

RST 18H
CP $E4
JRNZ,L147E

'Xxx "name" DATA'

LD A,($5C74)

Get character from BASIC line.
Is it 'DATA'?
Jump if not DATA.

T_ADDR. Check the BASIC command.

81

CP $03

JP Z,L1238
RST 20H

RST 28H
DEFW LOOK_VARS
JR NC,L144E
LD HL,$0000
BIT 6,(1Y+$01)
JR Z,L1444
SET 7,C

LD A,($5C74)
DEC A

JR Z,L1463
CALL LO5CB
DEFB $01

L1444:

Continue with the handling of an existing array

L144E: JP NZ,L1238
BIT 7,(1Y+$01)
JR Z,L1470
LD C,(HL)

INC HL

LD A,(HL)

LD (IX+$0B),A
INC HL

LD A,(HL)

LD (IX+$0C),A
INC HL

SPECTRUM +2 ROM o DISASSEMBLY

Is it MERGE?
"C Nonsense in BASIC" if so.
Get next character from BASIC line.

$28B2. Look in the variables area for the array.
Jump if handling an existing array.
Signal 'using a new array"'.
FLAGS. Is it a string Variable?
Jump forward if so.

Set bit 7 of the array's name.
T_ADDR.

Give an error if trying to

SAVE or VERIFY a new array.
Produce error report.

"2 Variable not found"

Jump if not an array to produce "C Nonsense in BASIC".
FLAGS.
Jump forward if checking syntax.

Paint to the 'low length' of the variable.
The low length byte goes into
the work space.

The high length byte goes into
the work space.
Step past the length bytes.

The next part is common to both 'old' and 'new' arrays

L1463: LD (IX+$0E),C
LD A,$01

BIT 6,C

JR Z,L146D
INC A

L146D: LD (IX+$00),A

Copy the array's name.
Assume an array of numbers - Code $01.

Jump if it is so.
Indicate it is an array of characters - Code $02.
Save the 'type’ in the first location of the header area.

The last part of the statement is examined before joining the other pathways

L1470: EX DE,HL
RST 20H
CPY)

JR NZ,L144E
RST 20H
CALL L18CO

EX DE,HL

JP L1538
Now Consider 'SCREENS$'

L147E: CP $AA

JR NZ,L14A1
'xxx "name" SCREEN$'

LD A,($5C74)
CP $03
JP Z,L1238

RST 20H
CALL L18CO
LD (IX+$0B),$00

Save the pointer in DE.

$29. Is the next character a *)'?

Give report C if it is not.

Advance to next character.

Move on to the next statement if checking syntax.

Return the pointer to the HL. (The pointer indicates the start of an existing array's

contents).
Jump forward.

Is the present code the token 'SCREEN$'?
Jump ahead if not.

T_ADDR_Jo. Check the BASIC command.
Is it MERGE?

Jump to "C Nonsense in BASIC" if so since it is not possible to have ‘"MERGE name

SCREENS$'.

Advance pointer into BASIC line.

Move on to the next statement if checking syntax.
Length of the block.

82

LD (IX+$0C),$1B
LD HL,$4000

LD (IX+$0D),L
LD (IX+$0E),H
JR L14EE

Now consider ‘CODE'

L14A1:

CP $AF
JR NZ,L14F4

'xxx "name" CODE'

LD A,($5C74)
CP $03
JP Z,L1238

RST 20H
RST 28H

DEFW PR_ST_END
JR NZ,L14BF

LD A,(35C74)

AND A

JP Z,L1238

RST 28H

DEFW USE_ZERO
JR L14CE

Look for a 'starting address'

L14BF:

L14CE:

RST 28H
DEFW EXPT_1NUM
RST 18H

cp',

JR Z,L14D3

LD A,(35C74)

AND A

JP Z,L1238

RST 28H

DEFW USE_ZERO
JR L14D7

Fetch the 'length’ as it was specified

L14D3:

RST 20H
RST 28H
DEFW EXPT_1NUM

SPECTRUM +2 ROM o DISASSEMBLY

The display area and the attribute area occupy $1800 locations.
Start of the block, beginning of the display file $4000.

Store in the workspace.
Jump forward.

Is the present code the token 'CODE'?
Jump ahead if not.

T_ADDR_Jo. Check the BASIC command.

Is it MERGE?

Jump to "C Nonsense in BASIC" if so since it is not possible to have ‘"MERGE name
CODE".

Advance pointer into BASIC line.

$2048.

Jump forward if the statement has not finished
T_ADDR_lo.

It is not possible to have 'SAVE name CODE!' by itself.
Jump if so to produce "C Nonsense in BASIC".

$1CES6. Put a zero on the calculator stack - for the 'start'.
Jump forward.

$1C82. Fetch the first number.

$2C. Is the present character a ','?

Jump if it is - the number was a 'starting address'

T_ADDR_lo.

Refuse 'SAVE name CODE' that does not have a 'start' and a 'length'.
Jump if so to produce "C Nonsense in BASIC".

$1CEB6. Put a zero on the calculator stack - for the 'length'.
Jump forward.

Advance to next character.

$1C82. Fetch the ‘length'.

The parameters are now stored in the header area of the work space

L14D7:

'SCREENS$' and 'CODE!' are both of type 3

CALL L18CO
RST 28H

DEFW FIND_INT2
LD (IX+$0B),C

LD (IX+$0C),B
RST 28H

DEFW FIND_INT2
LD (IX+$0D),C

LD (IX+$0E),B

LD H,B

LDL,C

But move on to the next statement now if checking syntax.
$1E99. Compress the 'length' into BC.
Store the length of the CODE block.

$1E99. Compress the 'starting address' into BC.
Store the start address of the CODE block.

Transfer start address pointer to HL.

83

SPECTRUM +2 ROM o DISASSEMBLY

L14EE: LD (IX+$00),$03 Store file type = $03 (CODE).
JR L1538 Rejoin the other pathways.

'xxx "name™ / 'SAVE "name" LINE'
Now consider ‘'LINE' and 'no further parameters'

L14F4: CP $CA Is the present code the token 'LINE'?
JR Z,L1501 Jump ahead if so.
CALL L18CO Move on to the next statement if checking syntax.
LD (IX+$0E),$80 Indicate no LINE number.
JR L1518 Jump forward.

Fetch the 'line number' that must follow 'LINE'

L1501: LD A,($5C74) T_ADDR_]lo. Only allow 'SAVE name LINE number'.
AND A Is it SAVE?
JP NZ,L1238 Produce "C Nonsense in BASIC" if not.
RST 20H Advance pointer into BASIC line.
RST 28H Get LINE number onto calculator stack
DEFW EXPT_1NUM $1C82. Pass the number to the calculator stack.
CALL L18CO Move on to the next statement if checking syntax.
RST 28H Retrieve LINE number from calculator stack
DEFW FIND_INT2 $1E99. Compress the 'line number' into BC.
LD (IX+$0D),C Store the LINE number.

LD (IX+$0E),B

'LINE' and 'no further parameters' are both of type 0

L1518: LD (IX+$00),$00 Store file type = $00 (program).
LD HL,($5C59) E_LINE. The pointer to the end of the variables area.
LD DE,($5C53) PROG. The pointer to the start of the BASIC program.
SCF
SBC HL,DE Perform the subtraction to find the length of the 'program + variables'.
LD (IX+$0B),L
LD (IX+$0C),H Store the length.
LD HL,($5C4B) VARS. Repeat the operation but this
SBC HL,DE time storing the length of the
LD (IX+$0F),L 'program’ only.
LD (IX+$10),H
EX DE,HL Transfer pointer to HL.

In all cases the header information has now been prepared:

- The location 'IX+00' holds the type number.

- Locations 'IX+01 to IX+0A'" holds the name ($FF in 'IX+01" if null).

- Locations 'IX+0B & IX+0C'" hold the number of bytes that are to be found in the 'data block'.

- Locations 'IX+0D to IX+10' hold a variety of parameters whose exact interpretation depends on the 'type'.
The routine continues with the first task being to separate SAVE from LOAD, VERIFY and MERGE.

L1538: LD A,(FLAGS3) $5B66.
BIT 3,A Using RAM disk?
JP NZ,L123C Jump if the operation is on the RAM disk.
LD A,($5C74) T_ADDR_lo. Get the BASIC command.
AND A Is it SAVE?
JR NZ,L154A Jump ahead if not.
RST 28H
DEFW SA_CONTROL $0970. Run the save routine in ROM 1.
RET

In the case of a LOAD, VERIFY or MERGE command the first seventeen bytes of the 'header area' in the work space hold the prepared information, as
detailed above and it is now time to fetch a 'header' from the tape.

L154A: RST 28H
DEFW SA_ALL+$0007 $0761. Run the load/merge/verify routine in ROM 1.
RET

84

SPECTRUM +2 ROM o DISASSEMBLY

EDITOR ROUTINES — PART 1

Relist the BASIC Program from the Current Line

This routine lists the BASIC program from the current line number. It initially shows the last line displayed but rows may subsequently be scrolled up
until the required BASIC line has been found. The structure of the ROM program only supports listing BASIC lines that are 20 rows or less; larger lines
are shown truncated to 20 rows.

L154E: LD HL,$EEF5 Flags.
RES 0,(HL) Signal this is not the current line.
SET 1,(HL) Signal not yet located the current line.

A loop is entered to display a screenful of program listing. If the current line number is not found in the lines displayed then all lines are scrolled up and
the listing reproduced. This procedure repeats until the current line number has been found and displayed.

L1555: LD HL,($5C49) E_PPC. Fetch current line number.
LD AH
ORL Is there a currently selected line?
JR NZ,L155F Jump ahead if so.
LD ($ECO06),HL Set to $0000 to indicate no editable characters before the cursor.
L155F: LD A,($F9DB) Fetch the number of rows of the BASIC line that are in the Above-Screen Line Edit
Buffer,
PUSH AF i.e. that are off the top of the screen.
LD HL,($FC9A) Line number of the BASIC line at the top of the screen (or O for the first line).
CALL L3370 Find closest line number (or $0000 if no subsequent line exists).
LD ($F9D7),HL Store the line number of the BASIC line being edited in the buffer.
CALL L3248 Set default Above-Screen Line Edit Buffer settings.
CALL L30FC Set default Below-Screen Line Edit Buffer settings.
POP AF A=Number of rows of the BASIC line that are in the Above-Screen Line Edit Buffer.
L1573: ORA Are there any rows off the top of the screen?
JR Z,L1582 Jump ahead if not.

The current settings indicate that the top BASIC line straggles into the Above-Screen Line Edit Buffer. It is therefore necessary to insert the current BASIC
line into the Below-Screen Line Edit Buffer and then shift the appropriate number of rows into the Above-Screen Line Edit Buffer.

PUSH AF Save the number of rows off the top of the screen.

CALL L3105 Copy a BASIC line from the program area into the Below-Screen Line Edit Buffer.
EX DE,HL DE=Address of the Below-Screen Line Edit Buffer.

CALL L3290 Shift up a row into the Above-Screen Line Edit Buffer.

POP AF Retrieve the number of rows off the top of the screen.

DEC A Decrement the number of rows.

JR L1573 Jump back to shift up another row if required.

Either there the top BASI Cline does not straggle off the top of the the screen or the appropriate number of rows have been copied into the Above-
Screen Line Edit Buffer. In the latter case, the Below-Screen Line Edit Buffer contains the remaining rows of the BASIC line and which be copied into
the top of the Screen Line Edit Buffer.

L1582: LD C,$00 C=Row 0.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the first row, as specified in C.
LD B,C B=Row 0.
LD A,($EC15) The number of editing rows on screen.
LDCA C=Number of editing rows on screen.
PUSH BC B=Row number, C=Number of editing rows on screen.
PUSH DE DE=Start address in Screen Line Edit Buffer of the first row.

Enter a loop to copy BASIC line rows into the Screen Line Edit Buffer. The Below-Screen Line Edit Buffer is used as a temporary store for holding each
BASIC line as it is copied into the Screen Line Edit Buffer. If the top BASIC line straggles above the screen then this loop is entered with the remains
of the line already in the Below-Screen Line Edit Buffer.

L158E: CALL L3105 Shift up all rows of the BASIC line in the Below-Screen Line Edit Buffer, or if empty
then copy a BASIC line from the program area into it. If no BASIC line available then
empty the first row of the Below-Screen Line Edit Buffer.

LD A,($EEF5) Listing flags.

85

SPECTRUM +2 ROM o DISASSEMBLY

BIT 1,A Has the current line been previously found?
JR Z,L15B5 Jump if so.

The current line has not yet been found so examine the current row in case it is the current line

PUSH DE DE=Start address in Screen Line Edit Buffer of the current row.
PUSH HL HL=Address of the first row in the Below-Screen Line Edit Buffer.
LD DE,$0020

ADD HL,DE Point to the flag byte for the first row.

BIT 0,(HL) Is it the first row of a BASIC line?

JR Z,L15B3 Jump if not.

The Below-Screen Line Edit Buffer contains a complete BASIC line so determine whether this is the current line

INC HL
LD D,(HL) Get line number into DE.
INC HL
LD E,(HL)
ORA
LD HL,($5C49) E_PPC. Current line number.
SBC HL,DE
JR NZ,L15B3 Jump ahead unless this is the current line.
LD HL,$EEF5
SET 0,(HL) Signal this is the current line.
L15B3: POP HL HL=Address of the current row in the Below-Screen Line Edit Buffer.
POP DE DE=Start address in Screen Line Edit Buffer of the current row.

Copy the row of the BASIC line from the Below-Screen Line Edit Buffer into the Screen Line Edit Buffer

L15B5: PUSH BC B=Row number, C=Number of editing rows on screen.
PUSH HL HL=Address of the current row in the Below-Screen Line Edit Buffer.
LD BC,$0023
LDIR Copy the first row of the BASIC line in the Below-Screen Line Edit Buffer into the
next row of the Screen Line Edit Buffer.
POP HL HL=Address of the current row in the Below-Screen Line Edit Buffer.
POP BC B=Row number, C=Number of editing rows on screen.
PUSH DE DE=Start address in Screen Line Edit Buffer of the next row.
PUSH BC B=Row number, C=Number of editing rows on screen.
EX DE,HL DE=Address of the current row in the Below-Screen Line Edit Buffer.
LD HL,$EEF5 Flags.
BIT 0,(HL) Is this the current line?
JR Z,L15F2 Jump if not.

This is the current line so scan across the BASIC line to locate the cursor column position

LD B,$00 Column 0.
L15CA: LD HL,($ECO06) HL=Count of the number of editable characters in the BASIC line up to the cursor
within the Screen Line Edit Buffer.
LD AH
OR L Are there any editable characters in this row prior to the cursor?
JR Z,L15DF Jump if there are none, i.e. cursor at start of the row.

There are editable characters on this row prior to the cursor [BUG - Entering ' 10 REM' or '0010 REM' will insert the line into the program area but instead
of placing the cursor on the following row it is placed after the following BASIC line, or if the line inserted was the last in the program then the cursor is
placed on row 20. The bug occurs due to the leading spaces or zeros, and hence will apply to every BASIC command. When the line is inserted into the
Screen Line Edit Buffer, the leading spaces are discarded and hence the line length is shorter than that typed in. However, it is the typed in line length
that is used when parsing the BASIC line in the Screen Line Edit Buffer and as a result this causes an attempt to find the remaining characters on the
following row of the Screen Line Edit Buffer. If another BASIC line is on the following Screen Line Edit Buffer row then the search completes and the
cursor is placed on the row after this BASIC line. If there is not a BASIC line on the following row then the search continues on the next row. Since this will
also be empty, the search advances onto the next row, and then the next, and so on until row 20 is reached. To fix the bug, the typed in character count
until the cursor (held in $EC06) ideally needs to be adjusted to match the actual number of characters stored in the Screen Line Edit Buffer. However,
this is not a trivial change to implement. A simpler solution to fix the bug is to intercept when a move to the next row is made and to determine whether
the BASIC line actually continues on this row. Credit: Paul Farrow] [To fix the bug, the POP HL and JR NC,$15EA (ROM 0) instructions following the call
to $2E67 (ROM 0) should be replaced with the following. Credit: Paul Farrow.

86

SPANS_ROW

CHAR_FOUND

PUSH DE
PUSH AF

LD HL,$0020

ADD HL,DE

EX DE,HL

POP AF

JR C,CHAR_FOUND
LD A,(DE)

BIT 1,A

JR NZ,SPANS_ROW
POP DE

POP HL

LD HL,$0000

LD ($EC06),HL

JP $15DF (ROM 0)

POP DE
POP HL
JP $15EA (ROM 0)

POP DE
POP HL

PUSH HL
CALL L2E67

POP HL
JR NC,L15EA

SPECTRUM +2 ROM o DISASSEMBLY

DE=Address of the start of the row of the BASIC line in the Screen Line Edit Buffer.

Save the flags.

DE=Address of the flag byte for the row in the Screen Line Edit Buffer.
Restore the flags.

Jump if editable column found.

Fetch the flag byte.

Does the BASIC line span onto the next row?

Jump if it does.

DE=Address of the start of the BASIC row in the Screen Line Edit Buffer.

Signal no editable characters left on the row.

Jump since all characters on the row have been scanned through.
DE=Address of the start of the BASIC row in the Screen Line Edit Buffer.
Jump if no editable columns left on the row.

DE=Address of the start of the BASIC row in the Screen Line Edit Buffer.
|

Find editable position on this row from the previous column to the right, returning

column number in B.

Jump if no editable character found on this row, i.e. there must be more characters

on the next row.

An editable character was found to the right on the current row

DEC HL

INC B

LD ($ECO6),HL
JR L15CA

Decrement the count of characters prior to the cursor.

Advance to next column.

Update the count of the number of editable characters up to the cursor.
Jump back to test next column.

Column position of cursor located, find the closest editable character

L15DF:

CALL L2E67
CALL NC,L2E89

LD HL,$EEF5
LD (HL),$00

Store the current cursor position

L15EA:

LDAB

POP BC
PUSH BC
LD C,B

LD B,A
CALL L2A37

Move to next row

L15F2:

POP BC
POP DE
LDAC

INC B

CPB

JR NC,L158E

Find editable position on this row from the previous column to the right, returning

column number in B.

If no editable character found then find editable position to the left, returning column

number in B.
Flags.

Signal 'not the current line', ‘current line has previously been found' and 'update

display file enabled'.

A=Column number. This will be the preferred column number.
B=Row number, C=Number of editing rows on screen.

C=Row number.
B=Column number.
Store this as the current cursor editing position.

B=Row number, C=Number of editing rows on screen.
DE=Start address in Screen Line Edit Buffer of the next row.
A=Number of editing rows on screen.

Next row.

Reached the bottom screen row?

Jump back if not to display the next row.

87

The bottom screen row has been exceeded

Current line has not yet been found

LD A,($EEF5)
BIT 1,A
JR Z,L1621

BIT 0,A
JR NZ,L1621

This is not the current line

LD HL,($5C49)
LD AH

ORL

JR Z,L1613

LD ($FC9A),HL
CALL L3248

JR L161C

There is no current line number

L1613:

L161C:

The bottom line is the current line

L1621:

LD ($FC9A),HL
CALL L3378

LD ($5C49),HL
POP DE

POP BC

JP L1555

POP DE
POP BC
CPA

SPECTRUM +2 ROM o DISASSEMBLY

Listing flags.
Has the current line been previously found?
Jump if so.

Is this the current line?
Jump if so.

E_PPC. Current line number.

Jump if there is no current line number.
Store it as the line number at top of the screen.

Set default Above-Screen Line Edit Buffer settings to clear the count of the number

of rows it contains.
Jump forward.

Set the line number at top of the screen to $0000, i.e. first available.

Create line number representation in the Keyword Construction Buffer of the next

BASIC line.

E_PPC. Current line number is the first in the BASIC program.
DE=Start address in Screen Line Edit Buffer of the first row.

B=Row number, C=Number of editing rows on screen.

Jump back to continue listing the program until the current line is found.

DE=Start address in Screen Line Edit Buffer of the first row.

B=Row number, C=Number of editing rows on screen.

Set the zero flag if current line has yet to be found, hence signal do not update
cursor position settings.

Print All Screen Line Edit Buffer Rows to the Display File

Print all rows of the edit buffer to the display file, and updating the cursor position settings if required.
Entry: Zero flag reset if update of cursor position settings required.
B=Row number.

C=Number of editing rows on screen.

L1624:

L162B:

L1634:

All rows printed

PUSH AF
LDAC

LD C,B
CALL L30DA
EX DE,HL
PUSH AF
CALL L362A
POP AF

LD DE,$0023
ADD HL,DE
INCC

CPC

JR NC,L162B

POP AF

Save the zero flag.

Save the number of editing rows on screen.

C=Row number.

DE=Start address in Screen Line Edit Buffer of row held in C
and transfer into HL.

A=Number of editing rows on screen.

Print a row of the edit buffer to the screen.

Point to the start of the next row.
Advance to the next row.

All rows printed?

Jump back if not to print next row.

Retrieve the zero flag.

88

RET Z

Find the new cursor column position

L163D:

CALL L2A2D
CALL L2B9E

LD HL,($EC06)
DEC HL

LD A,H

ORL

LD ($ECO6),HL
JR NZ,L163D
JP L2A37

RET

Clear Editing Display

L164F:

LD B,$00

LD A,($EC15)
LD D,A

JP L3B7F

SPECTRUM +2 ROM o DISASSEMBLY

Return if 'not the current line' and 'current line has previously been found'.

Get current cursor position (C=row, B=column, A=preferred column).

Find next Screen Line Edit Buffer editable position to right, moving to next row if
necessary. Returns column number in B.

Fetch the number of editable characters on this row prior to the cursor.
Decrement the count.

Are there any characters?

Store the new count.

Jump if there are some characters prior to the cursor.
Store cursor editing position, with preferred column of 0.
[Redundant byte]

Top row of editing area.

The number of editing rows on screen.
D=Number of rows in editing area.
Clear specified display rows.

Shift All Edit Buffer Rows Up and Update Display File if Required

This routine shifts all edit buffer rows up, updating the display file if required.

Entry:
Exit :

L1658:

LD B,$00
PUSH HL

HL=Address of the 'Bottom Row Scroll Threshold' within the editing area information.
Carry flag set if edit buffer rows were shifted.

Row number to start shifting from.
Save the address of the ‘Bottom Row Scroll Threshold' within the editing area
information.

Attempt to shift a row into the Above-Screen Line Edit Buffer

LDCB
CALL L30DA
CALL L3290
POP HL

RET NC

Find the address of row 0.

DE=Start address in Screen Line Edit Buffer of the row specified in C.

Attempt to shift the top row of the Screen Line Edit Buffer into the Above-Screen
Line Edit Buffer.

Retrieve the address of the 'Bottom Row Scroll Threshold' within the editing area
information.

Return if the Above-Screen Line Edit Buffer is full, i.e. no edit buffer rows shifted.

A change to the number of rows in the Above-Screen Line Edit Buffer occurred

CALL L3105

Shift up rows of the BASIC line in Below-Screen Line Edit Buffer, inserting the next
line BASIC line if the buffer becomes empty. Returns with HL holding the address of
the first row in the Below-Screen Line Edit Buffer.

Shift All Screen Line Edit Buffer Rows Up and Update Display File if Required

L1667:

Shift all Screen Line Edit Buffer rows up

PUSH BC
PUSH HL

LD HL,$0023
ADD HL,DE
LD A,($EC15)
LD CA

CPB

JR Z,L1682

B=Row counter.

HL=Address of first row in the Below-Screen Line Edit Buffer.
DE=Address of the current row in the Screen Line Edit Buffer.
HL=Address of the next row in the Screen Line Edit Buffer.

C=Number of editing rows on screen.

Any rows to shift?
Jump if not.

89

L1675:

PUSH BC
PUSH BC
LD BC,$0023
LDIR

POP BC
LDAC

INC B

CPB

JR NZ,L1675

SPECTRUM +2 ROM o DISASSEMBLY

C=Number of editing rows on screen.

C=Number of editing rows on screen.

DE=Current Screen Line Edit Buffer row, HL=Next Screen Line Edit Buffer row.
Shift one row of the Screen Line Edit Buffer up.

C=Number of editing rows on screen.

Fetch the number of editing rows on screen.

Next row.

All rows shifted?

Repeat for all edit buffer rows to shift.

All Screen Line Edit Buffer rows have been shifted up

L1682:
L1683:

POP BC
POP HL
CALL L363E
LD BC,$0023

LDIR
SCF

POP BC
RET

C=Number of editing rows on screen, B=Row number, i.e. 0.

HL=Address of the first row in the Below-Screen Line Edit Buffer.

Shift up all edit rows in the display file if updating required.

HL=Address of the first row in the Below-Screen Line Edit Buffer, DE=Address of
last row in Screen Line Edit Buffer.

Copy the first row of the Below-Screen Line Edit Buffer into the last row of the
Screen Line Edit Buffer.

Signal that edit buffer rows were shifted.

B=Row counter.

Shift All Edit Buffer Rows Down and Update Display File if Required

This routine shifts all edit buffer rows down, updating the display file if required.

Exit : Carry flag set if edit buffer rows were shifted.

B=Last row number to shift.
Shift all rows in the Above-Screen Line Edit Buffer, shifting in a new BASIC line if applicable

L168E:

LD B,$00
CALL L3251

RET NC

Last row number to shift.

Attempt to shift down the Above-Screen Line Edit Buffer, loading in a new BASIC
line if it is empty.

Return if Above-Screen Line Edit Buffer is empty, i.e. no edit buffer rows were
shifted.

Entry point from routine at $2EF9 (ROM 0) to insert a blank row

L1694:

PUSH BC
PUSH HL

B=Last row number to shift.
HL=Address of next row to use within the Above-Screen Line Edit Buffer.

Shift all rows in the Below-Screen Line Edit Buffer down, shifting in a new BASIC line if applicable

L16AD:

L16B4:

LD A,($EC15)
LD CA

CALL L30DA
CALL L3144

JR NC,L16C8
DEC DE

LD HL,$0023
ADD HL,DE
EX DE,HL

PUSH BC
LDAB

CPC

JR Z,L16B9
PUSH BC
LD BC,$0023
LDDR

POP BC
LDAB

A=Number of editing rows on screen.

C=Number of editing rows on screen.

DE=Start address in Screen Line Edit Buffer of the last editing row.

Shift down all rows in the Below-Screen Line Edit Buffer, or empty the buffer a row
does not straggle off the bottom of the screen.

Jump if the Below-Screen Line Edit Buffer is full.

DE=Address of the last flag byte of the penultimate editing row in the Screen Line
Edit Buffer.

Length of an edit buffer row.

HL=Address of the last flag byte of the last editing row in the Screen Line Edit Buffer.

DE=Address of last flag byte of last editing row in Screen Line Edit Buffer,
HL=Address of last flag byte of penultimate editing row in Screen Line Edit Buffer.
C=Number of editing rows on screen, B=Last row number to shift.

Any rows to shift?
Jump if not.
C=Row number to shift, B=Last row number to shift.

Copy one row of the Screen Line Edit Buffer down.

C=Number of editing rows on screen, B=Row shift counter.
A=Row shift counter.

90

SPECTRUM +2 ROM o DISASSEMBLY

DECC
CrPC
JR C,L16AD Repeat for all edit buffer rows to shift.

All Screen Line Edit Buffer rows have been shifted down

L16B9: EX DE,HL HL=Address of last flag byte of first editing row in Screen Line Edit Buffer,

DE=Address of byte before start of first editing row in Screen Line Edit Buffer.

INC DE DE=Start of first row in Screen Line Edit Buffer.

POP BC C=Number of editing rows on screen, B=Last row number to shift.

POP HL HL=Address of next row to use within the Above-Screen Line Edit Buffer.

CALL L3652 Shift down all edit rows in the display file if updating required.

LD BC,$0023

LDIR Copy the next row of the Above-Screen Line Edit Buffer into the first row of the
Screen Line Edit Buffer.

SCF Signal Below-Screen Line Edit Buffer is not full.

POP BC B=Last row number to shift.

RET

The Below-Screen Line Edit Buffer is full

L16CS8: POP HL Restore registers.
POP BC B=Last row number to shift.
RET

Insert Character into Edit Buffer Row, Shifting Row Right

This routine shifts a byte into an edit buffer row, shifting all existing characters right until either the end of the row is reached or the specified end column
is reached.
Entry: DE=Start address of an edit buffer row.
A=Character to shift into left of row.
B=Column to start shifting at.
Exit : A=Byte shifted out from last column.
HL=Points byte after row (i.e. flag byte).
Zero flag set if the character shifted out was a null ($00).

L16CB: PUSH DE Save DE.
LD H,$00
LDL,B HL=Start column number.

L16CF: ADD HL,DE HL=Address of the starting column.
LDDA Store the character to shift in.
LDAB A=Start column number.

Shift all bytes in the row to the right.

L16D2: LD E,(HL) Fetch a character from the row.
LD (HL),D Replace it with the character to shift in.
LDD,E Store the old character for use next time.
INC HL Point to the next column.
INC A
CP $20 End of row reached?
JR C,L16D2 Jump if not to shift the next character.
LD AE A=Character that was shifted out.
CP $00 Return with zero flag set if the character was $00.
POP DE Restore DE
RET

Insert Character into Edit Buffer Row, Shifting Row Left

This routine shifts a byte into an edit buffer row, shifting all existing characters left until either the beginning of the row is reached or the specified end
column is reached.
Entry: DE=Start address of an edit buffer row.

91

SPECTRUM +2 ROM o DISASSEMBLY

A=Character to shift into right of row.
B=Column to stop shifting at.
Exit : A=Byte shifted out.
HL=Points byte before row.
Zero flag set if the character shifted out was a null ($00).

L16EO: PUSH DE Save DE.
LD HL,$0020 32 columns.
L16E4: ADD HL,DE Point to the flag byte for this row.
PUSH HL Save it.
LD D,A Store the character to shift in.
LD A $1F Maximum of 31 shifts.
JR L16F2 Jump ahead to start shifting.
L16EB: LD E,(HL) Fetch a character from the row.
LD (HL),D Replace it with the character to shift in.
LD D,E Store the old character for use next time.
CPB End column reached?
JR Z,L16F5 Jump if so to exit.
DECA Decrement column counter.
L16F2: DEC HL Point back a column.
JR L16EB Loop back to shift the next character.
L16F5: LD AE A=Character that was shifted out.
CP $00 Return with zero flag set if the character was $00.
POP HL Fetch address of next flag byte for the row.
POP DE Restore DE.
RET

BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 1

The Syntax Offset Table

Similar in construction to the table in ROM 1 at $1A48.
[No instruction fetch at $1708 hence ZX Interface 1 will not be paged in by this ROM. Credit: Paul Farrow].

L16FB: DEFB $B1 DEF FN -> $17AC (ROM 0)
DEFB $C9 CAT -> $17C5 (ROM 0)
DEFB $BC FORMAT -> $17B9 (ROM 0)
DEFB $BE MOVE -> $17BC (ROM 0)
DEFB $C3 ERASE -> $17C2 (ROM 0)
DEFB $AF OPEN # -> $17AF (ROM 0)
DEFB $B4 CLOSE # -> $17B5 (ROM 0)
DEFB $93 MERGE -> $1795 (ROM 0)
DEFB $91 VERIFY -> $1794 (ROM 0)
DEFB $92 BEEP -> $1796 (ROM 0)
DEFB $95 CIRCLE -> $179A (ROM 0)
DEFB $98 INK -> $179E (ROM 0)
DEFB $98 PAPER -> $179F (ROM 0)
DEFB $98 FLASH -> $17A0 (ROM 0)
DEFB $98 BRIGHT -> $17A1 (ROM 0)
DEFB $98 INVERSE -> $17A2 (ROM 0)
DEFB $98 OVER -> $17A3 (ROM 0)
DEFB $98 OUT -> $17A4 (ROM 0)
DEFB $7F LPRINT -> $178C (ROM 0)
DEFB $81 LLIST -> $178F (ROM 0)
DEFB $2E STOP -> $173D (ROM 0)
DEFB $6C READ -> $177C (ROM 0)
DEFB $6E DATA -> $177F (ROM 0)
DEFB $70 RESTORE -> $1782 (ROM 0)
DEFB $48 NEW -> $175B (ROM 0)
DEFB $94 BORDER -> $17A8 (ROM 0)
DEFB $56 CONTINUE -> $176B (ROM 0)
DEFB $3F DIM -> $1755 (ROM 0)
DEFB $41 REM -> $1758 (ROM 0)

92

DEFB $2B
DEFB $17
DEFB $1F
DEFB $37
DEFB $77
DEFB $44
DEFB $0F
DEFB $59
DEFB $2B
DEFB $43
DEFB $2D
DEFB $51
DEFB $3A
DEFB $6D
DEFB $42
DEFB $0D
DEFB $49
DEFB $5C
DEFB $44
DEFB $15
DEFB $5D

The Syntax Parameter Table
Similar to the parameter table in ROM 1 at $1A7A.

L172D: DEFB $01
DEFB '='
DEFB $02
DEFB $06
DEFB $00
DEFW GO_TO
DEFB $06
DEFB $CB
DEFB $0E
DEFW L1986
DEFB $06
DEFB $0C
DEFW L1A72
DEFB $00
DEFW STOP
DEFB $0C
DEFW L1A8SE
DEFB $04
DEFB '='
DEFB $06
DEFB $CC
DEFB $06
DEFB $0E
DEFW L19A0
DEFB $04
DEFB $00
DEFW NEXT
DEFB $0E
DEFW L2197
DEFB $0E
DEFW L21AB
DEFB $0E
DEFW L21F4
DEFB $0E
DEFW L1881
DEFB $0C
DEFW L21C9
DEFB $0D
DEFW L1A21

L1730:

L1734:

L1739:

L173D:

L1740:

L1743:

L174B:

L174F:

L1752:

L1755:

L1758:

L175B:

L175E:

SPECTRUM +2 ROM o DISASSEMBLY

FOR -> $1743 (ROM 0)
GO TO -> $1730 (ROM 0)
GO SUB -> $1739 (ROM 0)
INPUT -> $1752 (ROM 0)
LOAD -> $1793 (ROM 0)
LIST -> $1761 (ROM 0)
LET -> $172D (ROM 0)
PAUSE -> $1778 (ROM 0)
NEXT -> $174B (ROM 0)
POKE -> $1764 (ROM 0)
PRINT -> $174F (ROM 0)
PLOT -> $1774 (ROM 0)
RUN -> $175E (ROM 0)
SAVE -> $1792 (ROM 0)
RANDOMIZE -> $1768 (ROM 0)
IF -> $1734 (ROM 0)

CLS -> $1771 (ROM 0)
DRAW -> $1785 (ROM 0)
CLEAR -> $176E (ROM 0)
RETURN -> $1740 (ROM 0)
COPY -> $1789 (ROM 0)

CLASS-01 LET

$3D. '='

CLASS-02

CLASS-06 GO TO

CLASS-00

$1E67. GO TO routine in ROM 1.
CLASS-06 IF

"THEN'

CLASS-0E

New IF routine in ROM 0.
CLASS-06 GO SuUB

CLASS-0C

New GO SUB routine in ROM 0.
CLASS-00 STOP

$1CEE. STOP routine in ROM 1.
CLASS-0C RETURN

New RETURN routine in ROM 0.
CLASS-04 FOR

$3D. '='

CLASS-06

TO'

CLASS-06

CLASS-0E

New FOR routine in ROM 0.
CLASS-04 NEXT

CLASS-00

$1DAB. NEXT routine in ROM 1.
CLASS-0E PRINT

New PRINT routine in ROM 0.
CLASS-0E INPUT

New INPUT routine in ROM 0.
CLASS-0E DIM

New DIM routine in ROM 0.
CLASS-0E REM

New REM routine in ROM 0.
CLASS-0C NEW

New NEW routine in ROM 0.
CLASS-0D RUN

New RUN routine in ROM 0.

93

L1761:

L1764:

L1768:

L176B:

L176E:

L1771:

L1774:

L1778:

L177C:

L177F:

L1782:

L1785:

L1789:

L178C:

L178F:

L1792:
L1793:
L1794:
L1795:
L1796:

L179A:

L179E:

L179F:

L17A0:
L17A1:
L17A2:
L17A3:
L17A4:

L17A8:

L17AC:

L17AF:

L17B5:

L17B9:

DEFB $0E
DEFW L1B94
DEFB $08
DEFB $00
DEFW POKE
DEFB $03
DEFW RANDOMIZE
DEFB $00
DEFW CONTINUE
DEFB $0D
DEFW L1A2C
DEFB $00
DEFW CLS
DEFB $09
DEFB $00
DEFW PLOT
DEFB $06
DEFB $00
DEFW PAUSE
DEFB $0E
DEFW L19CA
DEFB $0E
DEFW L1AOA
DEFB $03
DEFW RESTORE
DEFB $09
DEFB $0E
DEFW L21DD
DEFB $0C
DEFW L21C6
DEFB $0E
DEFW L2193
DEFB $0E
DEFW L1B90
DEFB $0B
DEFB $0B
DEFB $0B
DEFB $0B
DEFB $08
DEFB $00
DEFW BEEP
DEFB $09
DEFB $0E
DEFW L21CD
DEFB $07
DEFB $07
DEFB $07
DEFB $07
DEFB $07
DEFB $07
DEFB $08
DEFB $00
DEFW COUT
DEFB $06
DEFB $00
DEFW BORDER
DEFB $0E
DEFW L1AAB
DEFB $06
DEFB ')
DEFB $0A
DEFB $00
DEFW OPEN
DEFB $06
DEFB $00
DEFW CLOSE
DEFB $0E

SPECTRUM +2 ROM o DISASSEMBLY

CLASS-0E LIST

New LIST routine in ROM 0.
CLASS-08 POKE

CLASS-00

$1E80. POKE routine in ROM 1.
CLASS-03 RANDOMIZE

$1E4F. RANDOMIZE routine in ROM 1.
CLASS-00 CONTINUE

$1E5F. CONTINUE routine in ROM 1.
CLASS-0D CLEAR

New CLEAR routine in ROM 0.
CLASS-00 CLS

$0D6B. CLS routine in ROM 1.
CLASS-09 PLOT

CLASS-00

$22DC. PLOT routine in ROM 1
CLASS-06 PAUSE

CLASS-00

$1F3A. PAUSE routine in ROM 1.
CLASS-0E READ

New READ routine in ROM 0.
CLASS-0E DATA

New DATA routine in ROM 0.
CLASS-03 RESTORE

$1E42. RESTORE routine in ROM 1.
CLASS-09 DRAW

CLASS-0E

New DRAW routine in ROM 0.
CLASS-0C COPY

New COPY routine in ROM 0.
CLASS-0E LPRINT

New LPRINT routine in ROM 0.
CLASS-0E LLIST

New LLIST routine in ROM 0.
CLASS-0B SAVE

CLASS-0B LOAD

CLASS-0B VERIFY

CLASS-0B MERGE

CLASS-08 BEEP

CLASS-00

$03F8. BEEP routine in ROM 1.
CLASS-09 CIRCLE

CLASS-0E

New CIRCLE routine in ROM 0.
CLASS-07 INK

CLASS-07 PAPER

CLASS-07 FLASH

CLASS-07 BRIGHT

CLASS-07 INVERSE

CLASS-07 OVER

CLASS-08 OUT

CLASS-00

$1E7A. OUT routine in ROM 1.
CLASS-06 BORDER

CLASS-00

$2294. BORDER routine in ROM 1.
CLASS-0E DEF FN

New DEF FN routine in ROM 0.
CLASS-06 OPEN #

$2C. ")

CLASS-0A

CLASS-00

$1736. OPEN # routine in ROM 1.
CLASS-06 CLOSE #

CLASS-00

$16E5. CLOSE # routine in ROM 1.
CLASS-0E FORMAT

94

SPECTRUM +2 ROM o DISASSEMBLY

DEFW L0660 FORMAT routine in ROM 0.
L17BC: DEFB $0A CLASS-0A MOVE

DEFB ') $2C. ")

DEFB $0A CLASS-0A

DEFB $0C CLASS-0C

DEFW L1BOF Just execute a RET.
L17C2: DEFB $0E CLASS-0E ERASE

DEFW L1C2B New ERASE routine in ROM 0.
L17C5: DEFB $0E CLASS-0E CAT

DEFW L1C04 New CAT routine in ROM 0.
L17Cs: DEFB $0C CLASS-0C SPECTRUM

DEFW L1B4A SPECTRUM routine in ROM 0.
L17CB: DEFB $0E CLASS-0E PLAY

DEFW L2336 PLAY routine in ROM 0.

(From Logan & O'Hara's 48K ROM disassembly):

The requirements for the different command classes are as follows: CLASS-00 - No further operands.
CLASS-01 - Used in LET. A variable is required.

CLASS-02 - Used in LET. An expression, numeric or string, must follow.

CLASS-03 - A numeric expression may follow. Zero to be used in case of default.

CLASS-04 - A single character variable must follow.

CLASS-05 - A set of items may be given.

CLASS-06 - A numeric expression must follow.

CLASS-07 - Handles colour items.

CLASS-08 - Two numeric expressions, separated by a comma, must follow.

CLASS-09 - As for CLASS-08 but colour items may precede the expressions.

CLASS-0A - A string expression must follow.

CLASS-0B - Handles cassette/RAM disk routines.

In addition the 128 adds the following classes:

CLASS-0C - Like class 00 but calling ROM 0. (Used by SPECTRUM, MOVE, COPY, NEW, GO SUB, RETURN)
CLASS-0D - Like class 06 but calling ROM 0. (Used by CLEAR, RUN)

CLASS-0E - Handled in ROM 0. (Used by PLAY, ERASE, CAT, FORMAT, CIRCLE, LPRINT, LLIST, DRAW, DATA, READ, LIST, DIM, INPUT, PRINT,
FOR, IF)

The 'Main Parser' Of the BASIC Interpreter

The parsing routine of the BASIC interpreter is entered at $17CE (ROM 0) when syntax is being checked, and at $1857 (ROM 0) when a BASIC program
of one or more statements is to be executed.
This code is similar to that in ROM 1 at $1B17.

L17CE: RES 7,(1Y+$01) FLAGS. Signal 'syntax checking'.
RST 28H
DEFW E_LINE_NO $19FB. CH-ADD is made to point to the first code after any line number
XOR A
LD ($5C47),A SUBPPC. Set to $00.
DEC A
LD ($5C3A),A ERR_NR. Set to $FF.
JR L17EO Jump forward to consider the first statement of the line.

The Statement Loop

Each statement is considered in turn until the end of the line is reached.

L17DF: RST 20H Advance CH-ADD along the line.
L17EO: RST 28H
DEFW SET_WORK $16BF. The work space is cleared.
INC (IY+$0D) SUBPPC. Increase SUBPPC on each passage around the loop.
JP M,L1931 Only '127' statements are allowed in a single line. Jump to report "C Nonsense in
BASIC".
RST 18H Fetch a character.
LD B,$00 Clear the register for later.
CP $0D Is the character a 'carriage return'?
JP Z,L.1882 jump if itis.
cp" $3A. Go around the loop again ifitisa "
JR Z,L17DF

95

SPECTRUM +2 ROM o DISASSEMBLY

A statement has been identified so, first, its initial command is considered

L1813:

LD HL,L1840
PUSH HL
LDC.A

RST 20H
LDAC

SUB $CE
JRNC,L1813
ADD A $CE
LD HL,L17C8
CP $A3

JR Z,L181F
LD HL,L17CB
CP $A4

JR Z,L181F
JP L1931

LD CA

LD HL,L16FB
ADD HL,BC
LD C,(HL)
ADD HL,BC
JR L181F

Pre-load the machine stack with the return address.

Save the command temporarily
in the C register whilst CH-ADD is advanced again.

Reduce the command's code by $CE giving the range indexed from $00.
Jump for DEF FN and above.

Is it 'SPECTRUM'?
Jump if so into the scanning loop with this address.

Is it 'PLAY"?

Jump if so into the scanning loop with this address.
Produce error report "C Nonsense in BASIC".
Move the command code to BC (B holds $00).
The base address of the syntax offset table.

Find address for the command's entries in the parameter table.
Jump forward into the scanning loop with this address.

Each of the command class routines applicable to the present command are executed in turn.

Any required separators are also considered.

L181C:
L181F:

The 'Separator' Subroutine

LD HL,($5C74)
LD A,(HL)

INC HL

LD ($5C74),HL
LD BC,L181C
PUSH BC
LDC.A

CP $20

JR NC,L1839
LD HL,L18D4
LD B,$00
ADD HL,BC
LD C,(HL)
ADD HL,BC
PUSH HL
RST 18H

DECB
RET

T_ADDR. The temporary pointer to the entries in the parameter table.
Fetch each entry in turn.

Update the pointer to the entries for the next pass.

T_ADDR.

Pre-load the machine stack with the return address.

Copy the entry to the C register for later.

Jump forward if the entry is a ‘'separator'.
The base address of the ‘command class' table.

Index into the table.

HL=base + code + (base + code).

HL=The starting address of the required command class routine.

Before making an indirect jump to the command class routine pass the command
code

to the A register and set the B register to $FF.

Return to the stacked address.

The report ‘Nonsense in BASIC is given if the required separator is not present.
But note that when syntax is being checked the actual report does not appear on the screen - only the ‘error marker'.

This code is similar to that in ROM 1 at $1B6F.

L1839:

RST 18H
CPC

JP NZ,L1931
RST 20H
RET

The current character is

fetched and compared to the entry in the parameter table.
Give the error report if there is not a match.

Step past a correct character

and return.

The 'Statement Return' Subroutine

After the correct interpretation of a statement, a return is made to this entry point.

This code is similar to that in ROM 1 at $1B76.

96

L1840:

L1849:

The 'Line Run' Entry Point

CALL LO5F5
JR C,L1849
CALL LO5CB
DEFB $14

BIT 7,(IY+$0A)
JP NZ,L18C7
LD HL,($5C42)
BIT 7,H

JR Z,L186B

SPECTRUM +2 ROM o DISASSEMBLY

Check for BREAK

Jump if pressed.

Produce error report.

"L Break into program"

NSPPC - statement number in line to be jumped to
Jump forward if there is not a 'jump’ to be made.
NEWPPC, line number to be jumped to.

Jump forward unless dealing with a further statement in the editing area.

This entry point is used wherever a line in the editing area is to be 'run'.
In such a case the syntax/run flag (bit 7 of FLAGS) will be set.
The entry point is also used in the syntax checking of a line in the editing area that has more than one statement (bit 7 of FLAGS will be reset).

This code is similar to that in ROM 1 at $1B8A.

L1857:

The 'Line New' Subroutine

LD HL,$FFFE
LD ($5C45),HL
LD HL,($5C61)
DEC HL

LD DE,($5C59)
DEC DE

LD A,($5C44)
JR L18A1

A line in the editing area is considered as line '-2'.
PPC.
WORKSP. Make HL point to the end marker of the editing area.

E_LINE. Make DE point to the location before the end marker of the editing area.

NSPPC. Fetch the number of the next statement to be handled.
Jump forward.

There has been a jump in the program and the starting address of the new line has to be found.

This code is similar to that in ROM 1 at 1B9E.

L186B:

RST 28H

DEFW LINE_ADDR

LD A,($5C44)
JR Z,L188F
AND A

JR NZ,L18BC
LD B,A

LD A,(HL)
AND $CO
LDA,B

JR Z,L188F
CALL LO5CB
DEFB $FF

REM Routine

The return address to STMT-RET is dropped which has the effect of forcing the rest of the line to be ignored.

This code is similar to that in ROM 1 at $1BB2.

L1881:

The 'Line End' Routine

POP BC

$196E. The starting address of the line, or the ‘first line after' is found.
NSPPC. Collect the statement number.

Jump forward if the required line was found.

Check the validity of the statement number - must be zero.

Jump if not to produce error report "N Statement lost".

Also check that the ‘first

line after' is not after the

actual 'end of program'.

Jump forward with valid addresses; otherwise signal the error 'OK'.

Produce error report.
"0 OK"

Drop the statement return address.

If checking syntax a simple return is made but when ‘running' the address held by NXTLIN has to be checked before it can be used.

This code is similar to that in ROM 1 at $1BB3.

L1882:

BIT 7,(1Y+$01)
RET Z

LD HL,($5C55)
LD A,$CO
AND (HL)

Return if syntax is being checked.
NXTLIN.
Return if the address is after the end of the program - the 'run’ is finished.

97

SPECTRUM +2 ROM o DISASSEMBLY

RET Nz
XOR A Signal 'statement zero' before proceeding.

The 'Line Use' Routine

This routine has three functions:

i. Change statement zero to statement '1'.

ii. Find the number of the new line and enter it into PPC.
iii. Form the address of the start of the line after.

This code is similar to that in ROM 1 at $1BBF.

L188F: CP $01 Statement zero becomes statement 1.
ADC A,$00
LD D,(HL) The line number of the line to be used is collected and
INC HL passed to PPC.
LD E,(HL)
LD ($5C45),DE PPC.
INC HL
LD E,(HL) Now find the ‘length’ of the line.
INC HL
LD D,(HL)
EX DE,HL Switch over the values.
ADD HL,DE Form the address of the start of the line after in HL and the
INC HL location before the 'next' line's first character in DE.

The 'Next Line' Routine

On entry the HL register pair points to the location after the end of the 'next' line to be handled and the DE register pair to the location before the first
character of the line.

This applies to lines in the program area and also to a line in the editing area - where the next line will be the same line again whilst there are still
statements to be interpreted.

This code is similar to that in ROM 1 at $1BD1.

L18A1: LD ($5C55),HL NXTLIN. Set NXTLIN for use once the current line has been completed.
EX DE,HL
LD ($5C5D),HL CH_ADD. CH_ADD points to the location before the first character to be considered.
LD D,A The statement number is fetched.
LD E,$00 The E register is cleared in case the 'Each Statement' routine is used.
LD (IY+3$0A),$FF NSPPC. Signal 'no jump'.
DEC D
LD (IY+$0D),D SUB_PPC. Statement number-1.
JP Z,L17DF Jump if the first statement.
INC D For later statements the 'starting address' has to be found.
RST 28H
DEFW EACH_STMT $198B.
JR Z,L18C7 Jump forward unless the statement does not exist.
L18BC: CALL LO5CB Produce error report.
DEFB $16 "N Statement lost"

The 'CHECK-END' Subroutine

This is called when the syntax of the edit-line is being checked. The purpose of the routine is to give an error report if the end of a statement has not
been reached and to move on to the next statement if the syntax is correct.
The routine is the equivalent of routine CHECK_END in ROM 1 at $1BEE.

L18CO0: BIT 7,(1Y+$01) Very like CHECK-END at 1BEE in ROM 1
RET NZ Return unless checking syntax.
POP BC Drop scan loop and statement return addresses.
POP BC

98

SPECTRUM +2 ROM o DISASSEMBLY

The 'STMT-NEXT' Routine

If the present character is a 'carriage return' then the 'next statement' is on the 'next line', if :' it is on the same line; but if any other character is found
then there is an error in syntax.

The routine is the equivalent of routine STMT_NEXT in ROM 1 at $1BF4.

L18C7: RST 18H Fetch the present character.
CP $0D Consider the 'next line" if
JR Z,L.1882 it is a 'carriage return'.
CP" $3A. Consider the 'next statement'
JP Z,L17DF ifitisa""
JP L1931 Otherwise there has been a syntax error so produce "C Nonsense in BASIC".

The 'Command Class' Table

L18D4:

DEFB L18F8-$
DEFB L1918-$
DEFB L191C-$
DEFB L18F5-$
DEFB L1924-$
DEFB L18F9-$
DEFB L192D-$
DEFB L1939-$
DEFB L1929-$
DEFB L1963-$
DEFB L1935-$
DEFB L1967-$
DEFB L18E6-$
DEFB L18E3-$
DEFB L18E7-$

CLASS-00 -> L18D9 = $24
CLASS-01 -> L18F9 = $43
CLASS-02 -> L18FD = $46
CLASS-03 -> L18D6 = $1E
CLASS-04 -> L1905 = $4C
CLASS-05 -> L18DA = $20
CLASS-06 -> L190E = $53
CLASS-07 -> L191A = $5E
CLASS-08 -> L190A = $4D
CLASS-09 -> L1944 = $86
CLASS-0A -> L1916 = $57
CLASS-0B -> L1948 = $88
CLASS-0C -> L18C7 = $06
CLASS-0D -> L18C4 = $02
CLASS-0E -> L18C8 = $05

The 'Command Classes — 0C, 0D & OE'

For commands of class-0D a numeric expression must follow.

L18ES3: RST 28H Code 0D enters here.
DEFW FETCH_NUM $1CDE.

The commands of class-0C must not have any operands. e.g. SPECTRUM.
L18E®6: CPA Code 0C enters here. Set zero flag.

The commands of class-OE may be followed by a set of items. e.g. PLAY.

L18ET: POP BC
CALL Z,L.18C0

Code OE enters here. Retrieve return address.

If handling commands of classes OC & 0D and syntax is being checked move on
now to consider the next statement.

EX DE,HL Save the line pointer in DE.

After the command class entries and the separator entries in the parameter table have been considered the jump to the appropriate command routine
is made.

The routine is similar to JUMP-C-R in ROM 1 at $1C16.

LD HL,($5C74) T_ADDR.

LD C,(HL) Fetch the pointer to the entries in the parameter table
INC HL and fetch the address of the

LD B,(HL) required command routine.

EX DE,HL Exchange the pointers back.

PUSH BC Make an indirect jump to the command routine.

RET

99

SPECTRUM +2 ROM o DISASSEMBLY

The 'Command Classes — 00, 03 & 05'

These routines are the equivalent of the routines in ROM 1 starting at $1COD.
The commands of class-03 may, or may not, be followed by a number. e.g. RUN & RUN 200.

L18F5:

RST 28H

DEFW FETCH_NUM

Code 03 enters here.
$1CDE. A number is fetched but zero is used in cases of default.

The commands of class-00 must not have any operands. e.g. COPY & CONTINUE.

L18FS8:

CPA

Code 00 enters here. Set the zero flag.

The commands of class-05 may be followed by a set of items. e.g. PRINT & PRINT "222".

L18F9:

POP BC
CALL Z,L.18C0

EX DE,HL
LD HL,($5C74)

LD C,(HL)

INC HL

LD B,(HL)

EX DE,HL

PUSH HL

LD HL,L1917

LD (RETADDR),HL
LD HL,YOUNGER
EX (SP),HL

PUSH HL

LD H,B

LDL,C

EX (SP),HL

JP SWAP

Code 05 enters here. Drop return address.

If handling commands of classes 00 & 03 and syntax is being checked move on now
to consider the next statement.

Save the line pointer in DE.

T_ADDR. Fetch the pointer to the entries in the parameter table.

Fetch the address of the required command routine.

Exchange the pointers back.

Save command routine address.

The address to return to (the RET below).

$5B5A. Store the return address.

$5B14. Paging subroutine.

Replace the return address with the address of the YOUNGER routine.
Save the original top stack item.

HL=Address of command routine.
Put onto the stack so that an indirect jump will be made to it.
$5B00. Switch to other ROM and 'return’ to the command routine.

Comes here after ROM 1 has been paged in, the command routine called, ROM 0 paged back in.

L1917:

The 'Command Class — 01'

RET

Simply make a return.

Command class 01 is concerned with the identification of the variable in a LET, READ or INPUT statement.

L1918:

The 'Command Class — 02'

RST 28H
DEFW CLASS_01
RET

Delegate handling to ROM 1.
$1C1F.

Command class 02 is concerned with the actual calculation of the value to be assigned in a LET statement.

L191C:

The 'Command Class — 04'

POP BC
RST 28H
DEFW VAL_FET 1

CALL L18CO
RET

Code 02 enters here. Delegate handling to ROM 1.

$1C56. "... used by LET, READ and INPUT statements to first evaluate and then
assign values to the previously designated variable" (Logan/O'Hara)

Move on to the next statement if checking syntax

else return here.

The command class 04 entry point is used by FOR & NEXT statements.

100

L1924:

RST 28H
DEFW CLASS_04
RET

The 'Command Class — 08’

Command class 08 allows for two numeric expressions, separated by a comma, to be evaluated.

L1928:
L1929:

RST 20H

RST 28H

DEFW EXPT_2NUM
RET

The 'Command Class — 06'

Command class 06 allows for a single numeric expression to be evaluated.

L192D:

RST 28H
DEFW EXPT_1NUM
RET

SPECTRUM +2 ROM o DISASSEMBLY

Code 04 enters here. Delegate handling to ROM 1.
$1C6C.

[Redundant byte]
Delegate handling to ROM 1.
$1C7A.

Code 06 enters here. Delegate handling to ROM 1.
$1C82.

Report C — Nonsense in BASIC

L1931:

CALL LO5CB

DEFB $0B

The 'Command Class — OA'

Command class OA allows for a single string expression to be evaluated.

L1935:

RST 28H
DEFW EXPT_EXP
RET

The 'Command Class — 07’

Command class 07 is the command routine for the six colour item commands.

Makes the current temporary colours permanent.

L1939:

L1946:

BIT 7,(IY+$01)

RES 0,(IY+$02)

JR Z,L.1946

RST 28H

DEFW TEMPS

POP AF

LD A,($5C74)

SUB (L179E & $00FF)+$28
RST 28H

DEFW CO_TEMP_4
CALL L18CO

LD HL,($5C8F)

LD ($5C8D),HL

LD HL,$5C91

LD A,(HL)

Produce error report. [Could have saved 4 bytes by using the identical routine at

$1238 (ROM 0) instead]
"C Nonsense in BASIC"

Code OA enters here. Delegate handling to ROM 1.
$1C8C.

The syntax/run flag is read.

TV_FLAG. Signal 'main screen'.

Jump ahead if syntax checking.

Only during a 'run’ call TEMPS to ensure the temporary

$0D4D. colours are the main screen colours.

Drop the return address.

T_ADDR.

Reduce to range $D9-$DE which are the token codes for INK to OVER.

$21FC. Change the temporary colours as directed by the BASIC statement.
Move on to the next statement if checking syntax.

ATTR_T. Now the temporary colour

ATTR_P. values are made permanent

P_FLAG.

Value of P_FLAG also has to be considered.

The following instructions cleverly copy the even bits of the supplied byte to the odd bits.
In effect making the permanent bits the same as the temporary ones.

101

SPECTRUM +2 ROM o DISASSEMBLY

RLCA Move the mask leftwards.
XOR (HL) Impress onto the mask
AND $AA only the even bits of the
XOR (HL) other byte.

LD (HL),A Restore the result.

RET

The 'Command Class — 09’

This routine is used by PLOT, DRAW & CIRCLE statements in order to specify the default conditions of 'FLASH 8; BRIGHT 8; PAPER 8;' that are set
up before any embedded colour items are considered.

L1963: RST 28H Code 09 enters here. Delegate handling to ROM 1.
DEFW CLASS_09 $1CBE.
RET

The 'Command Class — OB’
This routine is used by SAVE, LOAD, VERIFY & MERGE statements.

L1967: POP AF Drop the return address.
LD A,(FLAGS3) $5B66.
AND $0F Clear LOAD/SAVE/VERIFY/MERGE indication bits.
LD (FLAGS3),A $5B66.
LD A,($5C74) T_ADDR-lo.
SUB 1+(L1792 & $00FF) Correct by $74 so that SAVE = $00, LOAD = $01, VERIFY = $02, MERGE = $03.
LD ($5C74),A T_ADDR-lo.
JP Z,L120A Jump to handle SAVE.
DEC A
JP Z,L1211 Jump to handle LOAD.
DEC A
JP Z,L1218 Jump to handle VERIFY.
JP L121F Jump to handle MERGE.
IF Routine

On entry the value of the expression between the IF and the THEN is the 'last value' on the calculator stack. If this is logically true then the next statement
is considered; otherwise the line is considered to have been finished.

L1986: POP BC Drop the return address.
BIT 7,(1Y+3$01)
JR Z,L199D Jump forward if checking syntax.

Now 'delete’ the last value on the calculator stack

L198D: LD HL,($5C65) STKEND.

LD DE,$FFFB -5

ADD HL,DE The present 'last value' is deleted.

LD ($5C65),HL STKEND. HL point to the first byte of the value.

RST 28H

DEFW TEST_ZERO $34EQ9. Is the value zero?

JP C,L1882 If the value was 'FALSE' jump to the next line.
L199D: JP L17EO But if ' TRUE' jump to the next statement (after the THEN).
FOR Routine
This command routine is entered with the VALUE and the LIMIT of the FOR statement already on the top of the calculator stack.
L19A0: CP $CD Jump forward unless a 'STEP' is given.

JR NZ,L19AD

RST 20H Advance pointer

102

CALL L192D
CALL L18CO
JR L19C5

SPECTRUM +2 ROM o DISASSEMBLY

Indirectly call EXPT_1NUM in ROM 1 to get the value of the STEP.
Move on to the next statement if checking syntax.
Otherwise jump forward.

There has not been a STEP supplied so the value '1' is to be used.

L19AD: CALL L18CO
LD HL,($5C65)
LD (HL),$00
INC HL
LD (HL),$00
INC HL
LD (HL),$01
INC HL
LD (HL),$00
INC HL
LD (HL),$00
INC HL
LD ($5C65),HL

Move on to the next statement if checking syntax.
STKEND.

Place a value of 1 on the calculator stack.

STKEND.

The three values on the calculator stack are the VALUE (v), the LIMIT (I) and the STEP (s).
These values now have to be manipulated. Delegate handling to ROM 1.

L19Cs5: RST 28H
DEFW F_REORDER
RET

READ Routine

L19C9: RST 20H
L19CA: CALL L1918

BIT 7,(1Y+$01)
JR Z,L1A01
RST 18H

LD ($5C5F),HL
LD HL,($5C57)
LD A,(HL)

CP $2C

JR Z,L19EA
LD E,$E4

RST 28H
DEFW LOOK_PROG
JR NC,L19EA
CALL LO5CB
DEFB $0D

Pick up a value from the DATA list.

L19EA: INC HL
LD ($5C5D),HL
LD A,(HL)
RST 28H
DEFW VAL_FET 1
RST 18H
LD ($5C57),HL
LD HL,($5C5F)
LD (IY+$26),$00
LD ($5C5D),HL

LD A,(HL)
L1AO1: RST 18H

cp,
L1A04: JR Z,L19C9

$1D16.

Come here on each pass, after the first, to move along the READ statement.
Indirectly call CLASS_01 in ROM 1 to consider whether the variable has been used
before, and find the existing entry if it has.

Jump forward if checking syntax.

Save the current pointer CH_ADD in X_PTR.
X_PTR.

DATADD.

Fetch the current DATA list pointer

and jump forward unless a new

DATA statement has to be found.

The search is for 'DATA'".

$1D86.

Jump forward if the search is successful.
Produce error report.

"E Out of Data"

Advance the pointer along the DATA list.
CH_ADD.

$1C56. Fetch the value and assign it to the variable.

DATADD.

X_PTR. Fetch the current value of CH_ADD and store it in DATADD.
X_PTR_hi. Clear the address of the character after the '?' marker.
CH_ADD. Make CH-ADD once again point to the READ statement.

GET the present character

$2C. Check ifitisa ',
If it is then jump back as there are further items.

103

SPECTRUM +2 ROM o DISASSEMBLY

CALL L18CO Return if checking syntax
RET or here if not checking syntax.

DATA Routine

During syntax checking a DATA statement is checked to ensure that it contains a series of valid expressions, separated by commas. But in ‘run-time'
the statement is passed by.

L1AO0A: BIT 7,(1Y+$01) Jump forward unless checking syntax.
JR NZ,L1A1B

A loop is now entered to deal with each expression in the DATA statement.

L1A10: RST 28H
DEFW SCANNING $24FB. Scan the next expression.
CP $2C. Check for the correct separator ',".
CALL NZ,L18CO0 but move on to the next statement if not matched.
RST 20H Whilst there are still expressions to be checked
JR L1A10 go around again.

The DATA statement has to be passed-by in ‘run-time'.
L1A1B: LD A $E4 Itis a 'DATA' statement that is to be passed-by.

On entry the A register will hold either the token 'DATA' or the token 'DEF FN' depending on the type of statement that is being 'passed-by'.

L1A1D: RST 28H
DEFW PASS_BY $1E39. Delegate handling to ROM 1.
RET

RUN Routine

The parameter of the RUN command is passed to NEWPPC by calling the GO TO command routine.
The operations of 'RESTORE 0' and 'CLEAR 0' are then performed before a return is made.

L1A21: RST 28H
DEFW GO_TO $1E67.
LD BC,$0000 Now perform a 'RESTORE 0'.
RST 28H
DEFW REST_RUN $1E45.
JR L1A2F Exit via the CLEAR command routine.

CLEAR Routine

This routine allows for the variables area to be cleared, the display area cleared and RAMTOP moved. In consequence of the last operation the machine
stack is rebuilt thereby having the effect of also clearing the GO SUB stack.

L1A2C: RST 28H

DEFW FIND_INT2 $1E99. Fetch the operand - using zero by default.
L1A2F: LDAB Jump forward if the operand is

ORC other than zero. When called

JR NZ,L1A37 from RUN there is no jump.

LD BC,($5CB2) RAMTOP. Use RAMTOP if the parameter is 0.
L1A37: PUSH BC BC = Address to clear to. Save it.

LD DE,($5C4B) VARS.

LD HL,($5C59) E LINE.

DEC HL

RST 28H Delete the variables area.

DEFW RECLAIM $19ES5.

RST 28H Clear the screen

DEFW CLS $0D6B.

104

SPECTRUM +2 ROM o DISASSEMBLY

The value in the BC register pair which will be used as RAMTOP is tested to ensure it is neither too low nor too high.

L1AS5A:

L1ASE:

LD HL,($5C65)
LD DE,$0032
ADD HL,DE
POP DE

SBC HL,DE
JR NC,L1A5A
LD HL,($5CB4)
AND A

SBC HL,DE
JR NC,L1A5E
CALL LO5CB
DEFB $15

LD ($5CB2),DE
POP DE

POP HL

POP BC

LD SP,($5CB2)
INC SP

PUSH BC
PUSH HL

LD ($5C3D),SP
PUSH DE

RET

GO SUB Routine

The present value of PPC and the incremented value of SUBPPC are stored on the GO SUB stack.

L1A72:

POP DE
LD H,(IY+$0D)
INCH

EX (SP),HL
INC SP

LD BC,($5C45)
PUSH BC
PUSH HL

LD ($5C3D),SP
PUSH DE

RST 28H
DEFW GO_TO
LD BC,$0014
RST 28H

DEFW TEST_ROOM

RET

RETURN Routine

The line number and the statement number that are to be made the object of a 'return’ are fetched from the GO SUB stack.

L1A8E:

POP BC
POP HL
POP DE
LD AD

STKEND. The current value of STKEND
is increased by 50 before

being tested. This forms the

ADE = address to clear to lower limit.

Ramtop no good.
P_RAMT. For the upper test the value
for RAMTORP is tested against P_RAMT.

Jump forward if acceptable.

Produce error report.

"M Ramtop no good"

RAMTOP.

Retrieve interpreter return address from stack

Retrieve 'error address' from stack

Retrieve the GO SUB stack end marker. [BUG - It is assumed that the top of the
GO SUB stack will be empty and hence only contain the end marker. This will not
be the case if CLEAR is used within a subroutine, in which case BC will now hold
the calling line number and this will be stacked in place of the end marker. When a
RETURN command is encountered, the GO SUB stack appears to contain an entry
since the end marker was not the top item. An attempt to return is therefore made.
The CLEAR command handler within the 48K Spectrum ROM does not make any
assumption about the contents of the GO SUB stack and instead always re-inserts
the end marker. The bug could be fixed by inserting the line LD BC,$3E0Q0 after the
POP BC. Credit: lan Collier (+3), Paul Farrow (128)]

RAMTOP.

Stack the GO SUB stack end marker.
Stack ‘error address'.

ERR_SP.

Stack the interpreter return address.

Save the return address.
SUBPPC. Fetch the statement number and increment it.

Exchange the 'error address' with the statement number.
Reclaim the use of a location.

PPC.

Next save the present line number.

Return the 'error address' to the machine stack
ERR-SP. and reset ERR-SP to point to it.

Stack the return address.

$1E67. Now set NEWPPC & NSPPC to the required values.
But before making the jump make a test for room.

$1F05. Will automatically produce error ‘4" if out of memory.

Fetch the return address.

Fetch the 'error address'.

Fetch the last entry on the GO SUB stack.
The entry is tested to see if

105

CP $3E
JR ZL1AA5
DEC SP
EX (SP),HL
EX DE,HL
LD ($5C3D),SP
PUSH BC
LD ($5C42),HL
LD (IY+$0A),D
RET

L1AA5: PUSH DE
PUSH HL
CALL LO5CB
DEFB $06

DEF FN Routine

SPECTRUM +2 ROM o DISASSEMBLY

it is the GO SUB stack end marker.

Jump if it is.

The full entry uses three locations only.

Exchange the statement number with the 'error address'.
Move the statement number.

ERR_SP. Reset the error pointer.

Replace the return address.

NEWPPC. Enter the line number.

NSPPC. Enter the statement number.

Replace the end marker and
the 'error address'.

Produce error report.

"7 RETURN without GO SUB"

During syntax checking a DEF FN statement is checked to ensure that it has the correct form.
Space is also made available for the result of evaluating the function.

But in ‘'run-time' a DEF FN statement is passed-by.

L1AAB: BIT 7,(1Y+$01)
JR Z,L1AB6
LD A $CE
JP L1A1D

First consider the variable of the function.

L1AB6: SET 6,(1Y+$01)
RST 28H
DEFW ALPHA
JR NC,L1AD5
RST 20H
CP'$'
JR NZ,L1AC9
RES 6,(1Y+$01)
RST 20H
L1ACO: CP(
JR NZ,L1B09
RST 20H
CPYy
JR ZL1AF2

Jump forward if checking syntax.
Otherwise bass-by the
'DEF FN' statement.

Signal 'a numeric variable'.

$2C8D. Check that the present code is a letter.
Jump forward if not.

Fetch the next character.

$24.

Jump forward unless it is a '$'".

Change bit 6 as it is a string variable.
Fetch the next character.

$28. A (' must follow the variable's name.
Jump forward if not.

Fetch the next character

$29. Jump forward if itis a)’

as there are no parameters of the function.

A loop is now entered to deal with each parameter in turn.

L1AD2: RST 28H
DEFW ALPHA
L1ADS: JP NC,L1931
EX DE,HL
RST 20H
CP'$'
JR NZ,L1AEO
EX DE,HL
RST 20H
L1AEO: EX DE,HL
LD BC,$0006
RST 28H
DEFW MAKE_ROOM
INC HL
INC HL
LD (HL),$0E
cP'
JR NZ,L1AF2
RST 20H
JR L1AD2

$2C8D.

The present code must be a letter.

Save the pointer in DE.

Fetch the next character.

$24.

Jump forward unless it is a '$".

Otherwise save the new pointer in DE instead.

Fetch the next character.

Move the pointer to the last character of the name to HL.
Now make six locations after that last character.

$1655.
Enter a 'number marker' into the first of the new locations.
$2C. If the present character is a ', then jump back as

there should be a further parameter.

Otherwise jump out of the loop.

106

Next the definition of the function is considered.

L1AF2: CPYy
JR NZ,L1B09
RST 20H
cp'=
JR NZ,L1B09
RST 20H
LD A,($5C3B)
PUSH AF
RST 28H

DEFW SCANNING

POP AF

XOR (IY+$01)

AND $40
L1B09: JP NZ,L1931

CALL L18CO

MOVE Routine

L1BOF: RET

SPECTRUM +2 ROM o DISASSEMBLY

$29. Check that the *)' does exist.

Jump if not.

The next character is fetched.

$3D. It must be an '=".

Jump if not.

Fetch the next character.

FLAGS.

Save the nature (numeric or string) of the variable

$24FB. Now consider the definition as an expression.
Fetch the nature of the variable.

FLAGS. Check that it is of the same type

as found for the definition.

Give an error report if required.

Move on to consider the next statement in the line.

Simply return.

MENU ROUTINES — PART 1

Run Tape Loader

Used by Main Menu - Tape Loader option.

L1B10: LD HL,$ECOE
LD (HL),$FF
CALL L1F3F
RST 28H

DEFW SET_MIN
LD HL,($5C59)

LD BC,$0003
RST 28H

DEFW MAKE_ROOM

LD HL,L1B8D

LD DE,($5C59)

LD BC,$0003
LDIR
CALL LO26B

List Program to Printer
Used by Edit Menu - Print option.

L1B33: CALL L1F3F
RST 28H

DEFW SET_MIN
LD HL,($5C59)

LD BC,$0001
RST 28H

DEFW MAKE_ROOM
LD HL,($5C59)

LD (HL),$E1
CALL L026B

Fetch mode.
Set Tape Loader mode.
Use Normal RAM Configuration (physical RAM bank 0).

$16B0. Clear out editing area.
E_LINE.
Create 3 bytes of space for the LOAD " command.

$1655.
Address of command bytes for LOAD ™.
E_LINE.

Copy LOAD " into the line editing area.
Parse and execute the BASIC line. [Will not return here but will exit via the error
handler routine]

Use Normal RAM Configuration (physical RAM bank 0).

$16BO0. Clear out editing area.
E_LINE.
Create 1 byte of space.

$1655.

E_LINE.

Copy LLIST into the line editing area.

Parse and execute the BASIC line. [Will not return here but will exit via the error
handler routine]

107

SPECTRUM +2 ROM o DISASSEMBLY

BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 2

SPECTRUM Routine

Return to 48K BASIC Mode. This routine will force caps lock is off.

L1B4A: CALL L1B72 Overwrite 'P' channel data to use the ZX Printer.
LD SP,($5C3D) ERR_SP. Purge the stack.
POP HL Remove error handler address.

LD HL,MAIN_4 $1303. The main execution loop within ROM 1.

PUSH HL

LD HL,PRINT_A_1+$0003 $0013. Address of a $FF byte within ROM 1, used to generate error report "0 OK".
PUSH HL

LD HL,ERROR_1 $0008. The address of the error handler within ROM 1.

PUSH HL

[BUG - Although the channel 'P' information has been reconfigured to use the ZX Printer, the ZX printer buffer and associated system variables still need
to be cleared. Failure to do so means that the first use of the ZX Printer will cause garbage to the printed, i.e. the paging routines and new system variables
still present in the ZX Printer buffer. Subsequently printer output will then be ok since the ZX Printer buffer and system variables will be cleared. Worse
still, there is the possibility that new data to be printed will be inserted beyond the ZX Printer buffer since ROM 1 does not trap whether the ZX Printer
system variable PR_POSN and PR_CC hold invalid values. The bug can be fixed by inserting the following instructions, which cause the ZX Printer buffer
to be cleared immediately after switching to ROM 1 and before the error report "0 OK" is produced. Credit: Paul Farrow and Andrew Owen.]

Address of the routine in ROM 1 to clear the ZX Printer buffer and associated
system variables.

LD HL,CLEAR_PRB

PUSH HL

SET 1,(1Y+$01) FLAGS. Signal the printer is in use.]

LD A,$20 Force 48K mode.
LD (BANK_M),A $5B5C.
JP SWAP $5B00. Swap to ROM 1 and return via a RST $08 / DEFB $FF.

MENU ROUTINES — PART 2

Main Menu — 48 BASIC Option

L1B66: LD HL,$0000 Stack a $0000 address to return to.
PUSH HL
LD A,$20 Force 48 mode.
LD (BANK_M),A $5B5C
JP SWAP $5B00. Swap to ROM 1, return to $0000.

Set 'P' Channel Data

This routine overwrites the 'P' channel data with the 'S' channel data, i.e. the default values when using the ZX Printer.

L1B72: LD HL,($5C4F) CHANS.
LD DE,$0005
ADD HL,DE HL=Address 'S' channel data.
LD DE,$000A
EX DE,HL HL=$000A, DE=Address 'S' channel data.
ADD HL,DE HL=Address 'P' channel data.
EX DE,HL DE=Address 'P' channel data, HL=Address 'S' channel data.
LD BC,$0004
LDIR Copy the 'S’ channel data over the 'P' channel data.

RES 3,(1Y+$30)

RES 4,(IY+$01)
RET

FLAGS?2. Signal caps lock unset. [Not really necessary for switching back to 48
BASIC mode]
FLAGS. Signal not 128K mode.

108

SPECTRUM +2 ROM o DISASSEMBLY

LOAD "" Command Bytes

Used by the Tape Loader routine.

L1B8D: DEFB $EF, $22, $22 LOAD ™

BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 3

LLIST Routine

L1B90: LD A,$03 Printer channel.
JR L1B96 Jump ahead to join LIST.
LIST Routine
L1B94: LD A,$02 Main screen channel.
L1B96: LD (1Y+$02),$00 TV_FLAG. Signal 'an ordinary listing in the main part of the screen'.
RST 28H
DEFW SYNTAX_Z $2530.
JR Z,L1BA2 Do not open the channel if checking syntax.
RST 28H
DEFW CHAN_OPEN $1601. Open the channel.
L1BA2: RST 28H
DEFW GET_CHAR $0018. [Could just do RST $18]
RST 28H
DEFW STR_ALTER $2070. See if the stream is to be changed.
JR C,L1BC2 Jump forward if unchanged.
RST 28H
DEFW GET_CHAR $0018. Get current character.
CP $3B Isita';'?
JR Z,L1BB5 Jump if it is.
CP" $2C.Isita','?
JR NZ,L1BBD Jump if it is not.
L1BB5: RST 28H
DEFW NEXT_CHAR $0020. Get the next character.
CALL L192D Indirectly call EXPT-INUM in ROM 1 to check that a numeric expression follows,
e.g. LIST #5,20.
JR L1BC5 Jump forward with it.
L1BBD: RST 28H
DEFW USE_ZERO $1CE6. Otherwise use zero and
JR L1BC5 jump forward.

Come here if the stream was unaltered.

L1BC2: RST 28H
DEFW FETCH_NUM $1CDE. Fetch any line or use zero if none supplied.
L1BCS: CALL L18CO If checking the syntax of the edit-line move on to the next statement.
RST 28H
DEFW LIST_5+3 $1825. Delegate handling to ROM 1.
RET

RAM Disk SAVE! Routine

L1BCC: LD (OLDSP),SP $5B81. Save SP.
LD SP,TSTACK $5BFF. Use temporary stack.
CALL L1CB6 Create new catalogue entry.
LD BC,(HD_0B) $5B72. get the length of the file.

109

LD HL,$FFF7
OR $FF

SBC HL,BC
CALL L1D12
LD BC,$0009
LD HL,HD_00
CALL L1DCB
LD HL,(HD_OD)
LD BC,(HD_0B)
CALL L1DCB
CALL L1D75
LD A,$05

CALL L1C83
LD SP,(OLDSP)
RET

CAT! Routine

L1C04: RST 28H
DEFW GET_CHAR
cp
JP NZ,L1931
RST 28H
DEFW NEXT_CHAR
CALL L18CO
LD A,$02
RST 28H
DEFW CHAN_OPEN
LD (OLDSP),SP
LD SP,TSTACK
CALL L20F1
LD A,$05
CALL L1C83
LD SP,(OLDSP)
RET

ERASE! Routine

L1C2B: RST 28H
DEFW GET_CHAR
cp
JP NZz,L1931
CALL L13B2
CALL L18CO
LD (OLDSP),SP
LD SP,TSTACK
CALL L1F7E
LD A,$05
CALL L1C83
LD SP,(OLDSP)
RET

SPECTRUM +2 ROM o DISASSEMBLY

-9 (9 is the length of the file header).

Extend the negative number into the high byte.

AHL=-(length of file + 9).

Check for space in RAM disk (produce "4 Out of memory" if no room).
File header length.

$5B71. Address of file header.

Store file header to RAM disk.

$5B74. Start address of file data.

$5B72. Length of file data.

Store bytes to RAM disk.

Update catalogue entry (leaves logical RAM bank 4 paged in).
Page in logical RAM bank 5 (physical RAM bank 0).

$5B81. Use original stack.

Get the current character.

$0018. [Could just do RST $18 here]
$21. Isit"1"?

Jump to "C Nonsense in BASIC" if not.
Get the next character.

$0020. [Could just do RST $20 here]
Check for end of statement.

Select main screen.

$1601.

$5B81. Store SP.

$5BFF. Use temporary stack.

Print out the catalogue.

Page in logical RAM bank 5 (physical RAM bank 0).

$5B81. Use original stack.

Get character from BASIC line.

$0018.

$21. Isit"1'?

Jump to "C Nonsense in BASIC" if not.

Get the filename into N_STR1.

Make sure we've reached the end of the BASIC statement.
$5B81. Store SP.

$5BFF. Use temporary stack.

Do the actual erasing (leaves logical RAM bank 4 paged in).
Restore RAM configuration.

Page in logical RAM bank 5 (physical RAM bank 0).
$5B81. Use original stack.

RAM DISK COMMAND ROUTINES — PART 2

Load Header from RAM Disk

L1C4D: LD (OLDSP),SP
LD SP,TSTACK
CALL L1D54

$5B81. Store SP.
$5BFF. Use temporary stack.

Find file (return details pointed to by IX). Leaves logical RAM bank 4 paged in.

110

SPECTRUM +2 ROM o DISASSEMBLY

The file exists else the call above would have produced an error "h file does not exist"

LD HL,HD_00
LD BC,$0009
CALL L1E56
LD A,$05

CALL L1C83
LD SP,(OLDSP)
RET

Load from RAM Disk

$5B71. Load 9 header bytes.

Load bytes from RAM disk.
Restore RAM configuration.

Page in logical RAM bank 5 (physical RAM bank 0).

$5B81. Use original stack.

Used by LOAD, VERIFY and MERGE. Note that VERIFY will simply perform a LOAD.

Entry: HL=Destination address.

DE=Length (will be greater than zero).

IX=File descriptor.

IX=Address of catalogue entry (IX+$10-IX+$12 points to the address of the file's data, past its header).

HD_00-HD_11 holds file header information.

L1C6A: LD (OLDSP),SP
LD SP,TSTACK
LD B,D
LD C,E
CALL L1E56
CALL L1D75
LD A,$05
CALL L1C83
LD SP,(OLDSP)
RET

$5B81. Store SP
$5BFF. Use temporary stack.

BC=Length.
Load bytes from RAM disk.

Update catalogue entry (leaves logical RAM bank 4 paged in).

Restore RAM configuration.

Page in logical RAM bank 5 (physical RAM bank 0).

$5B81. Use original stack.

PAGING ROUTINES — PART 1

Page Logical RAM Bank

This routine converts between logical and physical RAM banks and pages the selected bank in.

Entry: A=Logical RAM bank.

L1C83: PUSH HL
PUSH BC
LD HL,L1CAO
LD B,$00
LD C,A
ADD HL,BC
LD C,(HL)
DI
LD A,(BANK_M)
AND $F8
ORC
LD (BANK_M),A
LD BC,$7FFD
OUT (C),A
El
POP BC
POP HL
RET

Save BC and HL.
Physical banks used by RAM disk.

BC=Logical RAM bank.

Point to table entry.

Look up physical page.

Disable interrupts whilst paging.
$5B5C. Fetch the current configuration.
Mask off current RAM bank.

Include new RAM bank.

$5B5C. Store the new configuration.

Perform the page.
Re-enable interrupts.
Restore BC and HL.

Physical RAM Bank Mapping Table

L1CAQ: DEFB $01

Logical bank $00.

111

SPECTRUM +2 ROM o DISASSEMBLY

DEFB $03 Logical bank $01.
DEFB $04 Logical bank $02.
DEFB $06 Logical bank $03.
DEFB $07 Logical bank $04.
DEFB $00 Logical bank $05.

RAM DISK COMMAND ROUTINES — PART 3

Compare Filenames

Compare filenames at N_STR1 and IX.
Exit: Zero flag set if filenames match.
Carry flag set if flename at DE is alphabetically lower than filename at IX.

L1CAG: LD DE,N_STR1 $5B67.
Compare filenames at DE and IX

L1CAQ: PUSH IX
POP HL
LD B,$0A Maximum of 10 characters.
L1CAE: LD A,(DE)
INC DE
CP (HL) compare each character.
INC HL
RET Nz Return if characters are different.
DJINZ L1CAE Repeat for all characters of the filename.
RET

Create New Catalogue Entry

Add a catalogue entry with filename contained in N_STR1.
Exit: HL=Address of next free catalogue entry.
IX=Address of newly created catalogue entry.

L1CBE6:

L1CBF:

L1CDD:

CALL L1D31

JRZ,L1CBF
CALL LO5CB
DEFB $20
PUSH IX

LD BC,$3FEC
ADD IX,BC

POP IX

JR NC,L1D2D
LD HL,$FFEC
LD A $FF
CALL L1D12
LD HL,FLAGS3
SET 2,(HL)
PUSH IX

POP DE

LD HL,N_STR1
LD BC,$000A
LDIR

SET 0,(IX+$13)
LD A,(IX+$0A)
LD (IX+$10),A
LD A,(IX+$0B)
LD (IX+$11),A

Find entry in RAM disk area, returning IX pointing to catalogue entry (leaves logical
RAM bank 4 paged in).

Jump ahead if does not exist.

Produce error report.

"e File already exists"

16384-20 (maximum size of RAM disk catalogue).

IX grows downwards as new RAM disk catalogue entries added. If adding the
maximum size to IX does not result in the carry flag being set then the catalogue is
full, so issue an error report "4 Out of Memory".

Jump if out of memory.

-20 (20 bytes is the size of a RAM disk catalogue entry).
Extend the negative number into the high byte.

Ensure space in RAM disk area.

$5B66.

Signal editing RAM disk catalogue.

DE=Address of new catalogue entry.
$5B67. Filename.

10 characters in the filename.

Copy the filename.

Indicate catalogue entry requires updating.
Set the file access address to be the

start address of the file.

112

Adjust RAM Disk Free Space
Adjust the count of free bytes within the RAM disk.

LD A,(IX+$0C)
LD (IX+$12),A
XOR A

LD (IX+$0D),A
LD (IX+$0E),A
LD (IX+$0F),A
LD A,$05
CALL L1C83
PUSH IX

POP HL

LD BC,$FFEC
ADD HL,BC
LD (SFNEXT),HL
RET

SPECTRUM +2 ROM o DISASSEMBLY

Set the fill length to zero.

Logical RAM bank 5 (physical RAM bank 0).

HL=Address of new catalogue entry.
-20 (20 bytes is the size of a catalogue entry).

$5B83. Store address of next free catalogue entry.

The routine can produce "4 Out of memory" when adding.
Entry: AHL=Size adjustment (negative when a file added, positive when a file deleted).
A=Bit 7 set for adding data, else deleting data.

L1D12:

Deleting data

L1D22:

Adding data

L1D29:

L1D2D:

LD DE,(SFSPACE)
EX AF,AF'

LD A,(SFSPACE+2)
LD CA

EX AF AF'

BIT 7,A

JR NZ,L1D29

ADD HL,DE
ADCA,C

LD (SFSPACE),HL
LD (SFSPACE+2),A
RET

ADD HL,DE

ADCAC

JR C,L1D22

CALL LO5CB
DEFB 03

$5B85.

A'HL=Requested space.

$5B87. ADE=Free space on RAM disk.
CDE=Free space.

AHL=Requested space.

A negative adjustment, i.e. adding data?
Jump ahead if so.

AHL=Free space left.
$5B85. Store free space.
$5B87.

Jump back to store free space if space left.
Produce error report.
"4 Out of memory"

Find Catalogue Entry for Filename

L1D31:

L1D3A:

L1DA4D:

LD A,$04
CALL L1C83

LD IX,$EBEC

LD DE,(SFNEXT)
ORA

PUSH IX

POP HL

SBC HL,DE

RET Z

CALL L1CA6

JR NZ,L1D4D
OR $FF

RET

LD BC,$FFEC

Page in logical RAM bank 4 (physical RAM bank 7).

Paint to first catalogue entry.

$5B83. Pointer to last catalogue entry.

Clear carry flag.

HL=First catalogue entry.

Return with zero flag set if end of catalogue reached and hence filename not found.
Test filename match with N_STR1 ($5B67).

Jump ahead if names did not match.

Reset zero flag to indicate filename exists.

-20 bytes (20 bytes is the size of a catalogue entry).

113

ADD IX,BC
JR L1D3A

Find RAM Disk File
Find a file in the RAM disk matching name held in N_STR1,

and return with X pointing to the catalogue entry.

L1D54:

L1D5D:

Update Catalogue Entry

L1D75:

CALL L1D31

JR NZ,L1D5D
CALL LO5CB
DEFB $23

LD A,(IX+$0A)
LD (IX+$10),A
LD A,(IX+$0B)
LD (IX+$11),A
LD A,(IX+$0C)
LD (IX+$12),A
LD A,$05
CALL L1C83
RET

LD A,$04
CALL L1C83
BIT 0,(IX+$13)
RET Z

RES 0,(IX+$13)
LD HL,FLAGS3
RES 2,(HL)
LD L,(IX+$10)
LD H,(IX+$11)
LD A,(IX+$12)
LD E,(IX+$0A)
LD D,(IX+$0B)
LD B,(IX+$0C)
ORA

SBC HL,DE
SBCA,B

RLH

RLH

SRAA

RR H

SRA A

RR H

LD (IX+$0D),L
LD (IX+$0E),H
LD (IX+$0F),A

SPECTRUM +2 ROM o DISASSEMBLY

Point to the next directory entry.
Test the next name.

Find entry in RAM disk area, returning IX pointing to catalogue entry (leaves logical

RAM bank 4 paged in).

Jump ahead if it exists.

Produce error report.

"h File does not exist"

Take the current start address (bank + location)
and store it as the current working address.

Page in logical RAM bank 5 (physical RAM bank 0).

[Could have saved 1 byte by using JP $1C83 (ROM 0)]

Page in logical RAM bank 4 (physical RAM bank 7).

Ignore if catalogue entry does not require updating.
Indicate catalogue entry updated.

$5B66.

Signal not editing RAM disk catalogue.

Points to end address within logical RAM bank.

Points to end logical RAM bank.
Start address within logical RAM bank.

Start logical RAM bank.
Clear carry flag.

HL=End address-Start address. Maximum difference fits within 14 bits.
A=End logical RAM bank-Start logical RAM bank - 1 if addresses overlap.

Work out how many full banks of 16K are being used.
Place this in the upper two bits of H.

HL=Total length.
Length within logical RAM bank.

Copy the end address of the previous entry into the new entry

LD L,(IX+$10)
LD H,(IX+$11)
LD A,(IX+$12)
LD BC,$FFEC
ADD IX,BC
LD (IX+$0A),L
LD (IX+$0B),H
LD (IX+$0C),A
RET

End address within logical RAM bank.

End logical RAM bank.

-20 bytes (20 bytes is the size of a catalogue entry).
Address of next catalogue entry.

Start address within logical RAM bank.

Start logical RAM bank.

114

Save Bytes to RAM Disk

L1DCB: LDAB
ORC
RET Z
PUSH HL
LD DE,$C000
EX DE,HL
SBC HL,DE
JR Z,L1DF4
JR C,L1DF4

Source is below $C000

PUSH HL
SBC HL,BC
JR NC,L1DEB

Source spans across $C000

LD H,B
LDL,.C

POP BC
ORA

SBC HL,BC
EX (SP),HL
LD DE,$C000
PUSH DE

JR L1E13

SPECTRUM +2 ROM o DISASSEMBLY

Check whether a data length of zero was requested.

Ignore if so since all bytes already saved.

Save the source address.

DE=The start of the upper RAM bank.

HL=The start of the RAM bank. DE=Source address.
HL=RAM bank start - Source address.

Jump ahead if saving bytes from $C000.

Jump ahead if saving bytes from an address above $C000.

HL=Distance below $C000 (RAM bank start - Source address).

Jump if requested bytes are all below $C000.

HL=Requested length.
BC=Distance below $C000.

HL=Bytes occupying upper RAM bank.
Stack it. HL=Source address.
Start of upper RAM bank.

Jump forward.

Source fits completely below upper RAM bank (less than $C000)

L1DEB: POP HL
POP HL
LD DE,$0000
PUSH DE
PUSH DE
JR L1E13

Forget the 'distance below $C000' count.
HL=Source address.
Remaining bytes to transfer.

Stack dummy Start of upper RAM bank.
Jump forward.

Source fits completely within upper RAM bank (greater than or equal $C000)

L1DF4: LD H,B
LDL,C
LD DE,$0020
ORA
SBC HL,DE
JR C,L1EO03

Source spans transfer buffer

EX (SP),HL
LD B,D

LD CE

JR L1EO8

Source fits completely within transfer buffer

L1EOS: POP HL
LD DE,$0000
PUSH DE

Transfer a block

HL=Requested length.
DE=Length of buffer.

HL=Requested length-Length of buffer = Buffer overspill.
Jump if requested length will fit within the buffer.

Stack buffer overspill. HL=$0000.

BC=Buffer length.
Jump forward.

HL=Destination address.
Remaining bytes to transfer.
Stack 'transfer buffer in use' flag.

115

SPECTRUM +2 ROM o DISASSEMBLY

L1EO08: PUSH BC Stack the length.
LD DE,STRIP1 $5B98. Transfer buffer.
LDIR Transfer bytes.
POP BC BC=Length.
PUSH HL HL=New source address.
LD HL,STRIP1 $5B98. Transfer buffer.
L1E13: LD A,$04 Page in logical RAM bank 4 (physical RAM bank 7).
CALL L1C83
LD E,(IX+$10)
LD D,(IX+$11) Fetch the address from the current logical RAM bank.
LD A,(IX+$12) Logical RAM bank.
CALL L1C83 Page in appropriate logical RAM bank.
L1E24: LDI Transfer a byte from the file to the required RAM disk location or transfer buffer.
LD A,D
ORE Has DE been incremented to $00007?
JR Z,L1E43 Jump if end of RAM bank reached.
L1E2A: LD AB
ORC
JP NZ,L1E24 Repeat until all bytes transferred.
LD A,$04 Page in logical RAM bank 4 (physical RAM bank 7).
CALL L1C83

LD (IX+$10),E
LD (IX+$11),D

Store the next RAM bank source address.

LD A,$05 Page in logical RAM bank 5 (physical RAM bank 0).
CALL L1C83

POP HL HL=Source address.

POP BC BC=Length.

JR L1DCB Re-enter this routine to transfer another block.

The end of a RAM bank has been reached so switch to the next bank

L1E43: LD A,$04 Page in logical RAM bank 4 (physical RAM bank 7).
CALL L1C83
INC (IX+$12) Increment to the new logical RAM bank.
LD A,(IX+$12) Fetch the new logical RAM bank.
LD DE,$C000 The start of the RAM disk
CALL L1C83 Page in next RAM bank.
JR L1E2A Jump back to transfer another block.

Load Bytes from RAM Disk

Used for loading file header and data.

Entry: IX=RAM disk catalogue entry address. IX+$10-IX+$12 points to the next address to fetch from the file.
HL=Destination address.
BC=Requested length.

L1E56: LD AB Check whether a data length of zero was requested.
ORC
RET Z Ignore if so since all bytes already loaded.
PUSH HL Save the destination address.
LD DE,$C000 DE=The start of the upper RAM bank.
EX DE,HL HL=The start of the RAM bank. DE=Destination address.
SBC HL,DE HL=RAM bank start - Destination address.
JR Z,L1E86 Jump if destination is $C000.
JR C,L1E86 Jump if destination is above $C000.

Destination is below $C000

L1E64: PUSH HL HL=Distance below $C000 (RAM bank start - Destination address).
SBC HL,BC
JR NC,L1E7B Jump if requested bytes all fit below $C000.

Code will span across $C000

116

SPECTRUM +2 ROM o DISASSEMBLY

LDH,B

LDL,C HL=Requested length.

POP BC BC=Distance below $C000.
ORA

SBC HL,BC HL=Bytes destined for upper RAM bank.
EX (SP),HL Stack it. HL=Destination address.
LD DE,$0000 Remaining bytes to transfer.
PUSH DE

LD DE,$C000 Start of upper RAM bank.

PUSH DE

EX DE,HL HL=Start of upper RAM bank.

JR L1E9F Jump forward.

Code fits completely below upper RAM bank (less than $C000)

L1E7B: POP HL Forget the 'distance below $C000' count.
POP HL HL=Destination address.
LD DE,$0000 Remaining bytes to transfer.
PUSH DE
PUSH DE Stack dummy Start of upper RAM bank.
PUSH DE
EX DE,HL HL=$0000, DE=Destination address.
JR L1E9F Jump forward.

Code destined for upper RAM bank (greater than or equal to $C000)

L1E86: LD H,B
LDL,C HL=Requested length.
LD DE,$0020 DE=Length of buffer.
ORA
SBC HL,DE HL=Requested length-Length of buffer = Buffer overspill.
JR C,L1E95 Jump if requested length will fit within the buffer.

Code will span transfer buffer

EX (SP),HL Stack buffer overspill. HL=$0000.
LD B,D

LD C,E BC=Buffer length.

JR L1IE9A Jump forward.

Code will all fit within transfer buffer

L1E95: POP HL HL=Destination address.
LD DE,$0000 Remaining bytes to transfer.
PUSH DE Stack 'transfer buffer in use' flag.
L1E9A: PUSH BC Stack the length.
PUSH HL Stack destination address.
LD DE,STRIP1 $5B98. Transfer buffer.

Transfer a block

L1E9F: LD A,$04 Page in logical RAM bank 4 (physical RAM bank 7).
CALL L1C83
LD L,(IX+$10) RAM bank address.
LD H,(IX+$11)
LD A,(IX+$12) Logical RAM bank.
CALL L1C83 Page in appropriate logical RAM bank.

Enter a loop to transfer BC bytes, either to required destination or to the transfer buffer

L1EBO: LDI Transfer a byte from the file to the required location or transfer buffer.
LD AH
ORL Has HL been incremented to $0000?
JR Z,L1EDB Jump if end of RAM bank reached.

117

L1EBG:

L1EDG:

LDA,B
ORC

JP NZ,L1EBO
LD A,$04
CALL L1C83
LD (IX+$10),L
LD (IX+$11),H
LD A,$05
CALL L1C83
POP DE

POP BC

LD HL,STRIP1
LDA,B

ORC

JR Z,L1ED6
LDIR

EX DE,HL
POP BC

JP L1E56

SPECTRUM +2 ROM o DISASSEMBLY

Repeat until all bytes transferred.
Page in logical RAM bank 4 (physical RAM bank 7).

Store the next RAM bank destination address.
Page in logical RAM bank 5 (physical RAM bank 0).

DE=Destination address.
BC=Length.
$5B98. Transfer buffer.

All bytes transferred?

Jump forward if so.

Transfer code in buffer to the required address.
HL=New destination address.

BC=Remaining bytes to transfer.

Re-enter this routine to transfer another block.

The end of a RAM bank has been reached so switch to the next bank

L1EDB:

LD A,$04
CALL L1C83
INC (IX+$12)
LD A,(IX+$12)
LD HL,$C000
CALL L1C83
JR L1EB6

Page in logical RAM bank 4 (physical RAM bank 7).

Increment to the new logical RAM bank.
Fetch the new logical RAM bank.

The start of the RAM disk.

Page in next logical RAM bank.

Jump back to transfer another block.

Transfer Bytes to RAM Bank 4 — Vector Table Entry

This routine can be used to transfer bytes from the current RAM bank into logical RAM bank 4.
It is not used in this ROM and is a remnant of the original Spanish Spectrum 128 ROM 0.

Entry:

L1EEE:

PUSH AF
LD A,(BANK_M)
PUSH AF

PUSH HL

PUSH DE

PUSH BC

LD IX,N_STR1+3
LD (IX+$10),E
LD (IX+$11),D
LD (IX+$12),$04
CALL L1DCB

Entered here by load vector routine

L1FO7:

LD A,$05
CALL L1C83
POP BC
POP DE
POP HL
ADD HL,BC
EX DE,HL
ADD HL,BC
EX DE,HL
POP AF

LD BC,$7FFD
DI

HL=Source address in conventional RAM.
DE=Destination address in logical RAM bank 4 (physical RAM bank 7).
BC=Number of bytes to save.

Save AF.

$5B5C. Fetch current physical RAM bank configuration.
Save it.

Save source address.

Save destination address.

Save length.

$5B6A.

Store destination address as the current address pointer.

Destination is in logical RAM bank 4 (physical RAM bank 7).
Store bytes to RAM disk.

Page in logical RAM bank 5 (physical RAM bank 0).

Get length.

Get destination address.

Get source address.

HL=Address after end of source.

DE=Address after end of source. HL=Destination address.
HL=Address after end of destination.

HL=Address after end of source. DE=Address after end of destination.

Get original RAM bank configuration.

Disable interrupts whilst paging.

118

SPECTRUM +2 ROM o DISASSEMBLY

OUT (C),A

LD (BANK_M),A $5B5C.

El Re-enable interrupts.

LD BC,$0000 Signal all bytes loaded/saved.
POP AF Restore AF.

RET

Transfer Bytes from RAM Bank 4 — Vector Table Entry

This routine can be used to transfer bytes from logical RAM bank 4 into the current RAM bank.
It is not used in this ROM and is a remnant of the original Spanish Spectrum 128 ROM 0.
Entry: HL=Source address in logical RAM bank 4 (physical RAM bank 7).
DE=Destination address in current RAM bank.
BC=Number of bytes to load.

L1F23: PUSH AF Save AF.
LD A,(BANK_M) $5B5C. Fetch current physical RAM bank configuration.
PUSH AF Save it.
PUSH HL Save source address.
PUSH DE Save destination address.
PUSH BC Save length.
LD IX,N_STR1+3 $5B6A.
LD (IX+$10),L Store source address as the current address pointer.
LD (IX+$11),H
LD (IX+$12),$04 Source is in logical RAM bank 4 (physical RAM bank 7).
EX DE,HL HL=Destination address.
CALL L1E56 Load bytes from RAM disk.
JR L1FO7 Join the save vector routine above.

PAGING ROUTINES — PART 2

Use Normal RAM Configuration
Page in physical RAM bank 0, use normal stack and stack TARGET address.

Entry: HL=TARGET address.

L1F3F: EX AF,AF' Save AF.
LD A,$00 Physical RAM bank 0.
DI Disable interrupts whilst paging.
CALL L1F59 Page in physical RAM bank 0.
POP AF AF=Address on stack when CALLed.
LD (TARGET),HL $5B58. Store HL.
LD HL,(OLDSP) $5B81. Fetch the old stack.
LD (OLDSP),SP $5B81. Save the current stack.
LD SP,HL Use the old stack.
El Re-enable interrupts.
LD HL,(TARGET) $5B58. Restore HL.
PUSH AF Re-stack the return address.
EX AF,AF' Get AF back.
RET

Select RAM Bank

Used twice by the ROM to select either physical RAM bank 0 or physical RAM bank 7.
However, it could in theory also be used to set other paging settings.

Entry: A=RAM bank number.
L1F59: PUSH BC Save BC
LD BC,$7FFD
OuT (C),A Perform requested paging.

119

LD (BANK_M),A
POP BC
RET

SPECTRUM +2 ROM o DISASSEMBLY

$5B5C.
Restore BC.

Use Workspace RAM Configuration

Page in physical RAM bank 7, use workspace stack and stack TARGET address.

Entry: HL=TARGET address.
L1F64: EX AF,AF'

DI

POP AF

LD (TARGET),HL
LD HL,(OLDSP)
LD (OLDSP),SP
LD SP,HL

LD HL,(TARGET)
PUSH AF

LD A,$07

CALL L1F59

El

EX AF,AF'

RET

Save A.

Disable interrupts whilst paging.
Fetch return address.

$5B58. Store HL.

$5B81. Fetch the old stack.
$5B81. Save the current stack.
Use the old stack.

$5B58. Restore HL.

Stack return address.

RAM bank 7.

Page in RAM bank 7.
Re-enable interrupts.

Restore A.

RAM DISK COMMAND ROUTINES — PART 4

Erase a RAM Disk File

N_STR1 contains the name of the file to erase.

L1F7E: CALL L1D31

JR NZ,L1F87

CALL LO5CB
DEFB $23

LD L, (IX+$0D)
LD H,(IX+$0E)
LD A,(IX+$0F)
CALL L1D12
PUSH IY

LD IY,(SFNEXT)
LD BC,$FFEC
ADD IX,BC
LD L,(IY+$0A)
LD H,(IY+$0B)
LD A,(IY+$0C)
POP IY

LD E,(IX+$0A)
LD D,(IX+$0B)
LD B,(IX+$0C)
ORA

SBC HL,DE
SBCAB

RLH

RLH

SRA A

RR H

SRAA

RR H

LD BC,$0014
ADD IX,BC

LD (IX+$10),L

L1F87:

Find entry in RAM disk area, returning IX pointing to catalogue entry (leaves logical
RAM bank 4 paged in).

Jump ahead if it was found. [Could have saved 3 bytes by using JP Z,$1D5D (ROM
0)]

Produce error report.

"h File does not exist"

AHL=Length of file.

Bit 7 of A will be O indicating to delete rather than add.
Free up this amount of space.

Preserve current value of IY.

$5B83. 1Y points to next free catalogue entry.

BC=-20 (20 bytes is the size of a catalogue entry).

IX points to the next catalogue entry

AHL=First spare byte in RAM disk file area.

Restore Y to normal value.
BDE=Start of address of next RAM disk file entry.

HL=Length of all files to be moved.

20 bytes is the size of a catalogue entry.
IX=Catalogue entry to delete.

Store file length in the 'deleted' catalogue entry.

120

LD (IX+$11),H
LD (IX+$12),A
LD BC,$FFEC
ADD IX,BC
LD L,(IX+$0A)
LD H,(IX+$0B)
LD D,(IX+$0C)
LD BC,$0014
ADD IX,BC
LD AD

CALL L1C83
LD A,(BANK_M)
LD E,A

LD BC,$7FFD
LD A,$07

DI

OUT (C),A
EXX

LD L,(IX+$0A)
LD H,(IX+$0B)
LD D,(IX+$0C)
LD AD

CALL L1C83
LD A,(BANK_M)
LD E,A

LD BC,$7FFD
EXX

SPECTRUM +2 ROM o DISASSEMBLY

-20 (20 bytes is the size of a catalogue entry).
IX=Next catalogue entry.
DHL=Start address of next RAM disk file entry.

20 bytes is the size of a catalogue entry.
IX points to catalogue entry to delete.
Page in logical RAM bank for start address of entry to delete.

$5B5C.
Save current RAM bank configuration in E.
Select physical RAM bank 7.

Disable interrupts whilst performing paging operations.
Page in selected RAM bank.

DHL'=Start address of next RAM disk file entry.
DHL=Start of address of RAM disk file entry to delete.

Page in logical RAM bank for file entry (will update BANK_M).
$5B5C.
Get RAM bank configuration for the file in E.

DHL=Start address of next RAM disk file entry.

At this point we have the registers and alternate registers pointing to the actual bytes in the RAM disk for the file to be deleted and the next file, with
length bytes of the catalogue entry for the file to be deleted containing the length of bytes for all subsequent files that need to be moved down in memory.

A loop is entered to move all of these bytes where the delete file began.
DHL holds the address of the byte to be moved.
E contains the value which should be OUTed to $5B5C to page in the relevant RAM page.

L2009: LD A,$07 Select physical RAM bank 7.
DI Disable interrupts whilst performing paging operations.
OUT (C),A Page in selected RAM bank.
LD A,(IX+$10) Decrement end address.
SUB $01
LD (IX+$10),A
JR NC,L202C If no carry then the decrement is finished.
LD A,(IX+$11) Otherwise decrement the middle byte.
SUB $01
LD (IX+$11),A
JR NC,L202C If no carry then the decrement is finished.
LD A,(IX+$12) Otherwise decrement the highest byte.
SUB $01
LD (IX+$12),A
JR C,L205D Jump forward if finished moving the file.
L202C: OuUT (C),E Page in RAM bank containing the next file.
LD A,(HL) Get the byte from the next file.
INC L Increment DHL.
JR NZ,L2043 If not zero then the increment is finished.
INCH Otherwise increment the middle byte.
JR NZ,L2043 If not zero then the increment is finished.
EX AF,AF' Save the byte read from the next file.
INC D Advance to next logical RAM bank for the next file.
LD A,D
CALL L1C83 Page in next logical RAM bank for next file entry (will update BANK_M).
LD A,(BANK_M) $5B5C.
LD E,A Get RAM bank configuration for the next file in E.
LD HL,$C000 The next file continues at the beginning of the next RAM bank.
EX AF,AF' Retrieve the byte read from the next file.
L2043: EXX DHL=Address of file being deleted.
DI Disable interrupts whilst performing paging operations.
OUT (C),E Page in next RAM bank containing the next file.

121

SPECTRUM +2 ROM o DISASSEMBLY

LD (HL),A Store the byte taken from the next file.

INC L Increment DHL.

JR NZ,L205A If not zero then the increment is finished.

INCH Otherwise increment the middle byte.

JR NZ,L205A If not zero then the increment is finished.

INC D Advance to next logical RAM bank for the file being deleted.

LD A,D

CALL L1C83 Page in next logical RAM bank for file being deleted entry (will update BANK_M).

LD A,(BANK_M) $5B5C.

LD E,A Get RAM bank configuration for the file being deleted in E.

LD HL,$C000 The file being deleted continues at the beginning of the next RAM bank.
L205A: EXX DHL=Address of byte in next file. DHL'=Address of byte in file being deleted.

JR L2009

The file has been moved

L205D: LD A,$04 Page in logical RAM bank 4 (physical RAM bank 7).
CALL L1C83
LD A,$00
LD HL,$0014 AHL=20 bytes is the size of a catalogue entry.
L2067: CALL L1D12 Delete a catalogue entry.

LD E,(IX+$0D)
LD D,(IX+$0E)

LD C,(IX+$0F) CDE-=File length of file entry to delete.

LD A,D

RLCA

RLC

RLCA

RLC C=RAM bank.

LD A,D

AND $3F Mask off upper bits to leave length in this bank (range 0-16383).

LD D,A DE=Length in this bank.

PUSH IX Save address of catalogue entry to delete.
L2080: PUSH DE

LD DE,$FFEC -20 (20 bytes is the size of a catalogue entry).

ADD IX,DE Point to next catalogue entry.

POP DE DE=Length in this bank.

LD L,(IX+$0A)
LD H,(IX+$0B)

LD A,(IX+$0C) AHL=File start address.
ORA
SBC HL,DE Will move into next RAM bank?
SuBC
BIT 6,H
JR NZ,L209B Jump if same RAM bank.
SET 6,H New address in next RAM bank.
DEC A Next RAM bank.
L209B: LD (IX+$0A),L
LD (IX+$0B),H
LD (IX+$0C),A Save new start address of file.

LD L,(IX+$10)
LD H,(IX+$11)

LD A,(IX+$12) Fetch end address of file.
ORA
SBC HL,DE Will move into next RAM bank?
SuBC
BIT 6,H
JR NZ,L20B8 Jump if same RAM bank.
SET 6,H New address in next RAM bank.
DECA Next RAM bank.

L20B8: LD (IX+$10),L
LD (IX+$11),H
LD (IX+$12),A Save new end address of file.
PUSH IX
POP HL HL=Address of next catalogue entry.
PUSH DE

122

Print RAM Disk Catalogue

LD DE,(SFNEXT)
ORA

SBC HL,DE

POP DE

JR NZ,L2080

LD DE,(SFNEXT)
POP HL

PUSH HL

ORA

SBC HL,DE

LD B,H

LDC,L

POP HL

PUSH HL

LD DE,$0014
ADD HL,DE

EX DE,HL

POP HL

DEC DE

DEC HL

LDDR

LD HL,(SFNEXT)
LD DE,$0014
ADD HL,DE

LD (SFNEXT),HL
RET

SPECTRUM +2 ROM o DISASSEMBLY

$5B83.

End of catalogue reached?

DE=Length in this bank.

Jump if not to move next entry.

$5B83. Start address of the next available catalogue entry.

HL=Start address of catalogue entry to delete.

BC=Length of catalogue entries to move.

HL=Start address of catalogue entry to delete.

20 bytes is the size of a catalogue entry.

HL=Start address of previous catalogue entry.

DE=Start address of previous catalogue entry.

HL=Start address of catalogue entry to delete.

DE=End address of catalogue entry to delete.

HL=End address of next catalogue entry.

Move all catalogue entries.

$5B83. Start address of the next available catalogue entry.
20 bytes is the size of a catalogue entry.

$5B83. Store the new location of the next available catalogue entry.

This routine prints catalogue filenames in alphabetically order.
It does this by repeatedly looping through the catalogue to find the next 'highest' name.

L20F1:

L20F9:

L2100:

L2129:

LD A,$04
CALL L1C83
LD HL,L2140
LD BC,L214A
LD IX,$EBEC
CALL LO5F5
PUSH IX

EX (SP),HL
LD DE,(SFNEXT)
ORA

SBC HL,DE
POP HL

JR Z,L.2130
LD D,H

LD E,L
PUSH HL
PUSH BC
CALL L1CA9
POP BC
POP HL

JR NC,L2129
LD D,B
LDE,C
PUSH HL
PUSH BC
CALL L1CA9
POP BC
POP HL

JR C,L2129
PUSH IX
POP BC

LD DE,$FFEC
ADD IX,DE

Page in logical RAM bank 4

(physical RAM bank 7)

HL points to ten $00 bytes, the initial comparison filename.

BC point to ten $FF bytes.

IX points to first catalogue entry.

Check for BREAK.

Save address of catalogue entry.

HL points to current catalogue entry. Top of stack points to ten $00 data.
$5B83. Find address of next free catalogue entry.

Have we reached end of catalogue?
Fetch address of catalogue entry.
Jump ahead if end of catalogue reached.

DE=Current catalogue entry.

Compare current filename (initially ten $00 bytes).

Jump if current catalogue name is 'above' the previous.

DE=Last filename

Compare current filename (initially ten $FF bytes).

Jump if current catalogue name is 'below' the previous.
BC=Address of current catalogue entry name.

-20 (20 bytes is the size of a catalogue entry).
Point to next catalogue entry.

123

SPECTRUM +2 ROM o DISASSEMBLY

JR L2100 Check next filename.
L2130: PUSH HL HL points to current catalogue entry.
LD HL,L214A Address of highest theoretical filename data.
ORA
SBC HL,BC Was a new filename to print found?
POP HL
RET Z Return if all filenames printed.
LDH,B
LDL,C HL=Address of current catalogue entry name.
CALL L2154 Print the catalogue entry.
JR L20F9 Repeat for next filename.

Print Catalogue Filename Data

L2140: DEFB $00, $00, $00, $00, $00 Lowest theoretical filename.
DEFB $00, $00, $00, $00, $00
L214A: DEFB $FF, $FF, $FF, $FF, $FF Highest theoretical filename.

DEFB $FF, $FF, $FF, $FF, $FF

Print Single Catalogue Entry

L2154: PUSH HL Save address of filename.
PUSH BC
POP HL [No need to transfer BC to HL since they already have the same value].
LD DE,N_STR1 $5B67. Copy the filename to N_STR1 so that it
LD BC,$000A is visible when this RAM bank is paged out.
LDIR
LD A,$05 Page in logical RAM bank 5 (physical RAM bank 0).
CALL L1C83
LD HL,(OLDSP) $5B81.
LD (OLDSP),SP $5B81. Save temporary stack.
LD SP,HL Use original stack.
LD HL,N_STR1 $5B67. HL points to filename.
LD B,$0A 10 characters to print.
L2171: LD A,(HL) Print each character of the filename.
PUSH HL
PUSH BC
RST 28H
DEFW PRINT_A_1 $0010.
POP BC
POP HL
INC HL
DJINZ L2171
LD A,$0D Print a newline character.
RST 28H
DEFW PRINT_A_1 $0010.
RST 28H
DEFW TEMPS $0D4D. Copy permanent colours to temporary colours.
LD HL,(OLDSP) $5B81.
LD (OLDSP),SP $5B81. Save original stack.
LD SP,HL Switch back to temporary stack.
LD A,$04 Page in logical RAM bank 4 (physical RAM bank 7).
CALL L1C83
POP HL HL=Address of filename.
RET

124

SPECTRUM +2 ROM o DISASSEMBLY

BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 4

LPRINT Routine

L2193: LD A,$03 Printer channel.
JR L2199 Jump ahead.

PRINT Routine

L2197: LD A,$02 Main screen channel.

L2199: RST 28H
DEFW SYNTAX_Z $2530.
JR Z,L21A1 Jump forward if syntax is being checked.
RST 28H
DEFW CHAN_OPEN $1601.

L21A1: RST 28H
DEFW TEMPS $0D4D.
RST 28H
DEFW PRINT_2 $1FDF. Delegate handling to ROM 1.
CALL L18CO "C Nonsense in BASIC" during syntax checking if not at end of line or statement.
RET

INPUT Routine

This routine allows for values entered from the keyboard to be assigned to variables. It is also possible to have print items embedded in the INPUT
statement and these items are printed in the lower part of the display.

L21AB: RST 28H
DEFW SYNTAX_Z $2530.
JR Z,L21B8 Jump forward if syntax is being checked.
LD A,$01 Open channel 'K'.
RST 28H
DEFW CHAN_OPEN $1601.
RST 28H Clear the lower part of the display.
DEFW CLS_LOWER $OD6E. [BUG - This call will re-select channel 'S’ and so should have been called

prior to opening channel 'K'. It is a direct copy of the code that appears in the
standard Spectrum ROM (and ROM 1). It is debatable whether it is better to
reproduce the bug so as to ensure that the INPUT routine operates the same in
128K mode as it does in 48K mode. Credit: Geoff Wearmouth]

L21B8: LD (1Y+$02),$01 TV_FLAG. Signal that the lower screen is being handled. [Not a bug as has been
reported elsewhere. The confusion seems to have arisen due to the incorrect system
variable being originally mentioned in the Spectrum ROM Disassembly by Logan

and O'Hara]
RST 28H
DEFW IN_ITEM_1 $20C1. Call the subroutine to deal with the INPUT items.
CALL L18CO Move on to the next statement if checking syntax.
RST 28H
DEFW INPUT_1+$000A $20A0. Delegate handling to ROM 1.
RET
COPY Routine
L21Cé6: JP LO90F Jump to new COPY routine.

125

SPECTRUM +2 ROM o DISASSEMBLY

NEW Routine
L21C9: DI
JP LO19D Re-initialise the machine.

CIRCLE Routine

This routine draws an approximation to the circle with centre co-ordinates X and Y and radius Z. These numbers are rounded to the nearest integer
before use.

Thus Z must be less than 87.5, even when (X,Y) is in the centre of the screen.

The method used is to draw a series of arcs approximated by straight lines.

L21CD: RST 18H Get character from BASIC line.
CP' $2C. Check for second parameter.
JR NZ,L220A Jump ahead (for error C) if not.
RST 20H Advance pointer into BASIC line.
RST 28H Get parameter.
DEFW EXPT_1NUM $1C82. Radius to calculator stack.
CALL L18CO Move to consider next statement if checking syntax.
RST 28H
DEFW CIRCLE+$000D $232D. Delegate handling to ROM 1.
RET

DRAW Routine

This routine is entered with the co-ordinates of a point X0, YO, say, in COORDS. If only two parameters X, Y are given with the DRAW command, it draws
an approximation to a straight line from the point X0, YO to X0+X, YO+Y.
If a third parameter G is given, it draws an approximation to a circular arc from X0, YO to X0+X, YO+Y turning anti-clockwise through an angle G radians.

L21DD: RST 18H Get current character.
CP" $2C.
JR Z,L21E9 Jump if there is a third parameter.
CALL L18CO Error C during syntax checking if not at end of line/statement.
RST 28H
DEFW LINE_DRAW $2477. Delegate handling to ROM 1.
RET
L21E9: RST 20H Get the next character.
RST 28H
DEFW EXPT_1NUM $1C82. Angle to calculator stack.
CALL L18CO Error C during syntax checking if not at end of line/statement.
RST 28H
DEFW DR_3_PRMS+$0007 $2394. Delegate handling to ROM 1.
RET
DIM Routine

This routine establishes new arrays in the variables area. The routine starts by searching the existing variables area to determine whether there is an
existing array with the same name. If such an array is found then it is ‘reclaimed’ before the new array is established. A new array will have all its elements
set to zero if it is a numeric array, or to 'spaces' if it is an array of strings.

L21F4: RST 28H Search to see if the array already exists.
DEFW LOOK_VARS $28B2.
JR NZ,L220A Jump if array variable not found.
RST 28H
DEFW SYNTAX_Z $2530.
JR NZ,L2206 Jump ahead during syntax checking.
RES 6,C Test the syntax for string arrays as if they were numeric.
RST 28H
DEFW STK_VAR $2996. Check the syntax of the parenthesised expression.
CALL L18CO Error when checking syntax unless at end of line/statement.

126

SPECTRUM +2 ROM o DISASSEMBLY

An 'existing array' is reclaimed.

L2206: RST 28H
DEFW D_RUN $2C15. Delegate handling to ROM 1.
RET

Error Report C — Nonsense in BASIC

L220A: CALL LO5CB Produce error report.
DEFB $0B "C Nonsense in BASIC"

Clear Screen Routine

Clear screen if it is not already clear.

L220E: BIT 0,(1Y+$30) FLAGS?2. Is the screen clear?
RET Z Return if it is.
RST 28H
DEFW CL_ALL $ODAF. Otherwise clear the whole display.
RET

Evaluate Numeric Expression

This routine is called when a numerical expression is typed directly into the editor or calculator.
A numeric expression is any that begins with '(, *-' or '+', or is one of the function keywords, e.g. ABS, SIN, etc, or is the name of a numeric variable.

L2217: LD HL,$FFFE A line in the editing area is considered as line '-2".
LD ($5C45),HL PPC. Signal no current line number.

Check the syntax of the BASIC line

RES 7,(1Y+$01) Indicate 'syntax checking' mode.

CALL L22AD Point to start of the BASIC command line.
RST 28H

DEFW SCANNING $24FB. Evaluate the command line.

BIT 6,(1Y+$01) Is it a numeric value?

JR Z,L.2259 Jump to produce an error if a string result.
RST 18H Get current character.

CP $0D Is it the end of the line?

JR NZ,L2259 Jump if not to produce an error if not.

The BASIC line has passed syntax checking so now execute it

SET 7,(1Y+$01) If so, indicate 'execution’' mode.

CALL L22AD Poaint to start of the BASIC command line.

LD HL,L0321 Set up the error handler routine address.

LD (SYNRET),HL $5B8B.

RST 28H

DEFW SCANNING $24FB. Evaluate the command line.

BIT 6,(1Y+$01) Is it a numeric value?

JR Z,L2259 Jump to produce an error if a string result.

LD DE,LASTV $5B8D. DE points to last calculator value.

LD HL,($5C65) STKEND.

LD BC,$0005 The length of the floating point value.

ORA

SBC HL,BC HL points to value on top of calculator stack.

LDIR Copy the value in the workspace to the top of the calculator stack.

JP L225D [Could have saved 1 byte by using a JR instruction]
L2259: CALL LO5CB Produce error report.

DEFB $19 "Q Parameter error"
L225D: LD A,$0D Make it appear that 'Enter' has been pressed.

127

L2283:

CALL L228E
LD BC,$0001

RST 28H

DEFW BC_SPACES
LD ($5C5B),HL
PUSH HL

LD HL,($5C51)
PUSH HL

LD A $FF

RST 28H

DEFW CHAN_OPEN
RST 28H

DEFW PRINT_FP
POP HL

RST 28H

DEFW CHAN_FLAG
POP DE

LD HL,($5C5B)
AND A

SBC HL,DE

LD A,(DE)

CALL L228E

INC DE

DEC HL

LD AH

ORL

JR NZ,L2283

RET

Process Key Press

L228E:

Find Start of BASIC Command

Point to the start of a typed in BASIC command

PUSH HL
PUSH DE

CALL L1F64

LD HL,$ECOD

RES 3,(HL)

PUSH AF

LD A,$02

RST 28H

DEFW CHAN_OPEN
POP AF

CALL L2688

LD HL,$ECOD

RES 3,(HL)

CALL L1F3F

POP DE

POP HL

RET

and return first character in A.

L22AD:

LD HL,($5C59)
DEC HL

LD ($5C5D),HL
RST 20H

RET

SPECTRUM +2 ROM o DISASSEMBLY

Process key press.

$0030. Create a byte in the workspace.
K_CUR. Address of the cursor.

Save it.

CURCHL. Current channel information.
Save it.

Channel 'R, the workspace.

$1601.

$2DE3. Print a floating point number to the workspace.
Get the current channel information address.

$1615. Set appropriate flags back for the old channel.
DE=Address of the old cursor position.

K_CUR. Address of the cursor.

HL=Length of floating point number.

Fetch the character and make it appear to have been typed.
Process the key press.

Decrement floating point number character count.

Repeat for all characters.

Save registers.

Use Workspace RAM configuration (physical RAM bank 7).
Editor flags.
Reset 'line altered' flag

Main screen

$1601.

Process key press.
Editor flags.

Reset 'line altered' flag

Use Normal RAM Configuration (physical RAM bank 0).
Restore registers.

E_LINE. Get the address of command being typed in.

CH_ADD. Store it as the address of next character to be interpreted.

Get the next character.

128

Is LET Command?

SPECTRUM +2 ROM o DISASSEMBLY

A typed in command resides in the editing workspace.
This function tests whether the text is a single LET command.

Exit: Zero flag set if a single LET command.

L22B6: CALL L22AD
CP $F1
RET NZ
LD HL,($5C5D)
L22BF: LD A,(HL)
INC HL
CP $0D
RET Z
cp
JR NZ,L22BF
ORA
RET

Is Operator Character?

Exit: Zero flag set if character is an operator.

L22CA: LD B,A

LD HL,L22DC
LD A,(HL)
INC HL

ORA

JR Z,L22D8
CcPB

JR NZ,L22CE

L22CE:

Found

LDAB
RET

Not found

L22D8: OR $FF
LDAB
RET

Operator Tokens Table

L22DC: DEFB $2B, $2D, $2A
DEFB $2F, $5E, $3D
DEFB $3E, $3C, $C7
DEFB $C8, $C9, $C5
DEFB $C6

DEFB $00

Is Function Character?
Exit: Zero set if a function token.

L22EA: CP $A5
JR C,L22FC
CP $C4
JR NC,L22FC

Point to start of typed in command.
Isit'LET'?

Return if not with zero flag reset.
CH_ADD. HL points to next character.
Fetch next character.

Has end of line been found?

Return if so with zero flag set.

$3A. Has start of new statement been found?
Loop back if not.

Return zero flag reset indicating a multi-statement

LET command.

Save B.

Start of operator token table.

Fetch character from the table.
Advance to next entry.

End of table?

Jump if end of table reached.

Found required character?

Jump if not to try next character in table.

Restore character to A.

Return with zero flag set to indicate an operator.

Reset zero flag to indicate not an operator.
Restore character to A.

o
|/|'Y|N,’ —t

'>" '<', '<='
'>=' '<>' 'OR'
'AND'

End marker.

'RND". (first 48K token)

Jump ahead if not a token with zero flag reset.
'‘BIN'".

Jump ahead if not a function token.

129

CP $AC

JR Z,L22FC

CP $AD

JR Z,L22FC

CPA

RET
L22FC: CP $A5

RET

SPECTRUM +2 ROM o DISASSEMBLY

'AT".

Jump ahead if not a function token.
'TAB'.

Jump ahead if not a function token.
Return zero flag set if a function token.

Return zero flag set if a function token.

Is Numeric or Function Expression?

Exit: Zero flag set if a numeric or function expression.

L22FF: LD B,A
OR $20
CPa
JR C,L230C
CP Y
L2308: JR NC,L230C
CPA
RET
L.230C: LDAB
cP
RET Z
CALL L2329
JR NZ,L2326
L2315: RST 20H
CALL L2329
JR Z,L2315
cp
RET Z
CPE
RET Z
CP'e
RET Z
JR L22CA
L2326: OR $FF
RET

Is Numeric Character?

Exit: Zero flag set if numeric character.

L2329: CP'0O'
JR C,L2333
Ccp"
JR NC,L2333
CPA
RET

L2333: CP'0O'
RET

PLAY Routine

L2336: LD B,$00
RST 18H
L2339: PUSH BC
RST 28H
DEFW EXPT_EXP
POP BC
INC B
CP'

Fetch character code.

Make lowercase.

$61. Is it 'a' or above?

Jump ahead if not a letter.

$7B. Is it below '{'?

Jump ahead if not.

Character is a letter so return

with zero flag set.

Fetch character code.

$2E. Isit"."?

Return zero flag set indicating numeric.
Is character a number?

Jump ahead if not a number.

Get next character.

Is character a number?

Repeat for next character if numeric.
$2E. Isit".'"?

Return zero flag set indicating numeric.
$45. Is it 'E'?

Return zero flag set indicating numeric.
$65. Is it 'e'?

Return zero flag set indicating numeric.
Jump to test for operator tokens.

Reset the zero flag to indicate non-alphanumeric.

$30. Is it below '0'?
Jump below '0'.
$3A. Is it below ":'?
Jump above '9'

Set zero flag if numeric.
$30. This will cause zero flag to be reset.

String index.

Get string expression.

$2C. A"} indicates another string.

130

JR NZ,L2346

RST 20H

JR L2339
L2346: LDAB

CP $09

JR C,L234F

CALL LO5CB

DEFB $2B

L234F: CALL L18CO
JP LO9A4

SPECTRUM +2 ROM o DISASSEMBLY

Jump ahead if no more.

Advance to the next character.

Loop back.

Check the index.

Maximum of 8 strings (to support synthesisers, drum machines or sequencers).

Produce error report.

"p (c) 1986 Sinclair Research Ltd" [BUG - This should be "Parameter error". The
Spanish 128 produces "p Bad parameter" but to save memory perhaps the UK 128
was intended to use the existing "Q Parameter error" and the change of the error
code byte here was overlooked. In that case it would have had a value of $19. Note
that generation of this error when using the main screen editor will result in a crash.
Credit: Andrew Owen]

Ensure end-of-statement or end-of-line.

Continue with PLAY code.

UNUSED ROUTINES — PART 1

There now follows 513 bytes of routines that are not used by the ROM, from $2355 (ROM 0) to $2555 (ROM 0).
They are remnants of the original Spanish 128's ROM code, although surprisingly they appear in a different order within that ROM.

Return to Editor
[Never called by this ROM]

L2355: LD HL,TSTACK
LD (OLDSP),HL
CALL L1F64
JP L25EA

BC=HL-DE, Swap HL and DE

Exit: BC=HL-DE.
DE=HL, HL=DE.
[Never called by this ROM]

L2361: AND A
SBC HL,DE
LD B,H
LDC,L
ADD HL,DE
EX DE,HL
RET

Create Room for 1 Byte

$5BFF.

$5B81.

Use Workspace RAM configuration (physical RAM bank 7).
Jump ahead to the Editor.

BC=HL-DE.

HL=DE, DE=HL.

Creates a single byte in the workspace, or automatically produces an error ‘4" if not.

[Never called by this ROM]

L2369: LD BC,$0001
PUSH HL
PUSH DE
CALL L2377
POP DE
POP HL
RST 28H
DEFW MAKE_ROOM
RET

Request 1 byte.

Test whether there is space. If it fails this will cause the error

handler in ROM 0 to be called. If MAKE_ROOM were called directly and
and out of memory condition detected then the ROM 1 error handler would
be called instead.

$1655. The memory check passed so safely make the room.

131

SPECTRUM +2 ROM o DISASSEMBLY

Room for BC Bytes?

Test whether there is room for the specified number of bytes in the spare memory, producing error "4 Out of memory" if not. This routine is very similar
to that at $3F66 with the exception that this routine assumes IY points at the system variables.

Entry: BC=Number of bytes required.

Exit : Returns if the room requested is available else an error '4' is produced.

[Called by the routine at $2369 (ROM 0), which is itself never called by this ROM]

L2377: LD HL,($5C65) STKEND.
ADD HL,BC Would adding the specified number of bytes overflow the RAM area?
JR C,L2387 Jump to produce an error if so.
EX DE,HL DE=New end address.
LD HL,$0082 Would there be at least 130 bytes at the top of RAM?
ADD HL,DE
JR C,L2387 Jump to produce an error if not.
SBC HL,SP If the stack is lower in memory, would there still be enough room?
RET C Return if there would.
L2387: LD (1Y+$00),$03 Signal error "4 Out of Memory".
JP L0321 Jump to error handler routine.
HL = A*32
[Called by routines at $23A2 (ROM 0) and $23D7 (ROM 0), which are themselves never called by this ROM]
L238E: ADD AA A*2.
ADD AA A*4. Then multiply by 8 in following routine.
HL = A*8
[Called by the routine at $2400 (ROM 0), which ultimately is itself never called by this ROM]
L2390: LD LA
LD H,$00
ADD HL,HL A*2.
ADD HL,HL A*4,
ADD HL,HL A*8.
RET Return HL=A*8.

Find Amount of Free Space

Exit: Carry flag set if no more space, else HL holds the amount of free space.
[Never called by this ROM]

L2397: LD HL,$0000
ADD HL,SP HL=SP.
LD DE,($5C65) STKEND.
ORA
SBC HL,DE Effectively SP-STKEND, i.e. the amount of available space.
RET

Print Screen Buffer Row

Prints row from the screen buffer to the screen.
Entry: A=Row number.

[Never called by this ROM]

L23A3: RES 0,(1Y-$39) KSTATE+1. Signal do not invert attribute value. [IY+$3B on the Spanish 128]
CALL L238E HL=A*32. Number of bytes prior to the requested row.
PUSH HL Save offset to requested row to print.
LD DE,($FF24) Fetch address of screen buffer.

132

SPECTRUM +2 ROM o DISASSEMBLY

ADD HL,DE Point to row entry.

LD D,H

LD E,L DE=Address of row entry.

EX (SP),HL Stack address of row entry. HL=Offset to requested row to print.

PUSH HL Save offset to requested row to print.

PUSH DE Save address of row entry.

LD DE,$5800 Attributes file.

ADD HL,DE Point to start of corresponding row in attributes file.

EX DE,HL DE=Start address of corresponding row in attributes file.

POP HL HL=Address of row entry.

LD BC,$0020 32 columns.

LD A,($5C8F) ATTR_T. Fetch the temporary colours.

CALL L24BA Set the colours for the 32 columns in this row, processing any colour control codes
from the print string.

POP HL HL=Offset to requested row to print.

LD AH

LD H,$00 Calculate corresponding display file address.

ADD AA

ADD AA

ADD AA

ADD A,$40

LDD,A

LD E,H

ADD HL,DE

EX DE,HL DE=Display file address.

POP HL HL=Offset to requested row to print.

LD B,$20 32 columns.

JP L2400 Print one row to the display file.

Blank Screen Buffer Content

Sets the specified number of screen buffer positions from the specified row to $FF.
Entry: A=Row number.
BC=Number of bytes to set.

[Never called by this ROM]

L23D7: LD D,$FF The character to set the screen buffer contents to.
CALL L238E HL=A*32. Offset to the specified row.
LD A,D
LD DE,($FF24) Fetch the address of the screen buffer.
ADD HL,DE HL=Address of first column in the requested row.
LDE,L
LD D,H
INC DE DE=Address of second column in the requested row.
LD (HL),A Store the character.
DEC BC
LDIR Repeat for all remaining bytes required.
RET

Print Screen Buffer to Display File
[Never called by this ROM]

L23EA:

CALL L24A7
LD DE,$4000
LD HL,($FF24)
LD B,E

Set attributes file from screen buffer.
DE=First third of display file.

Fetch address of screen buffer.
Display 256 characters.

CALL L2400 Display string.

LD D,$48 Middle third of display file.
CALL L2400 Display string.

LD D,$50 Last third of display file.
LD B,$CO Display 192 characters.

133

SPECTRUM +2 ROM o DISASSEMBLY

Print Screen Buffer Characters to Display File

Displays ASCII characters, UDGs, graphic characters or two special symbols in the display file, but does not alter the attributes file. Character code $FE
is used to represent the error marker bug symbol and the character code $FF is used to represent a null, which is displayed as a space.
Entry: DE=Display file address.
HL=Points to string to print.
B=Number of characters to print.
[Used by routine at $23EA (ROM 0) and called by the routine at $23A2 (ROM 0), both of which are themselves never called by this ROM]

L2400: LD A,(HL) Fetch the character.
PUSH HL Save string pointer.
PUSH DE Save display file address.
CP $FE Was if $FE (bug) or $FF (null)?
JR C,L240B Jump ahead if not.
SUB $FE Reduce range to $00-$01.
JR L2441 Jump ahead to show symbol.

Comes here if character code if below $FE

L240B: CP $20
JR NC,L2416

Comes here if a control character

Is it a control character?
Jump ahead if not.

LD HL,L2546 Graphic for a 'G' (not a normal G though). Used to indicate embedded colour control
codes.
AND A Clear the carry flag to indicate no need to switch back to RAM bank 7.
EX AF,AF' Save the flag.
JR L244A Jump ahead to display the symbol.
L2416: CP $80 Is it a graphic character or UDG?
JR NC,L2428 Jump ahead if so.

Comes here if an ASCII character

CALL L2390 HL=A*8.

LD DE,($5C36) CHARS.

ADD HL,DE Point to the character bit pattern.

POP DE Fetch the display file address.

CALL $FF28 Copy character into display file (via RAM Routine). Can't use routine at $244B (ROM
0) since it does not perform a simple return.

JR L246F Continue with next character.

Comes here if a graphic character or UDG

L2428: CP $90
JR NC,L2430

Comes here if a graphic character

SUB $7F
JR L2441

Comes here if a UDG

Is it a graphic character?
Jump ahead if not.

Reduce range to $01-$10.
Jump ahead to display the symbol.

L2430: SUB $90 Reduce range to $00-$6D.
CALL L2390 HL=A*8.
POP DE Fetch display file address.
CALL L1F3F Use Normal RAM Configuration (RAM bank 0) to allow access to character bit
patterns.
PUSH DE Save display file address.
LD DE,($5C7B) UDG. Fetch address of UDGs.
SCF Set carry flag to indicate need to switch back to RAM bank 7.
JR L2448 Jump ahead to locate character bit pattern and display the symbol.

134

SPECTRUM +2 ROM o DISASSEMBLY

Come here if (HL) was $FE or $FF, or with a graphic character.
At this point A=$00 if (HL) was $FE indicating a bug symbol, or $01 if (HL) was $FF indicating a null, or A=$01-$10 if a graphic character.

L2441: LD DE,L254E
CALL L2390
AND A

L2448: EX AF,AF'
ADD HL,DE

L244A: POP DE

Start address of the graphic character bitmap table.

HL=A*8 -> $0000 or $0008.

Clear carry flag to indicate no need to switch back to RAM bank 7.
Save switch bank indication flag.

Point to the symbol bit pattern data.

Fetch display file address. Drop through into routine below.

Copy A Character « RAM Routine »
Routine copied to RAM at $FF36-$FF55 by subroutine at $248E (ROM 0).

Also used in ROM from above routine.

This routine copies 8 bytes from HL to DE. It increments HL and D after each byte, restoring D afterwards.

It is used to copy a character into the display file.
Entry: HL=Character data.
DE=Display file address.

[Called by a routine that is itself never called by this ROM]

L244B: LDC,D
LD A,(HL)
LD (DE),A
INC HL
INC D
LD A,(HL)
LD (DE),A
INC HL
INC D
LD A,(HL)
LD (DE),A
INC HL
INC D
LD A,(HL)
LD (DE),A
INC HL
INC D
LD A,(HL)
LD (DE),A
INC HL
INC D
LD A,(HL)
LD (DE),A
INC HL
INC D
LD A,(HL)
LD (DE),A
INC HL
INC D
LD A,(HL)
LD (DE),A
LDD,C

Save D.

Copy byte 1.

Copy byte 2.

Copy byte 3.

Copy byte 4.

Copy byte 5.

Copy byte 6.

Copy byte 7.

Copy byte 8.
Restore D. « Last byte copied to RAM »

When the above routine is used in ROM, it drops through to here.

L246B: EX AF,AF'
CALL C,L1F64
L246F: POP HL
INC HL
INC DE
DJNZ L2400
RET

Need to switch back to RAM bank 77?

If so then switch to use Workspace RAM configuration (physical RAM bank 7).
Fetch address of string data.

Move to next character.

Advance to next display file column.

Repeat for all requested characters.

135

SPECTRUM +2 ROM o DISASSEMBLY

Toggle ROMs 1 « RAM Routine »

Routine copied to RAM at $FF28-$FF35 by subroutine at $248E (ROM 0).
This routine toggles to the other ROM than the one held in BANK_M.
Entry: A'= Current paging configuration.

[Called by a routine that is itself never called by this ROM]

L2475: PUSH BC Save BC
DI Disable interrupts whilst paging.
LD BC,$7FFD
LD A,(BANK_M) $5B5C. Fetch current paging configuration.
XOR $10 Toggle ROMs.
OuT (C),A Perform paging.
El Re-enable interrupts.
EX AF,AF' Save the new configuration in A'. « Last byte copied to RAM »

Toggle ROMs 2 « RAM Routine »

Routine copied to RAM at $FF56-$FF60 by subroutine at $248E (ROM 0).
This routine toggles to the other ROM than the one specified.

It is used to page back to the original configuration.

Entry: A'= Current paging configuration.

[Called by a routine that is itself never called by this ROM]

L2483: EX AF,AF' Retrieve current paging configuration.
DI Disable interrupts whilst paging.
LD C,$FD Restore Paging I/O port number.
XOR $10 Toggle ROMs.
OUT (C),A Perform paging.
El Re-enable interrupts.
POP BC Restore BC.
RET « Last byte copied to RAM »

Construct 'Copy Character' Routine in RAM

This routine copies 3 sections of code into RAM to construct a single routine that can be used to copy the bit pattern for a character into the display file.
Copy $2475-$2482 (ROM 0) to $FF28-$FF35 (14 bytes).

Copy $244B-$246A (ROM 0) to $FF36-$FF55 (32 bytes).

Copy $2483-$248D (ROM 0) to $FF56-$FF60 (11 bytes).

[Never called by this ROM]

L248E: LD HL,L2475 Point to the 'page in other ROM' routine.
LD DE,$FF28 Destination RAM address.
LD BC,$000E
LDIR Copy the routine.
PUSH HL
LD HL,L244B Copy a character routine.
LD C,$20
LDIR Copy the routine.
POP HL HL=$2483 (ROM 0), which is the address of the 'page back to original ROM' routine.
LD C,$0B
LDIR Copy the routine.
RET

Set Attributes File from Screen Buffer

This routine parses the screen buffer string contents looking for colour control codes and changing the attributes file contents correspondingly.
[Called by the routine at $23EA (ROM 0), which is itself never called by this ROM]

L24AT7: RES 0,(1Y-$39) KSTATE+1. Signal do not invert attribute value. [Spanish 128 uses 1Y-$3B]
LD DE,$5800 The start of the attributes file.

136

LD BC,$02C0
LD HL,($FF24)
LD A,($5C8D)
LD ($5C8F),A

SPECTRUM +2 ROM o DISASSEMBLY

22 rows of 32 columns.

The address of the string to print.
ATTR_P.

ATTR_T. Use the permanent colours.

Set Attributes for a Screen Buffer Row

L24BA:

The main loop returns here on each iteration

L24BB:

EX AF,AF'

PUSH BC

LD A,(HL)

CP $FF

JR NZ,L24C9
LD A,($5C8D)
LD (DE),A
INC HL

INC DE

JR L2526

Not a blank character

L24C9:

EX AF,AF'
LD (DE),A
INC DE

EX AF,AF'
INC HL

CP $15

JR NC,L2526
CP $10

JR C,L2526

Save the colour byte.

Save the number of characters.

Fetch a character from the buffer.

Is it blank?

Jump ahead if not.

ATTR_P. Get the default colour byte.
Store it in the attributes file.

Point to next screen buffer position.

Point to next attributes file position.

Jump ahead to handle the next character.

Get the colour byte.

Store it in the attributes file.

Point to the next attributes file position.
Save the colour byte.

Point to the next screen buffer position.
Is the string character OVER or above?
Jump if it is to handle the next character.
Is the string character below INK?

Jump if it is to handle the next character.

Screen buffer character is INK, PAPER, FLASH, BRIGHT or INVERSE.

DEC HL
JR NZ,L24E1

Point back to the previous screen buffer position.
Jump if not INK.

Screen character was INK so insert the new ink into the attribute byte.

L24E1:

INC HL
LD A,(HL)

LD CA

EX AF AF'
AND $F8

JR L2524
CP $11

JR NZ,L24F0

Point to the next screen buffer position.

Fetch the ink colour from the next screen buffer position.

and store itin C.

Get the colour byte.

Mask off the ink bits.

Jump ahead to store the new attribute value and then to handle the next character.
Is the string character PAPER?

Jump ahead if not.

Screen character was PAPER so insert the new paper into the attribute byte.

L24FO0:

INC HL
LD A,(HL)
ADD A A
ADD A A
ADD A A

LD CA

EX AF AF'
AND $C7

JR L2524

CP $12

JR NZ,L24FD

Point to the next screen buffer position.
Fetch the paper colour from the next screen buffer position.

Multiple by 8 so that ink colour become paper colour.

Get the colour byte.

Mask off the paper bits.

Jump ahead to store the new attribute value and then to handle the next character.
Is the string character FLASH?

Jump ahead if not.

137

Screen character was FLASH

L24FD:

INC HL
LD A,(HL)
RRCA

LD CA

EX AF,AF'
AND $7F

JR L2524
CP $13

JR NZ,L250B

Screen character was BRIGHT

L250B:

Screen character was INVERSE

L2524:

L2526:

INC HL
LD A,(HL)
RRCA
RRCA
LDC.A
EX AF,AF'
AND $BF
JR L2524
CP $14
INC HL
JR NZ,L2526

LD C,(HL)

LD A,($5C01)
XOR C

RRA

JR NC,L2526
LD A,$01
XOR (IY-$39)
LD ($5C01),A
EX AF,AF'
CALL L2532
ORC

EX AF,AF'
POP BC
DEC BC
LDAB

ORC

JP NZ,L24BB
EX AF,AF'
LD ($5C8F),A
RET

SPECTRUM +2 ROM o DISASSEMBLY

Point to the next screen buffer position.
Fetch the flash status from the next screen buffer position.
Shift the flash bit into bit 0.

Get the colour byte.

Mask off the flash bit.

Jump ahead to store the new attribute value and then to handle the next character.
Is the string character BRIGHT?

Jump ahead if not.

Point to the next screen buffer position.
Fetch the bright status from the next screen buffer position.

Shift the bright bit into bit 0.

Get the colour byte.

Mask off the bright bit.

Jump ahead to store the new attribute value and then to handle the next character.
Is the string character INVERSE?

Point to the next screen buffer position.

Jump ahead if not to handle the next character.

Fetch the inverse status from the next screen buffer position.
KSTATE+1. Fetch inverting status (Bit 0 is O for non-inverting, 1 for inverting).
Invert status.

Shift status into the carry flag.

Jump if not inverting to handle the next character.

Signal inverting is active.

KSTATE+1. Toggle the status.

KSTATE+1. Store the new status.

Get the colour byte.

Swap ink and paper in the colour byte.

Combine the old and new colour values.

Save the new colour byte.

Fetch the number of characters.

Repeat for all characters.
Get colour byte.
ATTR_T. Make it the new temporary colour.

Swap Ink and Paper Attribute Bits

Entry:
Exit :

A=Attribute byte value.
A=Attribute byte value with paper and ink bits swapped.

[Called by the routine at $24A7 (ROM 0), which is itself never called by this ROM]

L2532:

LD B,A
AND $CO
LDCA
LDAB
ADD AA
ADD AA
ADD A A
AND $38
ORC

Save the original colour byte.
Keep only the flash and bright bits.

Shift ink bits into paper bits.

Keep only the paper bits.
Combine with the flash and bright bits.

138

LD CA
LDAB
RRA
RRA
RRA
AND $07
ORC
RET

Character Data

Graphic control code indicator

L2546: DEFB $00
DEFB $3C
DEFB $62
DEFB $60
DEFB $6E
DEFB $62
DEFB $3E
DEFB $00

Error marker

L254E: DEFB $00
DEFB $6C
DEFB $10
DEFB $54
DEFB $BA
DEFB $38
DEFB $54
DEFB $82

« End of Unused ROM Routines »
KEY ACTION TABLES

Editing Keys Action Table

SPECTRUM +2 ROM o DISASSEMBLY

Get the original colour byte.

Shift the paper bits into the ink bits.
Keep only the ink bits.
Add with the paper, flash and bright bits.

0000OO0OO0OO0O
00111100 XXXX
01100010 XX X
01100000 XX
01101110 XX XXX
01100010 XX X
00111110 XXXX
0000O0OO0OO0CO
0000OO0OO0OO0O
01101100 XX XX
00010000 X
01010100 X X X
10111010 X XXX X
00111000 XXX
01010100 X X X
10000010 X X

Each editing key code maps to the appropriate handling routine.

This includes those keys which mirror the functionality of the add-on keypad; these are found by trapping the keyword produced by the keystrokes in

48K mode.

[Surprisingly there is no attempt to produce an intelligible layout instead the first 16 keywords have been used. Additionally the entries for DELETE and

ENTER should probably come in the first six entries for efficiency reasons.]

L2556: DEFB $15
DEFB $0B
DEFW L2ABA
DEFB $0A
DEFW L2ADB
DEFB $08
DEFW L2AFD
DEFB $09
DEFW L2B09
DEFB $AD
DEFW L2A75
DEFB $AC
DEFW L2A4B
DEFB $AF
DEFW L29FA
DEFB $AE
DEFW L2A07
DEFB $A6

Number of table entries.

Key code: Cursor up.

CURSOR-UP handler routine.

Key code: Cursor Down.
CURSOR-DOWN handler routine.
Key code: Cursor Left.
CURSOR-LEFT handler routine.
Key code: Cursor Right.
CURSOR-RIGHT handler routine.
Key code: Extend Mode + P.
TEN-ROWS-UP handler routine.
Key code: Symbol Shift + I.
TEN-ROWS-DOWN handler routine.
Key code: Extend Mode + .
WORD-LEFT handler routine.

Key code: Extend Mode + Shift + J.
WORD-RIGHT handler routine.

Key code: Extend Mode + N, or Graph + W.

139

DEFW L29A9
DEFB $A5
DEFW L29D1
DEFB $A8
DEFW L2AAD
DEFB $A7
DEFW L2AA0
DEFB $AA
DEFW L2941
DEFB $0C
DEFW L2951
DEFB $B3
DEFW L303D
DEFB $B4
DEFW L2FE2
DEFB $B0
DEFW L3098
DEFB $B1
DEFW L3064
DEFB $0D
DEFW L296A
DEFB $A9
DEFW L26BA
DEFB $07
DEFW L2723

Menu Keys Action Table

SPECTRUM +2 ROM o DISASSEMBLY

TOP-OF-PROGRAM handler routine.

Key code: Extend Mode + T, or Graph + V.
END-OF-PROGRAM handler routine.

Key code: Extend Mode Symbol Shift + 2, or Graph Y.
START-OF-LINE handler routine.

Key code: Extend Mode + M, or Graph + X.
END-OF-LINE handler routine.

Key code: Extend Mode + Shift + K.
DELETE-RIGHT handler routine.

Key code: Delete.

DELETE handler routine.

Key code: Extend Mode + W.
DELETE-WORD-RIGHT handler routine.
Key code: Extend Mode + E.
DELETE-WORD-LEFT handler routine.

Key code: Extend Mode + J.
DELETE-TO-END-OF-LINE handler routine.
Key code: Extend Mode + K.
DELETE-TO-START-OF-LINE handler routine.
Key code: Enter.

ENTER handler routine.

Key code: Extend Mode + Symbol Shift + 8, or Graph + Z.

TOGGLE handler routine.
Key code: Edit.
MENU handler routine.

Each menu key code maps to the appropriate handling routine.

L2596: DEFB $04
DEFB $0B
DEFW L274D
DEFB $0A
DEFW L2750
DEFB $07
DEFW L2736
DEFB $0D
DEFW L2736

Number of entries.

Key code: Cursor up.

MENU-UP handler routine.

Key code: Cursor down.
MENU-DOWN handler routine.
Key code: Edit.

MENU-SELECT handler routine.
Key code: Enter.
MENU-SELECT handler routine.

MENU ROUTINES — PART 3

Initialise Mode Settings

Called before Main menu displayed.

L25A3: CALL L28E4 Reset Cursor Position.
LD HL,$0000 No top line.
LD ($FC9A),HL Line number at top of screen.
LD A,$82 Signal waiting for key press, and menu is displayed.
LD ($ECOD),A Store the Editor flags.
LD HL,$0000 No current line number.
LD ($5C49),HL E_PPC. Current line number.
CALL L35E2 Reset indentation settings.
CALL L3684 Reset to ‘L' Mode
RET [Could have saved one byte by using JP $3684 (ROM 0)]

Show Main Menu

L25BE: LD HL,TSTACK $5BFF.
LD (OLDSP),HL $5B81.

140

L25CC:

CALL L1F64
LD A,$02

RST 28H

DEFW CHAN_OPEN
LD HL,L2763

LD ($F6EA),HL

LD HL,L2770

LD ($F6EC),HL
PUSH HL

LD HL,$ECOD

SET 1,(HL)

RES 4,(HL)

DEC HL

LD (HL),$00

POP HL

CALL L36CE

JP L2672

SPECTRUM +2 ROM o DISASSEMBLY

Use Workspace RAM configuration (physical RAM bank 7).
Select main screen.

$1601.

Jump table for Main Menu.

Store current menu jump table address.
The Main Menu text.

Store current menu text table address.
Store address of menu on stack.

Editor flags.

Indicate 'menu displayed'.

Signal return to main menu.

Current menu index.

Select top entry.

Retrieve address of menu.

Display menu and highlight first item.
Jump ahead to enter the main key waiting and processing loop.

EDITOR ROUTINES — PART 2

Return to Editor / Calculator / Menu from Error

L25EA:

L2602:

LD IX,$FD6C
LD HL,TSTACK
LD (OLDSP),HL
CALL L1F64
LD A,$02

RST 28H
DEFW CHAN_OPEN
CALL L368E
LD HL,$5C3B
BIT 5,(HL)

JR Z,L.2602

LD HL,$ECOD
RES 3,(HL)

BIT 6,(HL)

JR NZ,L2623
LD A,(3ECOE)
CP $04

JR Z,L2620

CP $00

JP NZ,L28ED

Edit menu Print mode

Calculator mode

L2620:

CALL L386E
JR L2623

CALL L3873

Return to the Editor

Either as the result of a re-listing, an error or from completing the Edit Menu Print option.

[BUG - Occurs only with ZX Interface 1 attached and a BASIC line such as 1000 OPEN #4, "X" (the line number must be greater than 999). This produces
the error message "Invalid device expression, 1000:1" but the message is too long to fit on a single line. When using the lower screen for editing, spurious
effects happen to the bottom lines. When using the full screen editor, a crash occurs. Credit: Toni Baker, ZX Computing Monthly] [The bug is caused
by system variable DF_SZ being increased to 3 as a result of the error message spilling onto an extra line. The error can be resolved by inserting a LD

Point IX at editing settings information.

$5BFF.

$5B81.

Use Workspace RAM configuration (physical RAM bank 7).

$1601. Select main screen.

Reset 'L' mode.

FLAGS.

Has a key been pressed?

Wait for a key press.

Editor flags.

Signal line has not been altered.

Is editing area the lower screen?

If so then skip printing a banner and jump ahead to return to the Editor.
Fetch mode.

Calculator mode?

Jump ahead if so.

Edit Menu mode?

Jump if not to re-display Main menu.

Clear screen and print "128 BASIC" in the banner line.
Jump ahead to return to the Editor.

Clear screen and print "Calculator" in the banner line.

(I'Y+%$31),$02 instruction at $2623 (ROM 0). Credit: Paul Farrow]

141

L2623:

Calculator mode

CALL L30FC
CALL L3248
LD A,(3ECOE)
CP $04

JR Z,L2672

LD HL,($5C49)
LD AH

ORL

JR NZ,L264C
LD HL,($5C53)
LD BC,($5C4B)
AND A

SBC HL,BC

JR NZ,L2649

No program exists

L2649:
L264C:

LD HL,$0000
LD ($EC08),HL
LD HL,($EC08)
CALL L1F3F
RST 28H

DEFW LINE_ADDR

RST 28H
DEFW LINE_NO
CALL L1F64

LD ($5C49),DE
LD HL,$ECOD
BIT 5,(HL)

JR NZ,L2672
LD HL,$0000
LD ($EC06),HL
CALL L154E
CALL L2A18
CALL L296A

Main Waiting Loop

Enter a loop to wait for a key press. Handles key presses for menus, the Calculator and the Editor.

L2672:

LD SP,TSTACK
CALL L368E
CALL L36A5

PUSH AF
LD A,($5C39)
CALL L270B
POP AF
CALL L2688
JR L2672

Process Key Press

Handle key presses for the menus and the Editor.

Entry: A=Key code.
Zero flag set if a menu is being displayed.

L2688:

LD HL,$ECOD
BIT 1,(HL)
PUSH AF

SPECTRUM +2 ROM o DISASSEMBLY

Reset Below-Screen Line Edit Buffer settings to their default values.
Reset Above-Screen Line Edit Buffer settings to their default values.
Fetch the mode.

Calculator mode?

Jump ahead if not to wait for a key press.

E_PPC. Fetch current line number.

Is there a current line number?

Jump ahead if so.

PROG. Address of start of BASIC program.
VARS. Address of start of variables area.

HL=Length of program.
Jump if a program exists.

Set no line number last edited.

Fetch line number of last edited line.

Use Normal RAM Configuration (physical RAM bank 0).
Find address of line number held in HL, or the next line if it does not exist.
$196E. Return address in HL.

Find line number for specified address, and return in DE.
$1695. Fetch the line number for the line found.

Use Workspace RAM configuration (physical RAM bank 7).
E_PPC. Save the current line number.

Editor flags.

Process the BASIC line?

Jump ahead if calculator mode.

Signal no editable characters in the line prior to the cursor.
Relist the BASIC program.

Set attribute at editing position so as to show the cursor.
Call the ENTER handler routine.

$5BFF. Use temporary stack.

Reset 'L' mode.

Wait for a key. [Note that it is possible to change CAPS LOCK mode whilst on a
menu]

Save key code.

PIP. Tone of keyboard click.

Produce a key click noise.

Retrieve key code.

Process the key press.

Wait for another key.

Editor flags.
Is a menu is displayed?
Save key code and flags.

142

LD HL,L2596

JR NZ,L2696

LD HL,L2556
L2696: CALL L3F75

JR NZ,L26A0

CALL NC,L2706

POP AF

RET

No action defined for key code

L26A0: POP AF
JR Z,L26A8

SPECTRUM +2 ROM o DISASSEMBLY

Use menu keys lookup table.

Jump if menu is being displayed.

Use editing keys lookup table.

Find and call the action handler for this key press.
Jump ahead if no match found.

If required then produce error beep.

Restore key code.

Restore key code and flags.
Jump if menu is not being displayed.

A menu is being displayed, so just ignore key press

XOR A
LD ($5C41),A
RET

A menu is not being displayed
L26A8: LD HL,$ECOD
BIT O,(HL)
JR Z,L26B3
The buffer is full so ignore the key press
CALL L2706
RET

L26B3: CP $A3
JR NC,L2672

JP L2917

TOGGLE Key Handler Routine

Select 'L' mode.
MODE.

Editor flags.
Is the Screen Line Edit Buffer is full?
Jump if not to process the key code.

Produce error beep.

[Could have save a byte by using JP $2706 (ROM 0)]

Was it a supported function key code?

Ignore by jumping back to wait for another key. [BUG - This should be RET NC
since it was called from the loop at $2672 (ROM 0). Repeatedly pressing an
unsupported key will result in a stack memory leak and eventual overflow. Credit:
John Steven (+3), Paul Farrow (128)]

Jump forward to handle the character key press.

Toggle between editing in the lower and upper screen areas.

Also used by the editing menu SCREEN option.

L26BA: LD A,($ECOE)
CP $04
RET Z
CALL L164F
LD HL,$ECOD
RES 3,(HL)
LD A,(HL)
XOR $40
LD (HL),A
AND $40
JR Z,L26D5
CALL L26DA
JR L26D8
L26D5: CALL L26ED
L26D8: SCF
RET

Select Lower Screen

Set the lower screen as the editing area.

Fetch mode.

Calculator mode?

Return if so (TOGGLE has no effect in Calculator mode).
Clear Editing Display.

Editor flags.

Reset 'line altered' flag.

Toggle screen editing area flag.

Jump forward if the editing area is now the upper area.
Set the lower area as the current editing area.

Jump forward.

Set the upper area as the current editing area.

Signal do not produce an error beep.

143

SPECTRUM +2 ROM o DISASSEMBLY

L26DA: CALL L38A2 Clear lower editing area display.
LD HL,$ECOD Editor flags.
SET 6,(HL) Signal using lower screen.
CALL L2E53 Reset to lower screen.
CALL L3AA9 Set default lower screen editing cursor settings.
CALL L2905 Set default lower screen editing settings.
JR L26F8 Jump ahead to continue.

Select Upper Screen

Set the upper screen as the editing area.

L26ED: LD HL,$ECOD Editor flags.
RES 6,(HL) Signal using main screen.
CALL L28E4 Reset Cursor Position.
CALL L386E Clear screen and print the "128 BASIC" banner line.
L26F8: LD HL,($FC9A) Line number at top of screen.
LD AH
OR L Is there a line?
CALL NZ,L3370 If there is then get the address of BASIC line for this line number.
CALL L154E Relist the BASIC program.
JP L2A18 Set attribute at editing position so as to show the cursor, and return.

Produce Error Beep

This is the entry point to produce the error beep, e.g. when trying to cursor up or down past the BASIC program.

It produces a different tone and duration from the error beep of 48K mode. The change is pitch is due to the SRL A instruction at $2709 (ROM 0), and the
change in duration is due to the instruction at $2710 (ROM 0) which loads HL with $0C80 as opposed to $1A90 which is used when in 48K mode. The key
click and key repeat sounds are produced by entering at $270B (ROM 0) but with A holding the value of system variable PIP. This produces the same tone
as 48K mode but is of a much longer duration due to HL being loaded with $0C80 as opposed to the value of $00C8 used in 48K mode. The Spanish 128
uses the same key click tone and duration in 128K mode as it does in 48K mode, leading to speculation that the Spectrum 128 (and subsequent models)
should have done the same and hence suffer from a bug. However, there is no reason why this should be the case, and it can easily be imagined that the
error beep note duration of 48K mode would quickly become very irritating when in 128K mode where it is likely to occur far more often. Hence the reason
for its shorter duration. The reason for the longer key click is less clear, unless it was to save memory by using a single routine. However, it would only
have required an additional 3 bytes to set HL independently for key clicks, which is not a great deal considering there is 1/2K of unused routines at $2355
(ROM 0). Since the INPUT command is handled by ROM 1, it produces key clicks at the 48K mode duration even when executed from 128 BASIC mode.

L2706: LD A,($5C38) RASP.
SRL A Divide by 2.

This entry point is called to produce the key click tone. In 48K mode, the key click sound uses an HL value of $00C8 and so is 16 times shorter than
in 128K mode.

L270B: PUSH IX
LD D,$00 Pitch.
LD E,A
LD HL,$0C80 Duration.
L2713: RST 28H
DEFW BEEPER $03B5. Produce a tone.
POP IX
RET

Produce Success Beep

L2719: PUSH IX
LD DE,$0030 Frequency*Time.
LD HL,$0300 Duration.
JR L2713 Jump to produce the tone.

144

SPECTRUM +2 ROM o DISASSEMBLY

MENU ROUTINES — PART 4

Menu Key Press Handler Routines

Menu Key Press Handler — MENU

This is executed when the EDIT key is pressed, either from within a menu or from the BASIC editor.

L2723: CALL L2A12 Remove cursor, restoring old attribute.
LD HL,$ECOD HL points to Editor flags.
SET 1,(HL) Signal 'menu is being displayed'.
DEC HL HL=$ECOC.
LD (HL),$00 Set 'current menu item' as the top item.
L272E: LD HL,($F6EC) Address of text for current menu.
CALL L36CE Display menu and highlight first item.
SCF Signal do not produce an error beep.
RET

Menu Key Press Handler — SELECT

L2736: LD HL,$ECOD HL points to Editor flags.
RES 1,(HL) Clear 'displaying menu' flag.
DEC HL HL=$ECOC.
LD A,(HL) A=Current menu option index.
LD HL,($F6EA) HL points to jump table for current menu.
PUSH HL
PUSH AF
CALL L3764 Restore menu screen area.
POP AF
POP HL
CALL L3F75 Call the item in the jump table corresponding to the currently selected menu item.
JP L2A18 Set attribute at editing position so as to show the cursor, and return.

Menu Key Press Handler — CURSOR UP

L274D: SCF Signal move up.
JR L2751 Jump ahead to continue.

Menu Key Press Handler — CURSOR DOWN

L2750: AND A Signal moving down.
L2751: LD HL,$ECOC
LD A,(HL) Fetch current menu index.
PUSH HL Save it.
LD HL,($F6EC) Address of text for current menu.
CALL C,L37CD Call if moving up.
CALL NC,L37DC Call if moving down.
POP HL HL=Address of current menu index store.
LD (HL),A Store the new menu index.

Comes here to complete handling of Menu cursor up and down. Also as the handler routines for Edit Menu return to 128 BASIC option and Calculator
menu return to Calculator option, which simply make a return.

L2761: SCF
RET

145

Menu Tables

Main Menu
Jump table for the main 128K menu, referenced at $25CC (ROM 0).

L2763:

DEFB $04
DEFB $00
DEFW L2857
DEFB $01
DEFW L2892
DEFB $02
DEFW L28AB
DEFB $03
DEFW L1B66

Text for the main 128K menu

L2770:

L277A:

L2785:

L278E:

Edit Menu

DEFB $05
DEFM "128 "
DEFB $FF

DEFM "Tape Loade"

DEFB 'r'+$80
DEFM "128 BASI"
DEFB 'C'+$80
DEFM “Calculato"
DEFB 'r'+$80
DEFM "48 BASI"
DEFB 'C'+$80
DEFB ' '+$80

Jump table for the Edit menu

L27A1:

DEFB $05
DEFB $00
DEFW L2761
DEFB $01
DEFW L2877
DEFB $02
DEFW L283D
DEFB $03
DEFW L2888
DEFB $04
DEFW L2842

Text for the Edit menu

L27B1:

DEFB $06

DEFM "Options "
DEFB $FF

DEFM "128 BASI"
DEFB 'C'+$80
DEFM "Renumbe"
DEFB 'r'+$80
DEFM "Scree"
DEFB 'n'+$80
DEFM "Prin"
DEFB 't'+$80
DEFM "Exi"
DEFB 't'+$80

SPECTRUM +2 ROM o DISASSEMBLY

Number of entries.

Tape Loader option handler.
128 BASIC option handler.
Calculator option handler.

48 BASIC option handler.

Number of entries.
Menu title.

$A0. End marker.

Number of entries.

(Return to) 128 BASIC option handler.
Renumber option handler.

Screen option handler.

Print option handler.

Exit option handler.

Number of entries.

146

DEFB ' '+$80

Calculator Menu

Jump table for the Calculator menu

L27DC: DEFB $02
DEFB $00
DEFW L2761
DEFB $01

DEFW L2842
Text for the Calculator menu

L27E3: DEFB 03

DEFM "Options "
DEFB $FF

DEFM "Calculato"
DEFB 'r'+$80
DEFM "Exi"
DEFB 't'+$80
DEFB ' '+$80

Tape Loader Text

L27FC: DEFB $16,$00,$00

DEFB $10, $00

DEFB $11, $07

DEFB $13, $00

DEFM "Insert tape and press
PLAY"

DEFB $0D

DEFM "To cancel - press BREAK

twic"
DEFB 'e'+$80

Menu Handler Routines

Edit Menu — Screen Option

L283D: CALL L26BA

JR L289A

Edit Menu / Calculator Menu —

L2842: LD HL,$ECOD
RES 6,(HL)
CALL L28E4
LD B,$00

LD D,$17
CALL L3B7F
CALL L1F3F

JP L25BE

SPECTRUM +2 ROM o DISASSEMBLY

$A0. End marker.

Number of entries.
(Return to) Calculator option handler.

Exit option handler.

Number of entries.

$A0. End marker.

AT 0,0
INK 0
PAPER 7
BRIGHT 1

Toggle between editing in the lower and upper screen areas.
Jump ahead.

Exit Option

Editor flags.

Indicate main screen editing.

Reset Cursor Position.

Top row to clear.

Bottom row to clear.

Clear specified display rows.

Use Normal RAM Configuration (physical RAM bank 0).
Jump back to show the menu.

147

SPECTRUM +2 ROM o DISASSEMBLY

Main Menu — Tape Loader Option

L2857:

Edit Menu

L2877:

Edit Menu — Print Option

L2888:

Edit Menu - Renumber option joins here

L288B:

L2892:

CALL L3878
LD HL,$5C3C
SET 0,(HL)
LD DE,L27FC
CALL L059C
RES 0,(HL)
SET 6,(HL)

LD A,$07

LD ($ECOE),A
LD BC,$0000
CALL L3751
JP L1B10

— Renumber Option

CALL L38A9
CALL NC,L2706
LD HL,$0000
LD ($5C49),HL
LD ($EC08),HL
JR L288B

CALL L1B33

LD HL,$ECOD
BIT 6,(HL)

JR NZ,L289A
LD HL,$5C3C
RES 0,(HL)
CALL L386E

Edit Menu - Screen option joins here

L289A:

LD HL,$ECOD
RES 5,(HL)
RES 4,(HL)
LD A,$00

LD HL,L27A1
LD DE,L27B1
JR L28D7

Clear screen and print "Tape Loader" in the banner line.

TVFLAG.

Signal using lower screen area.

Point to message "Insert tape and press PLAY. To cancel - press BREAK twice".
Print the text.

Signal using main screen area.

[This bit is unused in the 48K Spectrum and only ever set in 128K mode via the
Tape Loader option. It is never subsequently tested or reset. It may have been the
intention to use this to indicate that the screen requires clearing after loading to
remove the "Tape Loader" banner and the lower screen message "Insert tape and
press PLAY. To cancel - press BREAK twice"]

Tape Loader mode.

[Redundant since call to $1B10 (ROM 0) will set it to $FF]

Perform 'Print AT 0,0;".
Run the tape loader.

Run the renumber routine.

If not successful then produce error beep if required.

There is no current line number.

E_PPC. Current line number.

Temporary E_PPC used by BASIC Editor.

Jump ahead to display the "128 BASIC" banner if required, set the menu mode and
return.

Perform an LLIST.

Editor flags.

Using lower editing screen?

Jump ahead if so.

TVFLAG.

Allow leading space.

Clear screen and print the "128 BASIC" banner line.

Editor flags.

Signal not to process the BASIC line.

Signal return to main menu.

Select Edit menu mode. [Could have saved 1 byte by using XOR A]
Edit Menu jump table.

Edit Menu text table.

Store the new mode and menu details.

Main Menu — Calculator Option

L28AB:

LD HL,$ECOD
SET 5,(HL)
SET 4,(HL)

Editor flags.
Signal to process the BASIC line.
Signal return to calculator.

148

SPECTRUM +2 ROM o DISASSEMBLY

RES 6,(HL) Signal editing are is the main screen.
CALL L28E4 Reset cursor position.

CALL L3873 Clear screen and print "Calculator" in the banner line.
LD A,$04 Set calculator mode.

LD ($ECOE),A Store mode.

LD HL,$0000 No current line number.

LD ($5C49),HL E_PPC. Store current line number.
CALL L154E Relist the BASIC program.

LD BC,$0000 B=Row. C=Column. Top left of screen.
LD AB Preferred column.

CALL L2A1E Store editing position and print cursor.
LD A,$04 Select calculator mode.

LD HL,L27DC Calculator Menu jump table

LD DE,L27E3 Calculator Menu text table

Edit Menu - Print option joins here

L28D7: LD ($ECOE),A Store mode.
LD ($F6EA),HL Store address of current menu jump table.
LD ($F6EC),DE Store address of current menu text.
JP L2623 Return to the Editor.

EDITOR ROUTINES — PART 3

Reset Cursor Position

L28E4: CALL L2E45 Reset to main screen.
CALL L3AAO Set default main screen editing cursor details.
JP L290E Set default main screen editing settings.

Return to Main Menu

L28ED: LD B,$00 Top row of editing area.
LD D,$17 Bottom row of editing area.
CALL L3B7F Clear specified display rows.
JP L25CC Jump to show Main menu.

Main Screen Error Cursor Settings

Main screen editing cursor settings.
Gets copied to $F6EE.

L28F7: DEFB $06 Number of bytes in table.
DEFB $00 $F6EE = Cursor position - row 0.
DEFB $00 $F6EF = Cursor position - column 0.
DEFB $00 $F6F0 = Cursor position - column 0 preferred.
DEFB $04 $F6F1 = Top row before scrolling up.
DEFB $10 $F6F2 = Bottom row before scrolling down.
DEFB $14 $F6F3 = Number of rows in the editing area.

Lower Screen Good Cursor Settings

Lower screen editing cursor settings.
Gets copied to $F6EE.

L28FE: DEFB $06 Number of bytes in table.
DEFB $00 $F6EE = Cursor position - row 0.
DEFB $00 $FB6EF = Cursor position - column 0.

149

DEFB $00
DEFB $00
DEFB $01
DEFB $01

SPECTRUM +2 ROM o DISASSEMBLY

$F6F0 = Cursor position - column 0 preferred.
$F6F1 = Top row before scrolling up.

$F6F2 = Bottom row before scrolling down.
$F6F3 = Number of rows in the editing area.

Initialise Lower Screen Editing Settings
Used when selecting lower screen. Copies 6 bytes from $28FF (ROM 0) to $F6EE.

L2905: LD HL,L28FE
LD DE,$F6EE
JP L3F61

Default lower screen editing information.
Editing information stores.
Copy bytes.

Initialise Main Screen Editing Settings
Used when selecting main screen. Copies 6 bytes from $28F8 (ROM 0) to $F6EE.

L290E: LD HL,L28F7
LD DE,$F6EE
JP L3F61

Default main screen editing information.
Editing information stores.
Copy bytes.

Handle Key Press Character Code

This routine handles a character typed at the keyboard, inserting it into the Screen Line Edit Buffer as appropriate.

Entry: A=Key press character code.

L2917 LD HL,$ECOD
ORA
ORA
BIT 0,(HL)
JP NZ,L2A18
RES 7,(HL)
SET 3,(HL)
PUSH HL
PUSH AF
CALL L2A12
POP AF
PUSH AF
CALL L2EA7
POP AF
LDAB
CALL L2B9E

POP HL
SET 7,(HL)
JP NC,L2A18
LDAB

JP C,L2A1E

JP L2A18

Editor flags.

Clear carry flag. [Redundant instruction since carry flag return state never checked]
[Redundant instruction]

Is the Screen Line Edit Buffer is full?

Jump if it is to set attribute at editing position so as to show the cursor, and return.
Signal got a key press.

Signal current line has been altered.

Save address of the flags.

Save key code.

Remove cursor, restoring old attribute.

Get and save key code.

Insert the character into the Screen Line Edit Buffer.

Get key code.

B=Current cursor column position.

Find next Screen Line Edit Buffer editable position to right, moving to next row if
necessary.

Get address of the flags.

Signal wait for a key.

Jump if new position not available to set cursor attribute at existing editing position,
and return.

A=New cursor column position.

Jump if new position is editable to store editing position and print cursor. [This only
needs to be JP $2A1E (ROM 0), thereby saving 3 bytes, since a branch to $2A18
(ROM 0) would have been taken above if the carry flag was reset]

Set attribute at editing position so as to show the cursor, and return.

DELETE-RIGHT Key Handler Routine

Delete a character to the right. An error beep is not produced if there is nothing to delete.

Symbol:

DEL
—

Exit: Carry flag set to indicate not to produce an error beep.

150

SPECTRUM +2 ROM o DISASSEMBLY

L2941: LD HL,$ECOD HL points to Editor flags.
SET 3,(HL) Indicate 'line altered'.
CALL L2A12 Remove cursor, restoring old attribute. Exit with C=row, B=column.
CALL L2F38 Delete character to the right, shifting subsequent rows as required.
SCF Signal do not produce an error beep.
LD AB A=The new cursor editing position.
JP L2A1E Store editing position and print cursor, and then return.

DELETE Key Handler Routine

Delete a character to the left. An error beep is not produced if there is nothing to delete.
Symbol:

DEL
-

Exit: Carry flag set to indicate not to produce an error beep.

L2951: LD HL,$ECOD HL points to Editor flags.
RES 0,(HL) Signal that the Screen Line Edit Buffer is not full.
SET 3,(HL) Indicate 'line altered'.
CALL L2A12 Remove cursor, restoring old attribute. Exit with C=row, B=column.
CALL L2B81 Select previous column position (Returns carry flag set if editable).
CCF Signal do not produce an error beep if not editable.
JP C,L2A18 Jump if not editable to set attribute at editing position so as to show the cursor, and
return.
CALL L2F38 Delete character to the right, shifting subsequent rows as required.
SCF Signal do not produce an error beep.
LDAB A=The new cursor editing position.
JP L2A1E Store editing position and print cursor, and then return.

ENTER Key Handler Routine

This routine handles ENTER being pressed. If not on a BASIC line then it does nothing. If on an unaltered BASIC line then insert a blank row after it and
move the cursor to it. If on an altered BASIC line then attempt to enter it into the BASIC program, otherwise return to produce an error beep.
Exit: Carry flag reset to indicate to produce an error beep.

L296A: CALL L2A12 Remove cursor, restoring old attribute.
PUSH AF Save preferred column number.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
PUSH BC Stack current editing position.
LD B,$00 Column 0.
CALL L2E67 Is this a blank row? i.e. Find editable position on this row to the right, returning
column number in B.
POP BC Retrieve current editing position.
JR C,L2984 Jump ahead if editable position found, i.e. not a blank row.

No editable characters on the row, i.e. a blank row

LD HL,$0020

ADD HL,DE Point to the flag byte for the row.

LD A,(HL) Fetch the flag byte.

CPL Invert it.

AND $09 Keep the ‘first row' and ‘'last row' flags.

JR Z,L29A0 Jump if both flags were set indicating not on a BASIC line.
On a BASIC line
L2984: LD A,($ECOD) Editor flags.

BIT 3,A Has the current line been altered?

JR Z,L2990 Jump ahead if not.

The current BASIC line has been altered

CALL L2CB4 Enter line into program.

151

SPECTRUM +2 ROM o DISASSEMBLY

JR NC,L29A5 Jump if syntax error to produce an error beep.
L2990: CALL L2C72 Find end of the current BASIC line in the Screen Line Edit Buffer, scrolling up rows
as required. Returns column number into B.
CALL L2B9E Find address of end position in current BASIC line. Returns address into HL.
CALL L2EF4 Insert a blank line in the Screen Line Edit Buffer, shifting subsequent rows down.

Display the cursor on the first column of the next row

LD B,$00 First column.

POP AF A=Preferred column number.

SCF Signal do not produce an error beep.

JP L2A1E Store editing position and print cursor, and then return.

Cursor is on a blank row, which is not part of a BASIC line

L29A0: POP AF Discard stacked item.
SCF Signal do not produce an error beep.
JP L2A18 Set attribute at current editing position so as to show the cursor, and return.

A syntax error occurred so return signalling to produce an error beep

L29A5: POP AF Discard stacked item.
JP L2A18 Set attribute at current editing position so as to show the cursor, and return.

TOP-OF-PROGRAM Key Handler Routine

Move to the first row of the first line of the BASIC program. An error beep is not produced if there is no program.
Symbol:

T

Exit: Carry flag set to indicate not to produce an error beep.

L29A9: LD A,($ECOE) Fetch mode.
CP $04 Calculator mode?
RET Z Exit if so.
Editor mode
CALL L2A12 Remove cursor, restoring old attribute.
LD HL,$0000 The first possible line number.
CALL L1F3F Use Normal RAM Configuration (physical RAM bank 0).
RST 28H Find address of line number 0, or the next line if it does not exist.
DEFW LINE_ADDR $196E. Return address in HL.
RST 28H Find line number for specified address, and return in DE.
DEFW LINE_NO $1695. DE=Address of first line in the BASIC program.
CALL L1F64 Use Workspace RAM configuration (physical RAM bank 7).
LD ($5C49),DE E_PPC. Store the current line number.
LD A,$0F Paper 1, Ink 7 - Blue.
CALL L3AB7 Set the cursor colour.
CALL L154E Relist the BASIC program.
SCF Signal do not produce an error beep.
JP L2A18 Set attribute at editing position so as to show the cursor, and return.

END-OF-PROGRAM Key Handler Routine

Move to the last row of the bottom line of the BASIC program. An error beep is not produced if there is no program.
Symbol:

i

Exit: Carry flag set to indicate not to produce an error beep.
L29D1: LD A,($ECOE) Fetch mode.

152

Editor mode

CP $04
RET Z

CALL L2A12
LD HL,$270F

CALL L1F3F

RST 28H

DEFW LINE_ADDR
EX DE,HL

RST 28H

DEFW LINE_NO
CALL L1F64

LD ($5C49),DE

LD A,$OF

CALL L3AB7

CALL L154E

SCF

JP L2A18

SPECTRUM +2 ROM o DISASSEMBLY

Calculator mode?
Exit if so.

Remove cursor, restoring old attribute.

The last possible line number, 9999.

Use Normal RAM Configuration (physical RAM bank 0).

Find address of line number 9999, or the previous line if it does not exist.
$196E. Return address in HL.

DE=Address of last line number.

Find line number for specified address, and return in DE.

$1695. DE=Address of last line in the BASIC program.

Use Workspace RAM configuration (physical RAM bank 7).

E_PPC. Store the current line number.

Paper 1, Ink 7 - Blue.

Set the cursor colour.

Relist the BASIC program.

Signal do not produce an error beep.

Set attribute at editing position so as to show the cursor, and return.

WORD-LEFT Key Handler Routine

This routine moves to the start of the current word that the cursor is on, or if it is on the first character of a word then it moves to the start of the previous
word. If there is no word to move to then signal to produce an error beep.

Symbol:

-
-

Exit: Carry flag reset to indicate to produce an error beep.

L29FA:

CALL L2A12

CALL L2C10

JP NC,L2A18
LDAB

JP L2A1E

Remove cursor, restoring old attribute.

Find start of the current word to the left.

Jump if no word to the left to restore cursor attribute at current editing position, and
return. [Could have saved 4 bytes by joining the routine below, i.e. JR $29E7]
A=New cursor column number. Carry flag is set indicating not to produce an error
beep.

Store editing position and print cursor, and then return.

WORD-RIGHT Key Handler Routine

This routine moves to the start of the next word. If there is no word to move to then signal to produce an error beep.

Symbol:

—>
—>

Exit: Carry flag reset to indicate to produce an error beep.

L2A07:

CALL L2A12

CALL L2C2F

JR NC,L2A18
LDAB

JR L2AlE

Remove Cursor

Remove editing cursor colour from current position.
Exit: C=row number.
B=Column number.

L2A12:

CALL L2A2D
JP L3675

Remove cursor, restoring old attribute.

Find start of the current word to the right.

Jump if no word to the right to restore cursor attribute at current editing position, and
return.

A=The new cursor editing column number. Carry is set indicating not to produce an
error beep.

Store editing position and print cursor, and then return.

Get current cursor position (C=row, B=column, A=preferred column).
Restore previous colour to character square

153

SPECTRUM +2 ROM o DISASSEMBLY

Show Cursor

Set editing cursor colour at current position.
Exit: C=row number.
B=Column number.

L2A18: CALL L2A2D Get current cursor position (C=row, B=column, A=preferred column).
JP L3666 Set editing position character square to cursor colour to show it. [Could have saved
1 byte by using a JR instruction to join the end of the routine below]

Display Cursor

Set editing cursor position and colour and then show it.
Entry: C=Row number.

B=Column number.

A=Preferred column number.

L2A1E: CALL L2A37 Store new editing position.
PUSH AF
PUSH BC
LD A,$0F Paper 1, Ink 7 - Blue.
CALL L3AB7 Store new cursor colour.
POP BC
POP AF
JP L3666 Set editing position character square to cursor colour to show it.

Fetch Cursor Position

Returns the three bytes of the cursor position.
Exit : C=Row number.

B=Column number

A=Preferred column number.

L2A2D: LD HL,$F6EE Editing info.
LD C,(HL) Row number.
INC HL
LD B,(HL) Column number.
INC HL
LD A,(HL) Preferred column number.
INC HL
RET

Store Cursor Position

Store new editing cursor position.

Entry: C=Row number.
B=Column number.
A=Preferred column number.

L2A37: LD HL,$F6EE Editing information.
LD (HL),C Row number.
INC HL
LD (HL),B Column number.
INC HL
LD (HL),A Preferred column number.
RET

154

SPECTRUM +2 ROM o DISASSEMBLY

Get Current Character from Screen Line Edit Buffer

L2A40:

PUSH HL
CALL L30DA
LD H,$00
LDL,B

ADD HL,DE
LD A,(HL)
POP HL
RET

DE=Start address in Screen Line Edit Buffer of the row specified in C.
[Could have saved 2 bytes by calling the unused routine at $2EA1 (ROM 0)]

Point to the column position within the row.
Get character at this position.

TEN-ROWS-DOWN Key Handler Routine

Move down 10 rows within the BASIC program, attempting to place the cursor as close to the preferred column number as possible.
An error beep is produced if there is not 10 rows below.

Symbol:

'

Exit: Carry flag reset to indicate to produce an error beep.

L2A4B:

L2A51:

CALL L2A12
LD EA

LD D,$0A
PUSH DE
CALL L2B56

POP DE
JR NC,L2A18

LD AE
CALL L2A37
LD B,E
CALL L2B1F

JR NC,L2A68
DECD

JR NZ,L2A51
LD AE

JR C,L2A1E

Remove cursor, restoring old attribute.
E=Preferred column.
The ten lines to move down.

Move down to the next row, shifting rows up as appropriate. If moving onto a new
BASIC line then

insert the previous BASIC line into the BASIC program if it has been altered. Returns
new row number in C.

Jump if there was no row below to set attribute at editing position so as to show the
cursor, and return.

A=Preferred column.

Store cursor editing position.

B=Preferred column.

Find closest Screen Line Edit Buffer editable position to the right else to the left,
returning column number in B.

Jump if no editable position found on the row, i.e. a blank row.

Decrement row counter.

Repeat to move down to the next row.

A=Preferred column.

Jump if editable row exists to store editing position and print cursor, and then return.
[Redundant check of the carry flag, should just be JR $2A1E (ROM 0)]

A blank row was found below, must be at the end of the BASIC program

L2A68:

PUSH DE
CALL L2B31
POP DE

LD B,E
CALL L2B1F

LD AE
ORA
JR L2AlE

Move back up to the previous row.

B=Preferred column.

Find closest Screen Line Edit Buffer editable position to the right else to the left,
returning column number in B.

A=Preferred column.

Carry will be reset indicating to produce an error beep.

Store editing position and print cursor, and then return.

TEN-ROWS-UP Key Handler Routine

Move up 10 rows within the BASIC program, attempting to place the cursor as close to the preferred column number as possible.
An error beep is produced if there is not 10 rows above.

Symbol:

t

155

SPECTRUM +2 ROM o DISASSEMBLY

Exit: Carry flag reset to indicate to produce an error beep.

L2A75:

L2AT7B:

CALL L2A12
LD EA

LD D,$0A
PUSH DE
CALL L2B31

POP DE
JR NC,L2A18

LD AE
CALL L2A37
LD B,E
CALL L2B28

JR NC,L2A93
DECD

JR NZ,L2A7B
LD AE

JP C,L2AlE

Remove cursor, restoring old attribute.
E=Preferred column.
The ten lines to move up.

Move up to the previous row, shifting rows down as appropriate. If moving onto a
new BASIC line then

insert the previous BASIC line into the BASIC program if it has been altered.
Jump if there was no row above to set cursor attribute colour at existing editing
position, and return.

A=Preferred column.

Store cursor editing position.

B=Preferred column.

Find closest Screen Line Edit Buffer editable position to the left else right, return
column number in B.

Jump if no editable positions were found in the row, i.e. it is a blank row.
Decrement row counter.

Repeat to move up to the previous row.

A=Preferred column.

Jump if editable row exists to store editing position and print cursor, and then return.
[Redundant check of the carry flag, should just be JP $2A1E (ROM 0)]

A blank row was found above, must be at the start of the BASIC program [???? Can this ever be the case?]

L2A93:

PUSH AF
CALL L2B56
LD B,$00
CALL L2BFA

POP AF
JP L2A1E

Save the preferred column number and the flags.

Move back down to the next row. Returns new row number in C.

Column 0.

Find editable position in the Screen Line Edit Buffer row to the right, return column
position in B.

A=Preferred column. Carry will be reset indicating to produce an error beep.

Store editing position and print cursor, and then return.

END-OF-LINE Key Handler Routine

Move to the end of the current BASIC line. An error beep is produced if there is no characters in the current BASIC line.

Symbol:

—

Exit: Carry flag reset to indicate to produce an error beep and set not to produce an error beep.

L2AAOQ:

CALL L2A12

CALL L2C72

JP NC,L2A18
LDAB

JP L2A1E

Remove cursor, restoring old attribute.

Find the end of the current BASIC line in the Screen Line Edit Buffer.

Jump if a blank row to set attribute at existing editing position so as to show the
cursor, and return.

A=The new cursor editing column number. Carry is set indicating not to produce an
error beep.

Store editing position and print cursor, and then return.

START-OF-LINE Key Handler Routine

Move to the start of the current BASIC line. An error beep is produced if there is no characters in the current BASIC line.

Symbol:

=

Exit: Carry flag reset to indicate to produce an error beep.

L2AAD:

CALL L2A12
CALL L2C57
JP NC,L2A18

LDAB

Remove cursor, restoring old attribute.

Find the start of the current BASIC line in the Screen Line Edit Buffer.

Jump if a blank row to set attribute at existing editing position so as to show the
cursor, and return.

A=The new cursor editing position. Carry is set indicating not to produce an error
beep.

156

JP L2A1E

SPECTRUM +2 ROM o DISASSEMBLY

Store editing position and print cursor, and then return.

CURSOR-UP Key Handler Routine

Move up 1 row, attempting to place the cursor as close to the preferred column number as possible.

An error beep is produced if there is no row above.

Exit: Carry flag reset to indicate to produce an error beep.

L2ABA: CALL L2A12
LD EA
PUSH DE
CALL L2B31

POP DE
JP NC,L2A18

LD B,E
CALL L2B28

LD AE
JP C,L2A1E

Remove cursor, restoring old attribute.
E=Preferred column.

Move up to the previous row, shifting rows down as appropriate. If moving onto a
new BASIC line then

insert the previous BASIC line into the BASIC program if it has been altered.
Jump if there was no row above to set cursor attribute colour at existing editing
position, and return.

B=Preferred column.

Find closest Screen Line Edit Buffer editable position to the left else right, return
column number in B.

A=Preferred column.

Jump if an editable position was found to store editing position and print cursor, and
then return.

A blank row was found above, must be at the start of the BASIC program [???? Can this ever be the case?]

PUSH AF
CALL L2B56

LD B,$00
CALL L2B1F
POP AF

JP L2A1E

Save the preferred column number and the flags.

Move down to the next row, shifting rows up as appropriate. Returns new row
number in C.

Column 0.

Find closest Screen Line Edit Buffer editable position to the right.
A=Preferred column. Carry flag is reset indicating to produce an error beep.
Store editing position and print cursor, and then return.

CURSOR-DOWN Key Handler Routine

Move down 1 row, attempting to place the cursor as close to the preferred column number as possible.

An error beep is produced if there is no row below.

Exit: Carry flag reset to indicate to produce an error beep.

L2ADB: CALL L2A12
LD EA
PUSH DE
CALL L2B56

POP DE
JP NC,L2A18

LD B,E
CALL L2B28

LD AE
JP C,L2AlE

Remove cursor, restoring old attribute.
E=Preferred column.

Move down to the next row, shifting rows up as appropriate. If moving onto a new
BASIC line then

insert the previous BASIC line into the BASIC program if it has been altered. Returns
new row number in C.

Jump if there was no row below to set attribute at editing position so as to show the
cursor, and return.

B=Preferred column.

Find closest Screen Line Edit Buffer editable position to the left else right, return
column number in B.

A=Preferred column.

Jump if an editable position was found to store editing position and print cursor, and
then return.

A blank row was found above, must be at the start of the BASIC program [???? Can this ever be the case?]

PUSH DE
CALL L2B31
POP DE

LD B,E
CALL L2B1F

Save the preferred column.
Move up to the previous row, shifting rows down as appropriate.

B=Preferred column.

Find closest Screen Line Edit Buffer editable position to the right else to the left,
returning column number in B.

157

SPECTRUM +2 ROM o DISASSEMBLY

LD AE A=Preferred column.
ORA Reset carry flag to indicate to produce an error beep.
JP L2A1E Store editing position and print cursor, and then return.

CURSOR-LEFT Key Handler Routine

Move left 1 character, stopping if the start of the first row of the first BASIC line is reached.
An error beep is produced if there is no character to the left or no previous BASIC line to move to.
Exit: Carry flag reset to indicate to produce an error beep.

L2AFD: CALL L2A12 Remove cursor, restoring old attribute. Returns with C=row, B=column.
CALL L2B81 Find next Screen Line Edit Buffer editable position to left, wrapping to previous row
as necessary.
JP C,L2AlE Jump if editable position found to store editing position and print cursor, and then
return.

A blank row was found above, must be at the start of the BASIC program

JP L2A18 Set cursor attribute at existing editing position, and return. Carry flag is reset
indicating to produce an error beep.

CURSOR-RIGHT Key Handler Routine

Move right 1 character, stopping if the end of the last row of the last BASIC line is reached.
An error beep is produced if there is no character to the right or no next BASIC line to move to.
Exit: Carry flag reset to indicate to produce an error beep.

L2B09: CALL L2A12 Remove cursor, restoring old attribute.
CALL L2B9E Find next Screen Line Edit Buffer editable position to right, wrapping to next row if
necessary.
JP C,L2A1E Jump if editable position found to store editing position and print cursor, and then
return.

A blank row was found below, must be at the end of the BASIC program

PUSH AF Save the carry flag and preferred column number.

CALL L2B31 Move up to the previous row, shifting rows down as appropriate.

LD B,$1F Column 31.

CALL L2C05 Find the last editable column position searching to the left, returning the column
number in B. (Returns carry flag set if there is one)

POP AF Carry flag is reset indicating to produce an error beep.

JP L2A1E Store editing position and print cursor, and then return.

Edit Buffer Routines — Part 1

Find Closest Screen Line Edit Buffer Editable Position to the Right else Left

This routine searches the specified Screen Line Edit Buffer row from the specified column to the right looking for the first editable position. If one cannot
be found then a search is made to the left.
Entry: B=Column number.
Exit : Carry flag set if character at specified column is editable.
B=Number of closest editable column.
HL=Address of closest editable position.

L2B1F: PUSH DE
CALL L2BFA Find Screen Line Edit Buffer editable position from previous column (or current
column if the previous column does not exist) to the right, return column position in
B.
CALL NC,L2C05 If no editable character found then search to the left for an editable character, return

column position in B.

158

SPECTRUM +2 ROM o DISASSEMBLY

POP DE
RET

Find Closest Screen Line Edit Buffer Editable Position to the Left else Right

This routine searches the specified Screen Line Edit Buffer row from the specified column to the left looking for the first editable position. If one cannot
be found then a search is made to the right.
Entry: B=Column number.
Exit : Carry flag set if character at specified column is editable.
B=Number of closest editable column.
HL=Address of closest editable position.

L2B28: PUSH DE
CALL L2C05 Find Screen Line Edit Buffer editable position to the left, returning column position in
B.
CALL NC,L2BFA If no editable character found then search from previous column (or current column if
the previous column does not exist) to the right, return column position in B.
POP DE
RET

Insert BASIC Line, Shift Edit Buffer Rows Down If Required and Update Display File If Required

Called from the cursor up and down related key handlers. For example, when cursor up key is pressed the current BASIC line may need to be inserted
into the BASIC program if it has been altered. It may also be necessary to shift all rows down should the upper scroll threshold be reached. If the cursor
was on a blank row between BASIC lines then it is necessary to shift all BASIC lines below it up, i.e. remove the blank row.
Entry: C=Current cursor row number in the Screen Line Edit Buffer.
Exit : C=New cursor row number in the Screen Line Edit Buffer.

Carry flag set if a new row was moved to.

L2B31: CALL L2CA2 If current BASIC line has been altered and moved off of then insert it into the

program.

JR NC,L2B55 Jump if BASIC line was not inserted. [Could have saved 1 byte by using RET NC]

PUSH BC Save the new cursor row and column numbers.

CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.

LD B,$00 Column 0.

CALL L2E67 Is this a blank row? i.e. Find editable position on this row to the right, returning
column number in B.

CALL NC,L2FA6 If no editable position found then the cursor is on a blank row so shift all BASIC lines
below it up to close the gap.

POP BC Retrieve the new cursor row and column numbers.

LD HL,$F6F1 Point to the editing area information.

LD A,(HL) Fetch the upper scroll threshold.

CPC Is it on the threshold?

JR C,L2B53 Jump if on a row below the threshold.

The upper row threshold for triggering scrolling the screen has been reached so proceed to scroll down one row

PUSH BC Save the new cursor row and column numbers.

CALL L168E Shift all edit buffer rows down, and update display file if required.
POP BC

RET C Return if edit buffer rows were shifted.

The edit buffer rows were not shifted down

LD AC On the top row of the editing area?

ORA

RET Z Return with carry flag reset if on the top row.
L2B53: DECC Move onto the previous row.

SCF Signal a new row was moved to.
L2B55: RET

159

SPECTRUM +2 ROM o DISASSEMBLY

Insert BASIC Line, Shift Edit Buffer Rows Up If Required and Update Display File If Required

Called from the cursor up and down related key handlers. For example, when cursor down key is pressed the current BASIC line may need to be inserted
into the BASIC program if it has been altered. It may also be necessary to shift all rows up should the lower scroll threshold be reached. If the cursor was
on a blank row between BASIC lines then it is necessary to shift all BASIC lines below it up, i.e. remove the blank row.
Entry: C=Current cursor row number in the Screen Line Edit Buffer.
Exit : C=New cursor row number in the Screen Line Edit Buffer.

Carry flag set if a new row was moved to.

L2B56: PUSH BC Save row number.
CALL L30DA DE=Start address in Screen Line Edit Buffer of row held in C, i.e. the new cursor
row.
LD B,$00 Column 0.
CALL L2E67 Is this a blank row? i.e. Find editable position on this row to the right, returning

column number in B.

POP BC Get row number.

JR C,L2B65 Jump if editable position found, i.e. the row exists. [Could have saved 2 bytes by
using JP NC,$2FA6 (ROM 0)]

JP L2FA6 Cursor is on a blank row so shift all BASIC lines below it up to close the gap.

L2B65: CALL L2C8E Insert the BASIC Line into the BASIC program if the line has been altered.

JR NC,L2B80 Jump if the line was inserted into the program. [Could have saved 1 byte by using

RET NC]

The BASIC line was not inserted into the program. C=New cursor row number, B=New cursor column number, A=New cursor preferred column number

LD HL,$F6F1 Point to the editing area information.

INC HL Point to the 'Bottom Row Scroll Threshold' value. [Could have saved 1 byte by using
LD HL,$F6F2]

LD AC Fetch the new cursor row number.

CP (HL) Is it on the lower scroll threshold?

JR C,L2B7E Jump if on a row above the threshold.

The lower row threshold for triggering scrolling the screen has been reached so proceed to scroll up one row

PUSH BC Save the new cursor row and column numbers.

PUSH HL Save the editing area information address.

CALL L1658 Shift all edit buffer rows up, and update display file if required.
POP HL

POP BC

RET C Return if edit buffer rows were shifted.

The edit buffer rows were not shifted up

INC HL Point to the 'Number of Rows in the Editing Area' value.
LD A,(HL) A=Number of rows in the editing area.
CpPC On the last row of the editing area?
RET Z Return with carry flag reset if on the bottom row.
L2B7E: INCC Move onto the next row.
SCF Signal a new row was moved to.
L2B80: RET

Find Next Screen Line Edit Buffer Editable Position to Left, Wrapping Above if Required

This routine searches to the left to see if an editable position exists. If there is no editable position available to the left on the current row then the previous

row is examined from the last column position.

Entry: B=Column number.
Carry flag reset.
Exit : Carry flag set if a position to the ‘left' exists.

B=Number of new editable position.
HL=Address of new editable position.

L2B81: LDD,A Save the key code character.

160

DECB
JP M,L2B8C
LDEB
CALL L2CO05

LD AE
RET C

Wrap above to the previous row

L2B8C: PUSH DE
CALL L2B31

POP DE

LD AE
RET NC

A row above exists

LD B,$1F
CALL L2C05

LDAB
RET C

Return column 0
LD AD

LD B,$00
RET

SPECTRUM +2 ROM o DISASSEMBLY

Back one column position.

Jump if already at beginning of row.

E=Column number.

Find Screen Line Edit Buffer editable position to the left, returning column position in
B.

A=Column number.

Return if the new column is editable, i.e. the cursor can be moved within this row.

E=Store the column number.

Move up to the previous row, shifting rows down as appropriate. If moving onto a
new BASIC line then

insert the previous BASIC line into the BASIC program if it has been altered.
A=Column number.

Return if there was no row above.

Column 31.

Find the last editable column position searching to the left, returning the column
number in B. (Returns carry flag set if there is one)

A=Column number of the closest editable position.

Return if an editable position was found, i.e. the cursor can be moved.

Restore the key code character.

Set column position 0.

[BUG - This should really ensure the carry flag is reset to signal that no editable
position to the left exists, e.g. by using OR A. Fortunately, the carry flag is always
reset when this routine is called and so the bug is harmless. Credit: Paul Farrow]

Find Next Screen Line Edit Buffer Editable Position to Right, Wrapping Below if Required

This routine searches to the right to see if an editable position exists. If there is no editable position available to the right on the current row then the
next row is examined from the first column position.
The routine is also called when a character key has been pressed and in this case if the cursor moves to the next row then a blank row is inserted and

all affected rows are shifted down.
Entry: B=Column number.
C=Row number.

Exit : Carry flag set if a position to the 'right' exists.
B=Number of closest editable column, i.e. new column number.
A=New column position, i.e. preferred column number or indentation column number.
HL=Address of the new editable position.

L2B9E: LDD,A
INC B
LD A $1F
CPB
JR C,L2BAB

New position is within the row

LDEB
CALL L2BFA

LD AE
RETC

Need to wrap below to the next row

L2BAB: DECB

Save the key code character.
Advance to the next column position.
Column 31.

Jump if reached end of row.

E=New column number.

Find Screen Line Edit Buffer editable position from previous column to the right,
returning column position in B.

A=New column number.

Return if the new column is editable, i.e. the cursor can be moved within this row.

B=Original column position.

161

SPECTRUM +2 ROM o DISASSEMBLY

PUSH BC Save original column and row numbers.
PUSH HL HL=Address of the new editable position.
LD HL,$ECOD Editor flags.

BIT 7,(HL) Got a key press?

JR NZ,L2BE6 Jump if not.

A key is being pressed so need to insert a new row

CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020

ADD HL,DE Poaint to the flag byte for the current row.

LD A,(HL)

BIT 1,A Does the BASIC line row span onto another row?

JR NZ,L2BE6 Jump if so to test the next row (it could just be the cursor).

The BASIC line row does not span onto another row, i.e. cursor at end of line

SET 1,(HL) Signal that the row spans onto another row, i.e. a new blank row containing the
cursor.

RES 3,(HL) Signal that the row is not the last row of the BASIC line.

LD HL,$0023 Point to the next row.

ADD HL,DE

EX DE,HL DE=Address of the next row. [Redundant calculation as never used. Could have
saved 5 bytes]

POP HL HL=Address of the new editable position.

POP BC B=0Original column number. C=Row number.

PUSH AF Save flag byte for the previous row.

CALL L2B56 Move down to the next row, shifting rows up as appropriate. Returns new row
number in C.

POP AF Retrieve flag byte for the previous row.

CALL L30DA DE=Start address in Screen Line Edit Buffer of the new row, as specified in C.

LD HL,$0023

ADD HL,DE HL=Address of the row after the new row.

EX DE,HL DE=Address of the row after the new row. HL=Address of the new row.

RES 0,A Signal 'not the start row of the BASIC line'.

SET 3,A Signal 'end row of the BASIC line'.

CALL L2EF9 Insert a blank row into the Screen Edit Buffer at row specified by C, shifting rows
down.

[BUG - When typing a line that spills over onto a new row, the new row needs to be indented. However, instead of the newly inserted row being indented,
it is the row after it that gets indented. The indentation occurs within the Screen Line Edit Buffer and is not immediately reflected in the display file. When
the newly typed line is executed or inserted into the program area, the Screen Line Edit Buffer gets refreshed and hence the effect of the bug is never
normally seen. The bug can be fixed by inserting the following instructions. Credit: Paul Farrow.

LD HL,$FFDD -35.

ADD HL,DE

EX DE,HL DE=Points to the start of the previous row.]

CALL L361A Indent the row by setting the appropriate number of null characters in the current
Screen Line Edit Buffer row.

LD AB A=First column after indentation.

SCF Signal not to produce an error beep.

RET

Wrap below to the next row. Either a key was not being pressed, or a key was being pressed and the BASIC line spans onto a row below (which could
contain the cursor only)

L2BEG6:

POP HL HL=Address of the new editable position.

POP BC B=Original column position.

PUSH DE E=New column number.

CALL L2B56 Move down to the next row, shifting rows up as appropriate. If moving onto a new
BASIC line then

POP DE insert the previous BASIC line into the BASIC program if it has been altered. Returns
new row number in C.

LD AB A=COriginal column position.

162

SPECTRUM +2 ROM o DISASSEMBLY

RET NC Return if there was no row below.

A row below exists

LD B,$00 Column 0.

CALL L2BFA Find Screen Line Edit Buffer editable position to the right, returning column position
in B.

LD AB A=New column position.

RET C Return if an editable position was found, i.e. the cursor can be moved.

Return column 0

LD AE A=Preferred column number.
LD B,$00 Column 0.
RET Return with carry flag reset.

Find Screen Line Edit Buffer Editable Position from Previous Column to the Right

This routine finds the first editable character position in the specified Screen Line Edit Buffer row from the previous column to the right.
It first checks the current column, then the previous column and then the columns to the right. The column containing the first non-null character
encountered is returned.

Entry: B=Column number to start searching from.
C=Row number.
Exit : Carry flag set if an editable character was found.

B=Number of closest editable column.

L2BFA: PUSH DE Save registers.
PUSH HL
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
CALL L2E67 Find editable position on this row from the previous column to the right, returning
column number in B.
JP L2C8B Restore registers and return. [Could have saved a byte by using JR $2C2D (ROM
0)]

Find Screen Line Edit Buffer Editable Position to the Left

This routine finds the first editable character position in the Screen Line Edit Buffer row from the current column to the left.
It first checks the current column and returns this if it contains an editable character. Otherwise it searches the columns to the left and if an editable
character is found then it returns the column to the right of it.

Entry: B=Column number to start searching from.
C=Row number.
Exit : Carry flag set if an editable character was found.

B=Number of the column after the editable position.

L2CO05: PUSH DE Save registers.
PUSH HL
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
CALL L2E89 Find editable position from current column to the left, returning the column number in
B.
JP L2C8B Restore registers and return. [Could have saved a byte by using JR $2C2D (ROM
0)]

Find Start of Word to Left in Screen Line Edit Buffer

This routine searches for the start of the current word to the left within the current Screen Line Edit Buffer.
Itis called from the WORD-LEFT key handler routine.
Entry: C=Row number.
Exit : Carry flag set if word to the left is found.
B=Column position of the found word.

163

L2C10:

PUSH DE
PUSH HL

SPECTRUM +2 ROM o DISASSEMBLY

Save registers.

Search towards the left of this row until a space or start of line is found

L2C12: CALL L2B81 Find next Screen Line Edit Buffer editable position to left, moving to next row if
necessary.
JR NC,L2C2D Jump if not editable, i.e. at start of line.
L2C17: CALL L2A40 Get character at new position.
CP"' $20. Is it a space?
JR Z,L2C12 Jump back if it is, until a non-space or start of line is found.

Search towards the left of this row until the start of the word or start of the line is found

L2C1E: CALL L2B81 Find next Screen Line Edit Buffer editable position to left, moving to next row if
necessary.
JR NC,L2C2D Jump if not editable, i.e. at start of line.
CALL L2A40 Get character at new position.
CP"' $20. Is it a space?
JR NZ,L2C1E Jump back if it is not, until a space or start of line is found.

A space prior to the word was found

CALL L2B9E Find next Screen Line Edit Buffer editable position to right to start of the word,
moving to next row if necessary. [Returns carry flag set since the character will exist]
L2C2D: JR L2C8B Jump forward to restore registers and return.

Find Start of Word to Right in Screen Line Edit Buffer

This routine searches for the start of the current word to the right within the current Screen Line Edit Buffer.
Itis called from the WORD-RIGHT key handler routine.
Entry: C=Row number.
Exit : Carry flag set if word to the right is found.
B=Column position of the found word.

L2C2F:

PUSH DE
PUSH HL

Save registers.

Search towards the right of this row until a space or end of line is found

L2C31: CALL L2B9E Find next Screen Line Edit Buffer editable position to right, moving to next row if
necessary.
JR NC,L2C51 Jump if none editable, i.e. at end of line.
CALL L2A40 Get character at new position.
cpP" $20. Is it a space?
JR NZ,L2C31 Jump back if it is not, until a space or end of line is found.

Search towards the right of this row until the start of a new word or end of the line is found

L2C3D: CALL L2B9E Find next Screen Line Edit Buffer editable position to right, moving to next row if

necessary.

JR NC,L2C51 Jump if none editable, i.e. at end of line.

CALL L2E67 Find editable position on this row from the previous column to the right, returning
column number in B.

JR NC,L2C51 Jump if none editable, i.e. at start of next line.

CALL L2A40 Get character at new position.

CP"' $20. Is it a space?

JR Z,L2C3D Loop back until a non-space is found, i.e. start of a word.

Start of new word found

SCF
JR L2C8B

Indicate cursor position can be moved.
Jump forward to restore registers and return.

164

SPECTRUM +2 ROM o DISASSEMBLY

End of line or start of next line was found

L2C51: CALL NC,L2B81 If no word on this row then find next Screen Line Edit Buffer editable position to left,
moving to previous row if necessary thereby restoring the row number to its original
value. [Carry flag is always reset by here so the test on the flag is unnecessary]

ORA Clear carry flag to indicate cursor position can not be moved.
JR L2C8B Jump forward to restore registers and return.

Find Start of Current BASIC Line in Screen Line Edit Buffer

This routine searches for the start of the BASIC line, wrapping to the previous rows as necessary.
Itis called from the START-OF-LINE key handler routine.
Entry: C=Row number.
Exit : Carry flag set if row is not blank.
B=New cursor column.

L2C57: PUSH DE Save registers.
PUSH HL
L2C59: CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020
ADD HL,DE Point to flag byte of next row.
BIT 0,(HL) On first row of the BASIC line?
JR NZ,L2C6B Jump if on the first row of the BASIC line.

Not on the first row of the BASIC line

CALL L2B31 Move up to the previous row, shifting rows down as appropriate. If moving onto a
new BASIC line then insert the previous BASIC line into the BASIC program if it has
been altered.

JR C,L2C59 Jump back if still on the same BASIC line, i.e. was not on first row of the BASIC line.

JR L2C8B Jump forward to restore registers and return.

On the first row of the BASIC line, so find the starting column

L2C6B: LD B,$00 Column 0.
CALL L2BFA Find Screen Line Edit Buffer editable position to the right, return column position in
B. (Returns carry flag reset if blank row)
JR L2C8B Jump forward to restore registers and return.

Find End of Current BASIC Line in Screen Line Edit Buffer

This routine searches for the end of the BASIC line, wrapping to the next rows as necessary.
Itis called from the END-OF-LINE key handler routine.
Entry: C=Row number.
Exit : Carry flag set if row is not blank.
B=New cursor column.

L2C72: PUSH DE Save registers.
PUSH HL
L2C74: CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020
ADD HL,DE Point to flag byte of next row.
BIT 3,(HL) On last row of the BASIC line?
JR NZ,L2C86 Jump if on the last row of the BASIC line.

Not on the last row of the BASIC line

CALL L2B56 Move down to the next row, shifting rows up as appropriate. If moving onto a new
BASIC line then insert the previous BASIC line into the BASIC program if it has been
altered. Returns new row number in C.

JR C,L2C74 Jump back if still on the same BASIC line, i.e. was not on last row of the BASIC line.

JR L2C8B Jump forward to restore registers and return.

165

SPECTRUM +2 ROM o DISASSEMBLY

On the last row of the BASIC line, so find the last column

L2C86: LD B,$1F Column 31.
CALL L2CO05 Find the last editable column position searching to the left, returning the column
number in B. (Returns carry flag reset if blank row)
L2C8B: POP HL Restore registers.
POP DE
RET

Insert BASIC Line into Program if Altered

L2C8E: LD A,($ECOD) Editor flags.
BIT 3,A Has the current line been altered?
SCF Signal line not inserted into BASIC program.
RET Z Return if it has not.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020
ADD HL,DE HL points to the flag byte for the row.
BIT 3,(HL) Is this the end of the BASIC line?
SCF Signal line not inserted into BASIC program.
RET Z Return if it is not.
JR L2CB4 Insert line into BASIC program.

Insert Line into BASIC Program If Altered and the First Row of the Line

L2CA2: LD A,($ECOD) Editor flags.
BIT 3,A Has current line been altered?
SCF Signal success.
RET Z Return if it has not.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
BIT 0,(HL) Is this the first row of the BASIC line?
SCF Signal success.
RET Z Return if it is not.

Insert Line into BASIC Program

This routine parses a line and if valid will insert it into the BASIC program. If in calculator mode then the line is not inserted into the BASIC program. If
a syntax error is found then the location to show the error marker is determined.

Entry: C=Row number.

Exit : Carry flag reset if a syntax error.

Carry flag set if the BASIC line was inserted successfully, and C=Cursor row number, B=Cursor column number, A=Preferred cursor
column number.

L2CB4: LD A,$02 Signal on first row of BASIC line.

Find the start address of the row in the Screen Line Edit Buffer

L2CBE6: CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
BIT 0,(HL) First row of the BASIC line?
JR NZ,L2CC9 Jump ahead if so.
DECC Move to previous row.
JP P,L2CB6 Jump back until found the first row of the BASIC line or the top of the screen.

First row of the BASIC line is above the screen

166

DE=Start address of the first row of the BASIC line

LD C,$00
LD A$01

SPECTRUM +2 ROM o DISASSEMBLY

Row 0.
Signal first row of BASIC line above screen.

HL=Address of the flag byte for the first row of the BASIC line

L2CCo:

LD HL,$EC00
LD DE,$EC03
OR $80

LD (HL),A

LD (DE),A
INC HL

INC DE

LD A,$00

LD (HL),A

LD (DE),A
INC HL

INC DE
LDAC

LD (HL),A

LD (DE),A

LD HL,$0000
LD ($ECO6),HL
CALL L3385

CALL L3COE
PUSH IX
CALL L1F3F
CALL L026B
CALL L1F64
POP IX

LD A,($35C3A)
INC A

JR NZ,L2D15
LD HL,$ECOD
RES 3,(HL)
CALL L3684
LD A,(3ECOE)
CP $04

CALL NZ,L154E
CALL L2719
CALL L2A2D
SCF

RET

A syntax error occurred

L2D15:

LD HL,$EC00
LD DE,$EC03
LD A,(DE)
RES 7,A

LD (HL),A
INC HL

INC DE

LD A,(DE)

LD (HL),A
INC HL

INC DE

LD A,(DE)

LD (HL),A

CALL L3COA
JR C,L2D30

BASIC line insertion flags.
BASIC line insertion error flags.
Signal location of cursor not yet found.

[Could have saved 1 byte by using XOR A]
Starting column number of the first visible row of the BASIC line being entered.

Fetch the row number of the first visible row of the BASIC line being entered.
Store the start row number of the first visible row of the BASIC line being entered.

No editable characters in the line prior to the cursor.

Copy 'Insert Keyword Representation Into Keyword Construction Buffer' routine to
RAM.

Tokenize the typed BASIC line.

IX=Address of cursor settings.

Use Normal RAM Configuration (physical RAM bank 0).

Syntax check/execute the command line.

Use Workspace RAM configuration (physical RAM bank 7).
IX=Address of cursor settings.

ERR_NR. Fetch error code.

Was an error code set?

Jump ahead if so.

Editor flags.

Signal line has not been altered.

Reset to 'L' Mode.

Fetch mode.

Calculator mode?

If not calculator mode then relist the BASIC program.

Produce success beep.

Get current cursor position (C=Row, B=Column, A=Preferred column).
Set the carry flag to signal that that BASIC line was inserted successfully.

BASIC line insertion flags.

BASIC line insertion error flags.

Fetch the BASIC line insertion error flags.

Signal location of cursor found.

Update the BASIC line insertion flags with the error flags.

Restore the initial column number, i.e. column 0.

Restore the initial row number, i.e. row humber of the first visible row of the BASIC
line being entered.

Locate the position to insert the error marker into the typed BASIC line.

Jump if the error marker was found.

Assume the error maker is at the same position as the cursor

167

LD BC,($EC06)

SPECTRUM +2 ROM o DISASSEMBLY

Fetch the number of editable characters in the line prior to the cursor within the
Screen Line Edit Buffer.

The position of the error marker within the typed BASIC line has been determined. Now shift the cursor to the corresponding position on the screen.

L2D30:

LD HL,($EC06)

ORA
SBC HL,BC

PUSH AF
PUSH HL
CALL L2A2D

POP HL
POP AF

JR C,L2D50
JR Z,L2D6B

Fetch the number of editable characters in the line prior to the cursor within the
Screen Line Edit Buffer.

HL=Difference between the cursor and the error marker positions (negative if the
error marker is after the cursor).

Save the flags.

HL=Difference between the cursor and error marker.

Get current cursor position, returning C=row number, B=column number,
A=preferred column number.

HL=Difference between the cursor and error marker.

Restore the flags.

Jump if error marker is after the cursor position.

Jump if cursor is at the same location as the error marker.

The error marker is before the cursor position. Move the cursor back until it is at the same position as the error marker.

L2D41:

PUSH HL
LDAB
CALL L2B81

POP HL

JR NC,L2D6B
DEC HL

LD AH

ORL

JR NZ,L2D41
JR L2D6B

Save the number of positions to move.

B=Cursor column number.

Find previous editable position to the left in the Screen Line Edit Buffer, moving to
previous row if necessary.

Retrieve the number of positions to move.

Jump if no previous editable position exists.

Decrement the number of positions to move.

Jump back if the cursor position requires further moving.
Jump ahead to continue.

The error marker is after the cursor position. Move the cursor back until it is at the same position as the error marker.

L2D50:

L2D51:

L2D5E:

PUSH HL

LD HL,$ECOD
RES 7,(HL)

POP HL

EX DE,HL
LD HL,$0000
ORA

SBC HL,DE
PUSH HL
LDAB
CALL L2B9E

POP HL

JR NC,L2D6B
DEC HL

LD AH

ORL

JR NZ,L2D5E

Save the number of positions that the error marker is before the cursor. This will be
a negative number is the cursor is after the error marker.

Editor flags.

Signal 'got a key press'. Used in routine at $2B9E (ROM 0) to indicate that a new
character has caused the need to shift the cursor position.

Retrieve the negative difference in the cursor and error marker positions.
DE=Negative difference in the cursor and error marker positions.

Make the negative difference a positive number by subtracting it from 0.

HL=Positive difference in the cursor and error marker positions.

Save the number of positions to move.

B=Cursor column number.

Find next editable position to the right in the Screen Line Edit Buffer, moving to next
row if necessary.

Retrieve the number of positions to move.

Jump if no next editable position exists.

Decrement the number of positions to move.

Jump back if the cursor position requires further moving.

The cursor position is at the location of the error marker position

L2D6B:

[BUG - When moving the cursor up or down, an attempt is made to place the cursor at the same column position that it had on the previous row (the
preferred column). If this is not possible then the cursor is placed at the end of the row. However, it is the intention that the preferred column is still
remembered and hence an attempt is made to place the cursor at this column whenever it is subsequently moved. However, a bug at this point in the
ROM causes the preferred column position for the cursor to be overwritten with random data. If the cursor was moved from its original position into its

LD HL,$ECOD
SET 7,(HL)

Editor flags.
Set 'waiting for key press' flag.

168

SPECTRUM +2 ROM o DISASSEMBLY

error position then the preferred column gets set to zero and the next up or down cursor movement will cause the cursor marker to jump to the left-hand
side of the screen. However, if the cursor remained in the same position then the preferred column gets set to a random value and so on the next up
or down cursor movement the cursor marker can jump to a random position on the screen. The bug can can reproduced by typing a line that is just
longer than one row, pressing enter twice and then cursor down. The cursor marker will probably jump somewhere in the middle of the screen. Press
an arrow again and the computer may even crash. Credit: lan Collier (+3), Andrew Owen (128)] [The bug can be fixed by pre-loading the A register with
the current preferred column number. Credit: Paul Farrow.

LD A,($F6FO0) Fetch the preferred column position.]

CALL L2A37 Store cursor editing position.

LD A,$17 Paper 2, Ink 7 - Red.

CALL L3AB7 Set the cursor colour to show the position of the error.
ORA Reset the carry flag to signal that a syntax error occurred.
RET

Fetch Next Character from BASIC Line to Insert

This routine fetches a character from the BASIC line being inserted. The line may span above or below the screen, and so the character is retrieved
from the appropriate buffer.
Exit : A=Character fetched from the current position, or 'Enter" if end of line found.

L2D7A: LD HL,$EC00 Point to the 'insert BASIC line' details.
BIT 7,(HL) Has the column with the cursor been found?
JR Z,L.2D88 Jump if it has been found.
LD HL,($ECO06)
INC HL Increment the count of the number of editable characters in the BASIC line up to the
cursor.
LD ($ECO06),HL
L2D88: LD HL,$EC00 Point to the ‘insert BASIC line' details.
LD A,(HL) Fetch flags.
INC HL
LD B,(HL) Fetch the column number of the character being examined.
INC HL
LD C,(HL) Fetch the row number of the character being examined.
PUSH HL
AND $0F Extract the status code.
Register A:

Bit 0: 1=First row of the BASIC line off top of screen.

Bit 1: 1=0On first row of the BASIC line.

Bit 2: 1=Using lower screen and only first row of the BASIC line visible.
Bit 3: 1=At end of last row of the BASIC line (always 0 at this point).

LD HL,L2DAB Jump table to select appropriate handling routine.
CALL L3F75 Call handler routine.

Register L:

$01 - A character was returned from the Above-Screen Line Edit Buffer row.
$02 - A character was returned from the Screen Line Edit Buffer row.

$04 - A character was returned from the Below-Screen Line Edit Buffer row.
$08 - At the end of the last row of the BASIC line.

Register A holds the character fetched or 'Enter' if at the end of the BASIC line.

LD E,L E=Return status.
POP HL
JR Z,L2D9F Jump if no match found.
LD A,$0D A='Enter' character.
L2D9F: LD (HL),C Save the next character position row to examine.
DEC HL
LD (HL),B Save the next character position column to examine.
DEC HL
PUSH AF Save the character.
LD A,(HL) Fetch the current status flags.
AND $FO Keep the upper nibble.

169

SPECTRUM +2 ROM o DISASSEMBLY

ORE Update the location flags that indicate where to obtain the next character from.
LD (HL),A Store the status flags.

POP AF Retrieve the character.

RET

Fetch Next Character Jump Table

Jump to one of three handling routines when fetching the next character from the BASIC line to insert.

L2DAB: DEFB $03 Number of table entries.
DEFB $02 On first row of the BASIC line.
DEFW L2DD2
DEFB $04 Using lower screen and only first row of the BASIC line visible.
DEFW L2EOF
DEFB $01 First row of the BASIC line off top of screen.
DEFW L2DB5

Fetch Character from the Current Row of the BASIC Line in the Screen Line Edit Buffer

Fetch character from the current row of the BASIC line in the Screen Line Edit Buffer, skipping nulls until the end of the BASIC line is found.
Entry: C=Row number.
Exit : L=$01 - A character was returned from the Above-Screen Line Edit Buffer row, with A holding the character.

$02 - A character was returned from the Screen Line Edit Buffer row, with A holding the character.

$04 - A character was returned from the Below-Screen Line Edit Buffer row, with A holding the character.

$08 - At the end of the last row of the BASIC line, with A holding an 'Enter’ character.

Zero flag set to indicate a match from the handler table was found.

Table entry point - First row of BASIC line off top of screen

L2DB5: CALL L32DD Find row address in Above-Screen Line Edit Buffer, return in DE.
L2DB8: CALL L2E34 Fetch character from Above-Screen Line Edit Buffer row.
JR NC,L2DC4 Jump if end of row reached.
CP $00 Is it a null character, i.e. not editable?
JR Z,L2DB8 Jump back if so until character found or end of row reached.
LD L,$01 Signal a character was returned from the Above-Screen Line Edit Buffer row, with A
holding the character.
RET Return with zero flag reset to indicate match found.

End of row reached - no more editable characters in Above-Screen Line Edit Buffer row

L2DC4: INCC Next row.
LD B,$00 Column 0.
LD HL,($F9DB) [BUG - This should be LD HL,$F9DB. The bug manifests itself when Enter is

pressed on an edited BASIC line that goes off the top of the screen and causes
corruption to that line. The bug at $30F6 (ROM 0) that sets default data for the
Below-Screen Line Edit Buffer implies that originally there was the intention to
have a pointer into the next location to use within that buffer, and so it seems to
reasonable to assume the same arrangement would have been intended for the
Above-Screen Line Edit Buffer. If that were the case then the instruction here was
intended to fetch the next address within the Above-Screen Line Edit Buffer. Credit:
lan Collier (+3), Andrew Owen (128)]

LD AC Fetch the row number.
CP (HL) Exceeded last row of Above-Screen Line Edit Buffer?
JR C,L2DB5 Jump back if not exceeded last row the Above-Screen Line Edit Buffer.

All characters from rows off top of screen fetched so continue onto the rows on screen [Note it is not possible to have more than 20 rows off the top
of the screen]

LD B,$00 Column 0.
LD C,$00 Row 0. This is the first visible row of the BASIC line on screen.

Table entry point - On visible row of BASIC line

170

SPECTRUM +2 ROM o DISASSEMBLY

C=Row number of the first visible row of the BASIC line in the Screen Line Edit Buffer B=Starting column number of the first visible row of the BASIC
line in the Screen Line Edit Buffer

L2DD2: PUSH HL Save address of the table entry.
LD HL,$F6EE Point to the cursor position details.
LD A,(HL) Fetch the row number of the cursor.
CPC Is cursor on the first visible row of the BASIC line?
JR NZ,L2DE4 Jump if not.

Cursor on first visible row of the BASIC line in the Screen Line Edit Buffer.

INC HL
LD A,(HL) Fetch the column number of the cursor.
CPB Reached the column with the cursor in the first visible row of the BASIC line?
JR NZ,L2DE4 Jump if not.
LD HL,$EC00 BASIC line insertion flags.
RES 7,(HL) Indicate that the column with the cursor has been found.
L2DE4: POP HL Retrieve address of the table entry.
L2DES: CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
CALL L2E34 Fetch character from Screen Line Edit Buffer row at column held in B, then
increment B.
JR NC,L2DF4 Jump if end of row reached.
CP $00 Is the character a null, i.e. not editable?
JR Z,L2DD2 Jump back if null to keep fetching characters until a character is found or the end of

the row is reached.

A character in the current row of the BASIC line was found

LD L,$02 L=Signal a character was returned from the Screen Line Edit Buffer row, with A
holding the character.
RET Return with zero flag reset to indicate match found.

End of row reached - no editable characters in the Screen Line Edit Buffer row

L2DF4: LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
BIT 3,(HL) Is it the last row of the BASIC line?
JR Z,L2EO01 Jump if not.

On last row of the BASIC line and finished fetching characters from the line

LD L,$08 L=Signal at the end of the last row of the BASIC line.
LD A,$0D A="Enter' character.
RET Return with zero flag reset to indicate match found.

Not on the last row of the BASIC line so move to the beginning of the next, if it is on screen.

L2E01: LD HL,$F6F3 Point to the 'top row scroll threshold' value.
INC C Next row of the BASIC line in the Screen Line Edit Buffer.
LD A,(HL) Fetch the number of the last row in the Screen Line Edit Buffer.
CPC Exceeded the upper scroll threshold?
LD B,$00 Column 0.
JR NC,L2DE5 Jump back if not to retrieve the character from the next row.

The upper row threshold for triggering scrolling the screen has been reached so proceed to scroll up one line

LD B,$00 Column 0. [Redundant byte]
LD C,$01 Row 1. (Row 0 holds a copy of the last row visible on screen)

Table entry point - Using lower screen and only top row of a multi-row BASIC line is visible

L2EOF: CALL L31E9 Find the address of the row specified by C in Below-Screen Line Edit Buffer, into DE.
L2E12: CALL L2E34 Fetch character from Below-Screen Line Edit Buffer row, incrementing the column
number.

171

JR NC,L2E1E
CP $00

JR Z,L2E12
LD L,$04

RET

SPECTRUM +2 ROM o DISASSEMBLY

Jump if end of row reached.

Is the character a null, i.e. not editable?

Jump back if null to keep fetching characters until a character is found or the end of
the row is reached.

L=Signal a character was returned from the Below-Screen Line Edit Buffer row, with
A holding the character.

Return with zero flag reset to indicate match found.

End of row reached - no editable characters in the (below screen) Below-Screen Line Edit Buffer row

L2E1E: LD HL,$0020
ADD HL,DE
BIT 3,(HL)
JR NZ,L2E2F
INCC
LD B,$00
LD A,($F6F5)
CPC
JR NC,L2EOF

All characters from rows off bottom of screen fetched so return an 'Enter’ [Note it is not possible to have more than 20 rows off the bottom of the screen]

L2E2F: LD L,$08
LD A,$0D
RET

Point to the flag byte for the row.

Is it the last row of the BASIC line?

Jump if so.

Next row.

Column 0.

Fetch number of rows in the Below-Screen Line Edit Buffer.
Exceeded last line in Below-Screen Line Edit Buffer?

Jump back if not to retrieve the character from the next row.

L=Signal at the end of the last row of the BASIC line.
A='Enter' character.
Return with zero flag reset to indicate match found.

Fetch Character from Edit Buffer Row

L2E34: LD A $1F
CcPB
CCF
RET NC
LDL,B
LD H,$00
ADD HL,DE
LD A,(HL)
INCB
SCF
RET

Upper Screen Rows Table
Copied to $EC15-$EC16.

L2E41: DEFB $01
DEFB $14

Lower Screen Rows Table
Copied to $EC15-$EC16.

L2E43: DEFB $01
DEFB $01

Reset to Main Screen

L2E45: LD HL,$5C3C
RES 0,(HL)
LD HL,L2E41

Column 31.
Is column

Return if B is greater than 31.
HL=Column number.
Fetch the character at the specified column.

Increment the column number.
Signal character fetched.

Number of bytes to copy.
Number of editing rows (20 for upper screen).

Number of bytes to copy.
Number of editing rows (1 for lower screen).

TVFLAG.
Signal using main screen.
Upper screen lines table.

172

SPECTRUM +2 ROM o DISASSEMBLY

LD DE,$EC15 Destination workspace variable. The number of editing rows on screen.
JP L3F61 Copy one byte from $2E42 (ROM 0) to $EC15

Reset to Lower Screen

L2E53: LD HL,$5C3C TVFLAG.
SET 0,(HL) Signal using lower screen.
LD BC,$0000
CALL L3751 Perform 'PRINT AT 0,0;".
LD HL,L2E43 Lower screen lines table.
LD DE,$EC15 Destination workspace variable. The number of editing rows on screen.
JP L3F61 Copy one byte from $2E44 (ROM 0) to $EC15

Find Edit Buffer Editable Position from Previous Column to the Right

This routine finds the first editable character position in the specified edit buffer row from the previous column to the right.
It first checks the current column, then the previous column and then the columns to the right. The column containing the first non-null character
encountered is returned.

Entry: B =Column number to start searching from.
DE=Start of row in edit buffer.
Exit : Carry flag set if an editable character was found.

HL=Address of closest editable position.
B =Number of closest editable column.

L2E67: LD H,$00 [Could have saved 1 byte by calling routine at $2EA1 (ROM 0)]
LDL,B HL=Column number.
ADD HL,DE HL=Address in edit buffer of the specified column.
LD A,(HL) Fetch the contents.
CP $00 Is it a null character, i.e. end-of-line or past the end-of-line?
SCF
RET NZ Return if this character is part of the edited line.
LD AB
ORA
JR Z,L2E81 Jump ahead if the first column.
PUSH HL Otherwise check the
DEC HL preceding byte
LD A,(HL) and if it is non-zero
CP $00 then return with
SCF HL pointing to the
POP HL first zero byte.
RET Nz
L2E7C: LD A,(HL) Get the current character.
CP $00 Is it a null (i.e. end-of-line)?
SCF Signal position is editable.
RET Nz Return if this character is part of the edited line.
L2E81: INC HL Advance to the next position.
INC B Increment the column number.
LD AB
CP $1F Reached the end of the row?
JR C,L2E7C Jump back if more columns to check.
RET Return with carry flag reset if specified column position does not exist.

Find Edit Buffer Editable Position to the Left

This routine finds the first editable character position in the specified edit buffer row from the current column to the left.
It first checks the current column and returns this if it contains an editable character. Otherwise it searches the columns to the left and if an editable
character is found then it returns the column to the right of it.

Entry: B =Column number to start searching from.
DE=Start of row in edit buffer.
Exit : Carry flag set if an editable character was found.

HL=Address of closest editable position.

173

SPECTRUM +2 ROM o DISASSEMBLY

B =Number of the column after the editable position.

L2E89: LD H,$00 [Could have saved 1 byte by calling routine at $2EA1 (ROM 0)]
LDL,B HL=Column number.
ADD HL,DE HL=Address in edit buffer of the specified column.
LD A,(HL) Fetch the contents.
CP $00 Is it a null character, i.e. end-of-line or past the end-of-line?
SCF Signal position is editable.
RET Nz Return if an editable character was found.
L2E92: LD A,(HL) Get the current character.
CP $00 Is it a null, i.e. non-editable?
JR NZ,L2E9E Jump if not.
LD AB At column 0?
ORA
RET Z Return if so.
DEC HL Next column position to test.
DECB Decrement column index number.
JR L2E92 Repeat test on previous column.
L2E9E: INCB Advance to the column after the editable position.
SCF Signal position is editable.
RET

Fetch Edit Buffer Row Character

Entry: DE=Add of edit buffer row.
B =Column number.
Exit : A =Character at specified column.

[Not used by the ROM]

L2EA1: LD H,$00
LDL,B HL=Column number.
ADD HL,DE HL=Address in edit buffer of the specified column.
LD A,(HL) Get the current character.
RET

Insert Character into Screen Line Edit Buffer

Called when a non-action key is pressed. It inserts a character into the Screen Line Edit Buffer if there is room.

Entry: A=Character code.
B=Cursor column position.
C=Cursor row position.

L2EAT: LD HL,$ECOD Editor flags.
ORA Clear carry flag. [Redundant since carry flag return state never checked]
BIT 0,(HL) Is the Screen Line Edit Buffer is full?
RET NZ Return if it is.
PUSH BC Save cursor position.
PUSH AF Save key code. [Redundant since $30DA (ROM 0) preserves AF]
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
POP AF Get key code. [Redundant since $30DA (ROM 0) preserves AF]

Insert the character into the current row. If a spill from this row occurs then insert that character into the start of the following row and shift all existing
characters right by one. Repeat this process until all rows have been shifted.

Insert character into edit buffer row at current cursor position, shifting the row right.

L2EB4: CALL L16CB

Returns carry flag reset. Zero flag will be set if byte shift out of last column position
was $00.

PUSH AF Save key code and flags.

EX DE,HL HL=Address of edit buffer row. DE=Address of flags.

CALL L362A Print a row of the edit buffer to the screen.

EX DE,HL DE=Address of edit buffer row. HL=Address of flags.

POP AF Get key code and flags.

174

SPECTRUM +2 ROM o DISASSEMBLY

CCF Sets the carry flag since it was reset via the call to $16CB (ROM 0). [Redundant
since never tested]

JR Z,L2EF2 Jump ahead to make a return if there was no spill out from column 31, with the carry
flag set.

There was a spill out from the current row, and so this character will need to be inserted as the first character of the following row.
If this is the last row of the BASIC line then a new row will need to be inserted.

PUSH AF Save key code.

LD B,$00 First column in the next row.

INCC Next row.

LD A,($EC15) The number of editing rows on screen.

CPC Has the bottom of the Screen Line Edit Buffer been reached?
JR C,L2EEE Jump ahead if so.

The editing screen is not full

LD A,(HL) Fetch contents of flag byte for the row (byte after the 32 columns).

LD E,A E=0Id flags.

AND $D7 Mask off 'last row of BASIC line' flag. [Other bits not used, could have used AND
$F7]

CP (HL) Has the status changed?

LD (HL),A Store the new flags, marking it as not the last BASIC row.

LD AE A=COriginal flags byte for the row.

SET 1,(HL) Signal that the row spans onto another row.

PUSH AF Save the flags.

CALL L30DA DE=Start address in Screen Line Edit Buffer of the following row, as specified in C.

POP AF Fetch the flags.

JR Z,L2EES8 Jump if the character was not inserted into the last row of the BASIC line.

The character was inserted into the last row of the BASIC line causing a spill of an existing character into a new row, and therefore a new 'last' row
needs to be inserted.

RES 0,A Signal not the first row of the BASIC line.

CALL L2EF9 Insert a blank line into the Screen Edit Buffer.

JR NC,L2EF2 Jump if the buffer is full to exit.

CALL L361A Indent the row by setting the appropriate number of null characters in the current
Screen Line Edit Buffer row.

POP AF Get key code.

JR L2EB4 Jump back to insert the character in the newly inserted row. [Could have saved 2

bytes by using JR $2EEB (ROM 0)]

The character was not inserted into the last row of the BASIC line, so find the first editable position on the following row, i.e.
skip over any indentation.

L2EES: CALL L2E67 Find editable position on this row from the previous column to the right, returning
column number in B.
POP AF Get key code.
JR L2EB4 Jump back to insert the character into the first editable position of next the row.

The Screen Edit Line Buffer is full and the character insertion requires shifting of all rows that are off screen in the Below-Screen Line Edit Buffer.

L2EEE: POP AF Get key code.
CALL L3194 Insert the character at the start of the Below-Screen Line Edit Buffer, shifting all
existing characters to the right.

All paths join here

L2EF2: POP BC Retrieve cursor position.
RET

175

SPECTRUM +2 ROM o DISASSEMBLY

Insert Blank Row into Screen Edit Buffer, Shifting Rows Down
This routine inserts a blank row at the specified row, shifting affected rows down.

Entry: C=Row number to insert the row at.

Exit : Carry flag set to indicate edit buffer rows were shifted.

L2EF4: CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD A,$09 Signal 'first row' and 'last row', indicating a new blank row.

DE=Address of row within Screen Line Edit Buffer.
C=Row number to insert the row at.
A=Screen Line Edit Buffer row flags value.

L2EF9: PUSH BC Save registers.
PUSH DE
LD B,C B=Row number.
LD HL,L2F15 The empty row data.
LD C,A C=Flags for the row.
PUSH BC
CALL L1694 Shift all Screen Line Edit Buffer rows down and insert a new blank row, updating the
display file if required.
POP BC
LD AC A=Flags for the row.
JR NC,L2F12 Jump if no edit buffer rows were shifted.

Rows were shifted down

LDC,B B=Row number, where the new blank row now is.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020 Poaint to the flag byte for the row.
ADD HL,DE
LD (HL),A Store the flag byte value for the row.
SCF Signal edit buffer rows were shifted.
L2F12: POP DE Restore registers.
POP BC
RET

Empty Edit Buffer Row Data

L2F15: DEFB $00 32 null column markers, i.e. none of the columns are editable.
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00

176

SPECTRUM +2 ROM o DISASSEMBLY

DEFB $00

DEFB $00

DEFB $00

DEFB $00

DEFB $00

DEFB $00

DEFB $00

DEFB $00

DEFB $00

DEFB $09 Flags: Bit 0: 1=The first row of the BASIC line. Bit 1: 0=Does not span onto another
row. Bit 2: 0=Not used (always 0). Bit 3: 1=The last row of the BASIC line. Bit 4:
0=No associated line number. Bit 5: 0=Not used (always 0). Bit 6: 0=Not used
(always 0). Bit 7: 0=Not used (always 0).

DEFW $0000 There is no BASIC line number associated with this edit row.

Delete a Character from a BASIC Line in the Screen Line Edit Buffer

Delete a character at the specified position, shifting subsequent characters left as applicable.
Entry: B=Column number.
C=Row number.

L2F38: PUSH BC Save initial cursor row and column numbers.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
PUSH BC Stack initial cursor row and column numbers again.

Enter a loop to find the last row of the BASIC line or the end of the visible screen, whichever comes first

L2F3D: LD HL,$0020
ADD HL,DE Point to the flag byte for this row.
BIT 1,(HL) Does the row span onto another row?
LD A,$00 A null character will be inserted. [Could have saved 1 byte by using XOR A and
placing it above the BIT 1,(HL) instruction]
JR Z,L2F57 Jump ahead if the row does not span onto another row, i.e. the last row.
The row spans onto another
INCC C=Advance to the next row.
LD HL,$0023
ADD HL,DE
EX DE,HL DE points to the first character of the next row. HL points to the first character of the
current row.
LD A,($EC15) A=Number of editing lines.
CPC Has the end of the screen been reached?
JR NC,L2F3D Jump back if within screen range to find the last row of the BASIC line.

The end of the screen has been reached without the end of the BASIC line having been reached

DECC Point to last row on screen.
CALL L31EF Shift all characters of the BASIC Line held within the Below-Screen Line Edit Buffer.

A loop is entered to shift all characters to the left, beginning with the last row of the BASIC line in the Screen Line Edit Buffer and until the row that
matches the current cursor position is reached.

L2F57: POP HL Fetch the initial cursor row and column numbers.
L2F58: PUSH HL Stack initial cursor row and column numbers.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the last row, as specified in C.
POP HL HL=Initial cursor row and column numbers.
LD B,A B=Character to insert.
LDAC A=Row number to delete from.
CPL Deleting from the same row as the cursor is on within the BASIC line?
LD AB A=Character to insert.
PUSH AF Save the flags status.
JR NZ,L2F67 Jump if not deleting from the row containing the cursor.

177

SPECTRUM +2 ROM o DISASSEMBLY

Deleting from the row matching the cursor position within the BASIC line, therefore only shift those bytes after the cursor position

LD B,H B=lInitial column number.
JR L2F70 Jump ahead to continue, with zero flag set to indicate deleting from the row contain
the cursor.

Deleting on row after that matching the cursor position, therefore shift all editable characters within the row

L2F67: PUSH AF Save the character to insert.
PUSH HL Save initial cursor row and column numbers.
LD B,$00
CALL L2E67 Find first editable position on this row searching to the right, returning column
number in B.
POP HL HL=Initial cursor row and column numbers.
POP AF A=Character to insert, and zero flag reset to indicate not deleting from the row

contain the cursor.

DE=Start address of Screen Line Edit Buffer row.

A=Character to shift into right of row.

B=The column to start shifting at.

C=Row number to start shifting from.

Zero flag is set if deleting from the row matching the cursor position.

L2F70: PUSH HL HL=Initial cursor row and column numbers.
LD HL,$F6F4 Deleting flags.
SET 0,(HL) Signal deleting on the row matching the cursor position.
JR Z,L2F7A Jump if deleting from the row matching the cursor position.
RES 0,(HL) Signal not deleting on the row matching the cursor position.
L2F7A: CALL L16EO Insert the character into the end of the edit buffer row, shifting all columns left until
the cursor position is reached.
PUSH AF A=Character shifted out, and therefore to be potentially shifted into the end of the
previous row.
PUSH BC B=New column number. C=Row number.
PUSH DE DE=Start address of row to delete from.
LD HL,$F6F4 Deleting flags.
BIT 0,(HL) Deleting from the row matching the cursor position?
JR NZ,L2F95 Jump ahead if so.

Deleting from a row after the cursor position

LD B,$00 Column 0.
CALL L2BFA Is there an editable character on the row?
JR C,L2F95 Jump if there is.

Shifting the characters on this row has resulted in a blank row, so shift all rows below screen up to remove this blank row

CALL L2FA6 Shift up all BASIC line rows below to close the gap.
POP DE DE=Start address of row to delete from.

POP BC B=New column number. C=Row number.

JR L2F9A Jump ahead.

There are characters remaining on the row following the shift so display this to the screen and then continue to shift the remaining rows

L2F95: POP HL HL=Start address of the row.
POP BC B=New column number. C=Row number.
CALL L362A Print the row of the edit buffer to the screen, if required.
L2F9A: POP AF A=Character to insert.
DECC Previous row.
LD B,A B=Character to insert.
POP HL HL=Initial cursor row and column numbers.
POP AF Retrieve the flags status (zero flag set if deleting from the row matching the cursor
position).
LD AB A=Character to insert.
JP NZ,L2F58 Jump back if not deleting from the row matching the cursor position, i.e. all rows

after the cursor have not yet been shifted.

178

SPECTRUM +2 ROM o DISASSEMBLY

[BUG - The 'line altered' flag is not cleared when an 'edited' null line is entered. To reproduce the bug, insert a couple of BASIC lines, type a character,
delete it, and then cursor up or down onto a program line. The line is considered to have been changed and so is processed as if it consists of characters.
Further, when cursor down is pressed to move to a BASIC line below, that line is deemed to have changed and hence moving off from it causing that line
to be re-inserted into the BASIC program. Credit: lan Collier (+3), Paul Farrow (128)] [The fix for the bug is to check whether all characters have been
deleted from the line and if so to reset the 'line altered' flag. This would require the following code to be inserted at this point. Credit: Paul Farrow. PUSH
DE LD HL,$0020 ADD HL,DE ; Point to the flag byte for this row. POP DE BIT 0,(HL) ; First row of BASIC line in addition to the last? JR Z,SKIP_CLEAR ;
Jump ahead if not. LD B,$00 CALL $2E67 (ROM 0) ; Is this a blank row? i.e. Find editable position on this row to the right, returning column number in B.
JR C,SKIP_CLEAR ; Jump if a character exists on the line. LD HL,$ECOD RES 3,(HL) ; Signal that the current line has not been altered. SKIP_CLEAR:
XOR A ; Set the preferred column to 0.]

SCF [Redundant since never subsequently checked]
POP BC Retrieve initial cursor row and column numbers.
RET

Shift Rows Up to Close Blank Row in Screen Line Edit Buffer

The cursor is on a blank row but has been moved off of it. Therefore shift all BASIC lines below it up so as to remove the blank row.
Entry: DE=Address of the row in the Screen Line Edit Buffer containing the cursor.

C =Row number in the Screen Line Edit Buffer containing the cursor.

Carry flag set if rows were shifted up, i.e. a row below existed.

L2FA6: LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
LD A,(HL)
BIT 0,(HL) Is the cursor on a blank row (which is flagged as the first row of a BASIC line)?
JR NZ,L2FD8 Jump ahead if it is. [Could have improved speed by jumping to $2FDC (ROM 0)

since DE already holds the start address of the row]

Cursor not on a blank row but is on its own row at the end of a multi-row BASIC line

PUSH AF Save the cursor row flag byte.

PUSH BC Save the cursor row number in C.

LD A,C Is the cursor on row 0?

ORA

JR NZ,L2FCA Jump ahead if it is not, i.e. there is at least one row above.

Cursor on row 0, hence a BASIC line must be off the top of the screen [???? Can this ever be the case?]

PUSH BC Save the cursor row number.

LD HL,($FC9A) Line number at top of screen.

CALL L3370 Find closest line number (or $0000 if no line).

LD ($FC9A),HL Line number at top of screen.

LD A,($F9DB) Fetch the number of rows of the BASIC line that are in the Above-Screen Line Edit
Buffer,

LDCA i.e. that are off the top of the screen.

DECC Decrement the row count, i.e. one less row off the top of the screen.

CALL L32DD DE=Address of row in Above-Screen Line Edit Buffer.

POP BC Retrieve the cursor row number.

JR L2FCE Jump ahead.

There is a row above so set this as the last row of the BASIC line

L2FCA: DECC Previous row, i.e. the last row of the BASIC line that contains editable characters.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the previous row.
L2FCE: POP BC Retrieve the cursor row number.
POP AF Retrieve the cursor row flag byte, which indicates last row of BASIC line.
LD HL,$0020 Point to the flag byte for the previous row.
ADD HL,DE
RES 1,(HL) Signal that the previous row does not span onto another row.
OR (HL) Keep the previous row's first BASIC row flag.
LD (HL),A Update the flag byte for the previous row.

179

SPECTRUM +2 ROM o DISASSEMBLY

Shift up all rows below the old cursor position within the Screen Line Edit Buffer and including the Below-Screen Line Edit Buffer, and update the display
file if required

L2FDS8: LD B,C B=Row number in the Screen Line Edit Buffer.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
CALL L3105 Shift up rows of the BASIC line in the Below-Screen Line Edit Buffer, or insert the
next line BASIC line if buffer empty.
JP L1667 Shift Screen Line Edit Buffer rows up from row specified by B and update the display

file if required. [Could have saved 3 bytes by replacing the instructions CALL $3105
(ROM 0) / JP $1667 (ROM 0) with JP $1664 (ROM 0)]

DELETE-WORD-LEFT Key Handler Routine

This routine deletes to the start of the current word that the cursor is on, or if it is on the first character of a word then it deletes to the start of the previous
word. Since the function works by deleting one character at a time, display file updates are disabled whilst the function is executing to prevent screen flicker.
If there is no word to delete then an error beep is requested.

Symbol:

-

DEL
-

Exit: Carry flag reset to indicate to produce an error beep and set not to produce an error beep.

L2FE2: CALL L30AA Remove cursor attribute, disable display file updates and get current cursor position.
Exits with HL pointing to the editing area information.
L2FES: PUSH HL Save address of the editing area information.
CALL L30BB Does a previous character exist in the current Screen Line Edit Buffer row?
JR Z,L301D Jump if at the start of the BASIC line to print all rows.
CALL L2B81 Is previous column position editable? (Returns carry flag set if editable)
POP HL Retrieve address of the editing area information.
JR NC,L301E Jump if not editable to print all rows.

A previous character exists and is editable

CALL L2A40 Get character from current cursor position.

PUSH AF Save current character.

PUSH HL Save address of the editing area information.

CALL L2F38 Delete character to the right, shifting subsequent rows as required.
POP HL Retrieve address of the editing area information.

POP AF Retrieve current character.

CP $20 Is it a space?

JR Z,L2FE5 Jump back if so to find the end of the last word.

The end of the word to delete has been found, so enter a loop to search for the start of the word

L2FFF: PUSH HL Save address of the editing area information.
CALL L30BB Does a previous character exist in the current Screen Line Edit Buffer row?
JR Z,L301D Jump if at the start of a BASIC line to print all rows.
CALL L2B81 Is previous column position editable? (Returns carry flag set if editable)
POP HL Retrieve address of the editing area information.
JR NC,L301E Jump if not editable to print all rows.
CALL L2A40 Get character from current cursor position
CP $20 Is it a space?
JR Z,L3019 Jump if so.

Character is not a space

PUSH HL Save address of the editing area information.

CALL L2F38 Delete character to the right, shifting subsequent rows as required.
POP HL Retrieve address of the editing area information.

JR L2FFF Jump back to delete next character until start of the word found.

A space prior to a word has been found

L3019: PUSH HL Save address of the editing area information.

180

L301D:

CALL L2B9E

POP HL

Print all rows to the screen

L301E:

LDAB
PUSH AF
PUSH HL

LD HL,$EEF5
RES 2,(HL)
LD A,($EC15)

PUSH BC
LD B,$00

LD C,A

CPA

CALL L1624
POP BC

LD HL,$ECOD
SET 3,(HL)
POP HL

SPECTRUM +2 ROM o DISASSEMBLY

Find next Screen Line Edit Buffer editable position to right, moving to next row if
necessary.
Retrieve address of the editing area information.

Fetch the new end column number.
Save the flags status.
Save address of the editing area information.

Re-enable display file updates.

The number of editing rows on screen. [This will end up being used as the alternate
cursor column]

Save the row and new column numbers.

B=Print from row 0.

C=Number of editing rows on screen.

Set the zero flag to signal not to change cursor position settings.
Print all Screen Line Edit Buffer rows to the display file.

Retrieve the row and new column numbers.

Editor flags.

Indicate current line has been altered.

Retrieve address of the editing area information.

[BUG - The preferred cursor column field gets corrupted with the number of editing rows on screen. Credit: lan Collier (+3), Andrew Owen (128)] [The
bug can be fixed by pre-loading the A register with the current preferred column number. Credit: Paul Farrow.

LD A,($F6F0)

CALL L2A1E
POP AF
RET

Fetch the preferred column position.]

Store editing position and print cursor.
Retrieve the flags status.

DELETE-WORD-RIGHT Key Handler Routine

This routine deletes to the start of the next word. Since the function works by deleting one character at a time, display file updates are disabled whilst
the function is executing to prevent screen flicker.
If there is no word to delete then an error beep is requested.

Symbol:

DEL
>

Exit: Carry flag set to indicate not to produce an error beep.

L303D:

L3040:

L3055:

CALL L30AA

PUSH HL
CALL L2A40
POP HL

CP $00

SCF

JR Z,L301E
PUSH AF
PUSH HL
CALL L2F38
POP HL
POP AF

CP $20

JR NZ,L3040
CALL L2A40
CP $20

SCF

JR NZ,L301E
PUSH HL
CALL L2F38
POP HL

Remove cursor attribute, disable display file updates and get current cursor position.
Exits with HL pointing to the editing area information.

Save address of the editing area information.

Get character from current cursor position.

Retrieve address of the editing area information.

Is it a null character, i.e. end of BASIC line?

Signal do not produce an error beep.

Jump if end of the BASIC line to print all rows.

Save the character.

Save address of the editing area information.

Delete character to the right, shifting subsequent rows as required.
Retrieve address of the editing area information.

Retrieve the character.

Was the character a space?

Jump back if not to delete the next character until the end of the word is found.
Get character from current cursor position.

Is it a space?

Signal do not produce an error beep.

Jump if not to print all rows.

Save address of the editing area information.

Delete character to the right, shifting subsequent rows as required.
Retrieve address of the editing area information.

181

SPECTRUM +2 ROM o DISASSEMBLY

JR L3055 Jump back to delete all subsequent spaces until the start of the next word or the end
of the line is found.

DELETE-TO-START-OF-LINE Key Handler Routine

Delete to the start of the current BASIC line. Since the function works by deleting one character at a time, display file updates are disabled whilst the
function is executing to prevent screen flicker.

An error beep is not produced if there is no characters in the current BASIC line.

Symbol:

DEL

Exit: Carry flag set to indicate not to produce an error beep.

L3064: CALL L30AA Remove cursor attribute, disable display file updates and get current cursor position.
Exits with HL pointing to the editing area information.
L3067: PUSH HL Save address of the editing area information.
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
BIT 0,(HL) Is it the first row of the BASIC line?
JR NZ,L307F Jump if so.

Not in the first row of a BASIC line

CALL L2B81 Is previous column position editable? (Returns carry flag set if editable)

JR NC,L3093 Jump if not editable since nothing to delete.

CALL L2F38 Delete character to the right, shifting subsequent rows as required.

POP HL Retrieve address of the editing area information.

JR L3067 Jump back to delete next character until first row of the BASIC line is found.
PUSH HL [Redundant byte]

In the first row of the BASIC line

L307F: LD AB Fetch the new end column number.
CP $00 Is it at the start of the row?
JR Z,L3093 Jump if so since nothing to delete.
DEC B Point to previous column.
CALL L2A40 Get character from current cursor position.
INC B Point back to the new end column.
CP $00 Is it a null character, i.e. not editable?
JR Z,L3093 Jump if so since nothing to delete.
DEC B Point to previous column.
CALL L2F38 Delete character to the right, shifting subsequent rows as required.
JR L307F Jump back to delete the next character until the start of the BASIC line is found.
L3093: POP HL Retrieve address of the editing area information.
L3094: SCF Signal not to produce error beep.
JP L301E Jump back to print all rows.

DELETE-TO-END-OF-LINE Key Handler Routine

Delete to the end of the current BASIC line. Since the function works by deleting one character at a time, display file updates are disabled whilst the
function is executing to prevent screen flicker.

An error beep is not produced if there is no characters in the current BASIC line.

Symbol:

DEL

Exit: Carry flag set to indicate not to produce an error beep.

L3098: CALL L30AA Remove cursor attribute, disable display file updates and get current cursor position.
Exits with HL pointing to the editing area information.
L309B: CALL L2A40 Get character from current cursor position.
CP $00 Is it a null character, i.e. at end of BASIC line?

182

SPECTRUM +2 ROM o DISASSEMBLY

SCF Signal not to produce an error beep.

JR Z,L3094 Jump if end of BASIC line to print all rows.

PUSH HL Save address of the editing area information.

CALL L2F38 Delete character to the right, shifting subsequent rows as required.

POP HL Retrieve address of the editing area information.

JR L309B Jump back to delete the next character until the end of the BASIC line is found.

Remove Cursor Attribute and Disable Updating Display File

This routine is called by the DELETE key handler routines. Aside from removing the cursor from the display, it prevents display file updates occurring
whilst the delete functions are executing.

Exit: HL=Address of the editing area information.

A=Cursor column number preferred.

B=Cursor column number.

C=Cursor row number.

L30AA: LD HL,$ECOD Editor flags.
RES 0,(HL) Signal that the Screen Line Edit Buffer is not full.
CALL L2A12 Remove cursor, restoring old attribute.
LD HL,$EEF5
SET 2,(HL) Indicate not to print edit buffer rows, therefore preventing intermediate screen
updates.
LD HL,$F6F1 Point to the editing area information.
RET

Previous Character Exists in Screen Line Edit Buffer?
This routine tests the whether a previous character exists in the current BASIC line within the Screen Line Edit Buffer.

Entry: C=Row number.
B=Column number.
Exit : Zero flag set if at start of the BASIC line (first column or leading null).
L30BB: CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD HL,$0020
ADD HL,DE HL=Address of the flag byte for this row.
BIT O,(HL) Is this the first row of a BASIC line?
JR Z,L30D4 Jump if not.

On first row of a BASIC line

LDAB Fetch the column number.
CP $00 At the start of the row?
JR Z,L30D8 Jump ahead if so.
DECB Move to the previous column.
CALL L2A40 Get current character from Screen Line Edit Buffer.
INC B Move back to the original column.
CP $00 Does the position contain a null?
JR Z,L.30D8 Jump if not.

L30D4: LD A$01
ORA Reset the zero flag.
RET

L30DS8: XOR A Set the zero flag.
RET

Find Row Address in Screen Line Edit Buffer

Find address in Screen Line Edit Buffer of specified row.
This routine calculates DE = $EC16 + $0023*C.

Entry: C=Row number.
Exit : DE=Address of edit row.
L30DA: LD HL,$EC16 Point to the Screen Line Edit Buffer.

183

SPECTRUM +2 ROM o DISASSEMBLY

L30DD: PUSH AF Save A.
LD AC A=Edit row number.
LD DE,$0023 35 bytes per row.
L30E2: ORA Row requested found?
JR Z,L30E9 Jump to exit if so.
ADD HL,DE Advance to next row.
DEC A
JR L30E2 Jump to test if requested row found.
L30E9: EX DE,HL Transfer address to DE.
POP AF Restore A.
RET

Find Position within Screen Line Edit Buffer

Find the address of a specified row and column in the Screen Line Edit Buffer.
The routine calculates DE = $EC16 + $0023*C + B.

Entry: B=Column number.
C=Row number.
Exit : HL=Address of specified position.

[Not used by the ROM]

L30EC: PUSH DE
CALL L30DA DE=Start address in Screen Line Edit Buffer of the row specified in C.
LD H,$00
LDL,B
ADD HL,DE DE = $EC16 + $0023*C + B.
POP DE
RET

Below-Screen Line Edit Buffer Settings

This table holds the default values for the Below-Screen Line Edit Buffer settings starting at $F6F5. It should only contain a table of 3 bytes to tie up
with the space allocated within the Editor workspace variables at $F6F5. As a result, the last 2 bytes will get copied into the Below-Screen Line Edit
Buffer itself. It appears that the word at $F6F6 is supposed to be a pointer to the next available or accessed location within the buffer but this facility
is never used. Therefore the table need only be 1 byte long, in which case it would be more efficient for the routine at $30FC (ROM 0) to simply set
the byte at $F6F5 directly.

L30F6: DEFB $05 Number of bytes in table.
DEFB $00 $F6F5 = Number of rows held in the Below-Screen Line Edit Buffer.
DEFW $0000 $F6F6/7. [BUG - These two bytes should not be here and the table should only
contain 3 bytes. Credit: Paul Farrow]
DEFW $F6F8 $F6F8/9 = Points to next location within the Below-Screen Line Edit Buffer.

Set Below-Screen Line Edit Buffer Settings

Sets the default values for the Below-Screen Line Edit Buffer settings.
Copy 5 bytes from $30F7-$30FB (ROM 0) to $F6F5-$F6F9.

L30FC: LD HL,L30F6 Default Below-Screen Line Edit Buffer settings.
LD DE,$F6F5 Destination address.
JP L3F61 Copy bytes.

Shift Up Rows in Below-Screen Line Edit Buffer

Shifts up all rows in the Below-Screen Line Edit Buffer, or if empty then copies a BASIC line from the program area into the Below-Screen Line Edit Buffer.
Exit: HL=Address of the Below-Screen Line Edit Buffer.

L3105: PUSH BC Save BC.
PUSH DE Save DE.
LD HL,$F6F5 Point to the Below-Screen Line Edit Buffer details.
PUSH HL Save it.

184

SPECTRUM +2 ROM o DISASSEMBLY

LD A,(HL) A=Number of rows held in Below-Screen Line Edit Buffer.
ORA Are there any rows below screen?
JR NZ,L3127 Jump if so.

There are no rows in the Below-Screen Line Edit Buffer

PUSH HL Save the address of the Below-Screen Line Edit Buffer details.

CALL L3385 Copy 'Insert Keyword Representation Into Keyword Construction Buffer' routine into
RAM.

LD HL,($FOD7) HL=Line number of the BASIC line in the program area being edited.

CALL L3378 Create line number representation in the Keyword Construction Buffer of the next
BASIC line.

JR NC,L311E Jump if next line does not exist, with HL holding $0000.

LD ($F9D7),HL Store the new line number.

L311E: LD B,H

LDC,L BC=Line number of the next BASIC line, or last BASIC line in the program.

POP HL Retrieve the address of the Below-Screen Line Edit Buffer details.

CALL L32FC Copy the BASIC line into the Below-Screen Line Edit Buffer, or empty the first buffer
row if the BASIC line does not exist.

DEC A Decrement the count of the number of rows held in the Below-Screen Line Edit
Buffer, i.e. assume the rows have been shifted.

JR L313C Jump forward.

There are rows in the Below-Screen Line Edit Buffer so shift all rows up

L3127: LD HL,$ECOD Editor flags.
RES 0,(HL) Signal that the Screen Line Edit Buffer is not full.
LD HL,$F6F8 Below-Screen Line Edit Buffer, the temporary copy of line being edited.
LDDH
LD E,L
LD BC,$0023 Move all rows in the Below-Screen Line Edit Buffer up by one row.
ADD HL,BC
LD BC,$02BC 20 rows.
LDIR
DEC A Decrement the count of the number of rows held in the Below-Screen Line Edit
Buffer.
SCF [Redundant since never subsequently checked]
L313C: POP DE DE=Points to number of rows held in the Below-Screen Line Edit Buffer.
LD (DE),A Update the number of rows held in the Below-Screen Line Edit Buffer
LD HL,$F6F8 HL=Address of first row in the Below-Screen Line Edit Buffer.
POP DE Restore DE.
POP BC Restore BC.
RET

Shift Down Rows in Below-Screen Line Edit Buffer

Shifts down all rows in the Below-Screen Line Edit Buffer, or the last Screen Line Edit Buffer row contains a complete BASIC line then it empties the
Below-Screen Line Edit Buffer.
Entry: DE=Start address in Screen Line Edit Buffer of the last editing row.
Exit : Carry flag reset to indicate Below-Screen Line Edit Buffer full.
A =Number of rows held in the Below-Screen Line Edit Buffer.
HL=Address of first row in the Below-Screen Line Edit Buffer.

L3144: PUSH BC Save BC.
PUSH DE DE=Start address in Screen Line Edit Buffer of the last editing row.
LD HL,$0020
ADD HL,DE Point to the flag byte for the edit buffer row.
LD A,(HL) Fetch flag byte.
CPL Invert bits.
AND $11
JR NZ,L3165 Jump if not the first row of the BASIC line or no associated line number stored.

First row of the BASIC line or an associated line number stored

185

SPECTRUM +2 ROM o DISASSEMBLY

PUSH HL HL=Points at flag byte of the last Screen Line Edit Buffer row.

PUSH DE DE=Address of the last Screen Line Edit Buffer row.

INC HL

LD D,(HL)

INC HL

LD E,(HL) DE=Corresponding BASIC line number.

PUSH DE Save it.

CALL L3385 Copy 'Insert Keyword Representation Into Keyword Construction Buffer' routine to

RAM.

POP HL HL=Corresponding line number for last editing row.

CALL L3370 Find the closest line number.

JR NC,L3163 Jump if line does not exist.

LD ($F9D7),HL Store as the line number of the BASIC line being edited.
L3163: POP DE DE=Address of the last Screen Line Edit Buffer row.

POP HL HL=Points at flag byte of edit buffer row.
L3165: BIT 0,(HL) Is it the first row of the BASIC line?

LD HL,$F6F5 Point to the Below-Screen Line Edit Buffer details.

PUSH HL Save the address of the Below-Screen Line Edit Buffer details.

JR Z,L3172 Jump if not the first row of the BASIC line.

The first row of the BASIC line, hence after the shift there will not be a row straggling off the bottom of the screen

LD A,$00 Signal no rows held in the Below-Screen Line Edit Buffer. [Could have saved 1 byte
by using XOR A]

SCF Signal Below-Screen Line Edit Buffer is not full.

JR L313C Store new flag.

Not the first row the BASIC line

L3172: LD A,(HL) Fetch the number of rows held in the Below-Screen Line Edit Buffer.
CP $14 Has the bottom of the buffer been reached?
JR Z,L313C Jump if so, with the carry flag reset to indicate the buffer is full.

The Below-Screen Line Edit Buffer is not full so copy the last Screen Line Edit Buffer row into the top 'visible' Below-Screen Line Edit Buffer row

LD BC,$0023 Length of an edit buffer row.

LD HL,$F6F8 Address of the first row in the Below-Screen Line Edit Buffer.

EX DE,HL HL=Address of the last row in the Screen Line Edit Buffer, DE=Address of the first
row in the Below-Screen Line Edit Buffer.

LDIR Copy the last Screen Line Edit Buffer row into the first Below-Screen Line Edit Buffer

row, i.e. the ‘visible' edit buffer row.

Copy all Below-Screen Line Edit Buffer rows down

LD HL,$F9D6

LD D,H

LD E,L DE=End of the last row in the Below-Screen Line Edit Buffer.

LD BC,$0023 Length of an edit buffer row.

ORA

SBC HL,BC HL=End of penultimate row in the Below-Screen Line Edit Buffer.

LD BC,$02BC Length of the Below-Screen Line Edit Buffer minus one row.

LDDR Shift all the rows down by one.

INC A Increment the number of rows held in the Below-Screen Line Edit Buffer.
SCF Signal Below-Screen Line Edit Buffer is not full.

JR L313C Jump to store the number of rows held in the Below-Screen Line Edit Buffer.

Insert Character into Below-Screen Line Edit Buffer

Called when a non-action key is pressed and rows of the BASIC line spans into the Below-Screen Line Edit Buffer and therefore require shifting.
Entry: HL=Current row's flag byte.
A=Character code to insert at the start of the first row of the Below-Screen Line Edit Buffer.

L3194: PUSH BC Save registers.

186

SPECTRUM +2 ROM o DISASSEMBLY

PUSH DE

PUSH AF Save the character to insert.

LD B,$00 Column 0.

LD C,$01 Row 1.

PUSH HL Save address of the row's flag byte.

CALL L31E9 Find row address specified by C in the Below-Screen Line Edit Buffer, into DE.
POP HL Retrieve address of the row's flag byte.

BIT 3,(HL) Is this the end row of the BASIC line?

RES 3,(HL) Indicate that it is no longer the end row of the BASIC line.

JR NZ,L31C6 Jump if it was the end row of the BASIC line.

The row in the Below-Screen Line Edit Buffer is not the last row of the BASIC line.
Insert the character into the current row. If a spill from this row occurs then insert that character into the start of the following row and shift all existing
characters right by one. Repeat this process until all rows have been shifted.

L31A6: CALL L2E67 Find first editable position on this row from the previous column to the right, returning
column number in B.
POP AF A=Character to insert.
L31AA: CALL L16CB Insert character into the start of the edit buffer row, shifting the row right. Returns
carry flag reset.
JR Z,L31EO Jump if the byte shifted out of the last column position was $00, hence no more

shifting required.

The end character of the row has spilled out so it must be inserted as the first editable character of the following row

PUSH AF Stack the character which needs to be inserted into the next row.

LD B,$00 B=First column in the next row.

INCC C=Next row.

LDAC

CP $15 Has the bottom row of the Below-Screen Line Edit Buffer been reached, i.e. row 21?
JR C,L31C6 Jump ahead if not.

The bottom row of the Below-Screen Line Edit Buffer has been reached

DEC HL Point to last character of the current row.

LD A,(HL) Get the character.

INC HL Point back to the flag byte of this row.

CP $00 Is the character a null character? [Could have saved 1 byte by using AND A]
JR Z,L31C6 Jump ahead if it is.

The Below-Screen Line Edit Buffer is completely full

PUSH HL Save address of the flag byte.

LD HL,$ECOD Editor flags.

SET 0,(HL) Signal that the Screen Line Edit Buffer (including Below-Screen Line Edit Buffer) is
full.

POP HL HL=Address of the flag byte.

Check whether there is another row to shift

L31Ce6: BIT 1,(HL) Does the row span onto another row?
SET 1,(HL) Signal that the row spans onto another row.
RES 3,(HL) Signal not the last row of the BASIC line.
CALL L31E9 Find the address of the row specified by C in Below-Screen Line Edit Buffer, into DE.
JR NZ,L31A6 Jump back if spans onto another row to shift it also.

All existing rows have now been shifted but a new row needs to be inserted

PUSH BC B=Column number. C=Row number.

PUSH DE DE=Start address of the row in the edit buffer.

CALL L360C Null all column positions in the edit buffer row.

LD (HL),$08 Set the flag byte for the row to indicate it is the last row of the BASIC line.
POP DE DE=Start address of the row in the edit buffer.

POP BC B=Column number. C=Row number.

187

CALL L361A
POP AF
JRL31AA

The shifting of all rows has completed

L31EO:

LDAC
LD ($F6F5),A
SET 3,(HL)
POP DE
POP BC

RET

SPECTRUM +2 ROM o DISASSEMBLY

Indent the row by setting the appropriate number of null characters.
Get character to insert.
Jump back to insert it.

Get the row number.

Store as the number of rows held within the Below-Screen Line Edit Buffer.
Mark this row as the last row of the BASIC line.

Restore registers.

Find Row Address in Below-Screen Line Edit Buffer

Find address in the Below-Screen Line Edit Buffer of specified row.

This routine calculates DE = $F6F8 + $0023*C.
C=Row number.
Address of edit row in DE.

Entry:
Exit :

L31E9:

LD HL,$F6F8
JP L30DD

Address of the Below-Screen Line Edit Buffer.
Jump to find the row address and return.

Delete a Character from a BASIC Line in the Below-Screen Line Edit Buffer

Delete a character at the specified position, shifting subsequent characters left as applicable.
Exit: A=Character shifted out of the top row of the Below-Screen Line Edit Buffer.

L31EF:

PUSH BC
PUSH DE

LD HL,$ECOD
RES 0,(HL)

LD A,($F6F5)
LD CA
ORA

LD A,$00

JR Z,L3241

Save registers.

Editor flags.

Signal that the Screen Line Edit Buffer (including Below-Screen Line Edit Buffer) is
not full.

A=Number of rows held in the Below-Screen Line Edit Buffer.

C=Number of rows held in the Below-Screen Line Edit Buffer.

Are there any rows in the Below-Screen Line Edit Buffer?

A null character.

Jump if there are no rows. [Redundant check since this routine should never be
called if there are no rows in this buffer]

There is at least one row in the Below-Screen Line Edit Buffer

L31FF:

CALL L31E9
PUSH AF
LD B,$00
CALL L2E67
JR NC,L3218

The row is not blank

DE=Address within a row of edit buffer.

POP AF

A=Character to shift into right of row.
B=The column to start shifting at.

CALL L16EO

PUSH AF
PUSH BC
LD B,$00

Find the address of the last used row within Below-Screen Line Edit Buffer, into DE.
Save the character to insert.

Start searching from column 0.

Find editable position on this row to the right, returning column number in B.

Jump if no editable position found, i.e. a blank row.

A=Character to insert.

Insert the character into the end of the edit buffer row, shifting all columns left until
the cursor position is reached.

A=Character shifted out, zero flag set if the shifted out character was a null ($00).
Save the row number.

Start searching from column 0.

188

CALL L2E67

POP BC
JR C,L323C

SPECTRUM +2 ROM o DISASSEMBLY

Is this now a blank row? i.e. Find editable position on this row to the right, returning
column number in B.

C=Row number.

Jump if editable position found.

The row is already blank or the result of the shift has caused it to become blank.

HL points to the last blank character in the row.

L3218:

INC HL
LD A,(HL)
PUSH AF
PUSH BC
LDAC

CP $01

JR NZ,L322A

Point to the flag byte for the blank row.

Fetch the flag byte.

Save the flag byte for the blank row.

Save the row number.

Fetch the row number of this blank row.

Is this the first row in the Below-Screen Line Edit Buffer?
Jump if not.

The first row in the Below-Screen Line Edit Buffer is empty and hence the BASIC line now fits completely on screen, i.e. within the Screen Line Edit Buffer

LD A,(3EC15)
LDC.A

CALL L30DA
JR L322E

The number of editing rows on screen.

C=Bottom row number in the Screen Line Edit Buffer.

DE=Start address in Screen Line Edit Buffer of the bottom row, as specified in C.
Jump ahead to continue.

The blank row is not the first row in the Below-Screen Line Edit Buffer, and hence there are further rows above to be shifted

L322A:

L322E:

DEC C
CALL L31E9
POP BC
POP AF

LD HL,$0020
ADD HL,DE
RES 1,(HL)
OR (HL)

LD (HL),A
LD HL,$F6F5
DEC (HL)

Continue with the next row

L323C:

POP AF

DECC
JR NZ,L31FF

Previous row within the Below-Screen Line Edit Buffer.

Find the address of the row specified by C in Below-Screen Line Edit Buffer, into DE.
Retrieve the row number.

A=Flag byte value for the blank row.

Point to the flag byte for the row above.

Signal that the row above does not span onto another row.

Or in the flag bits from the blank row, essentially this will retain the 'last row" bit.
Update the flag byte for the row above.

Point to the number of rows held in the Below-Screen Line Edit Buffer.
Decrement the row count.

Fetch the character shifted out from the current row, ready for insertion into the row
above.

Previous row.

Jump back if the character shifted out was not null, i.e. more rows above to shift.

All rows in the Below-Screen Line Edit Buffer have been shifted

L3241:

SCF
POP DE
POP BC
RET

[Redundant since never subsequently checked]
Restore registers.

Above-Screen Line Edit Buffer Settings

This table holds the default values for the Below-Screen Line Edit Buffer settings starting at $F9DB.
It appears that the word at $F9DC is supposed to be a pointer to the next available or accessed location within the buffer but this facility is never used.
Therefore the table need only be 1 byte long, in which case it would be more efficient for the routine at $3248 (ROM 0) to simply set the byte at $F9DB

directly.

L3244:

DEFB $03
DEFB $00
DEFW $F9DE

Number of bytes in table.

$F9DB = Number of rows held in the Above-Screen Line Edit Buffer.
$FIDC/D = Points to next available location within the Above-Screen Line Edit
Buffer.

189

SPECTRUM +2 ROM o DISASSEMBLY

Set Above-Screen Line Edit Buffer Settings

Sets the default values for the Above-Screen Line Edit Buffer settings.
Copy 3 bytes from $3245-$3247 (ROM 0) to $F9DB-$FIDD.

L3248:

LD HL,L3244
LD DE,$F9DB
JP L3F61

Default Above-Screen Line Edit Buffer settings.
Destination address.
Copy bytes.

Shift Rows Down in the Above-Screen Line Edit Buffer

If Above-Screen Line Edit Buffer contains row then decrement the count, i.e. less rows off screen.

If the Above-Screen Line Edit Buffer is empty then load in the new BASIC line at the top of the screen.
Exit : HL=Address of next row to use within the Above-Screen Line Edit Buffer.

Carry flag reset if Above-Screen Line Edit Buffer is empty, i.e. no edit buffer rows were shifted.

L3251: PUSH BC Save registers.
PUSH DE
LD HL,$F9DB Point to the Above-Screen Line Edit Buffer settings.
PUSH HL Save address of the Above-Screen Line Edit Buffer settings.
LD A,(HL) Fetch number of rows of the BASIC line that are off the top of the screen.
ORA Are there any rows off the top of the screen?
JR NZ,L3279 Jump if there are.

There are no rows of the BASIC line off the top of the screen so use the top line that is visible on screen

L326A:

PUSH HL
CALL L3385

LD HL,($FC9A)
CALL L3370
JR NC,L326A
LD ($FC9A),HL
LD B,H

LDC,L

POP HL

INC HL

INC HL

INC HL

JR NC,L3283

Save address of the Above-Screen Line Edit Buffer settings.

Copy 'Insert Keyword Representation Into Keyword Construction Buffer' routine to
RAM.

HL=New line number at top of screen.

Verify the line number exists, or fetch the next line number if not.

Jump if the line does not exist.

Store the line number found as the one at the top of screen.

BC=New line number at top of screen.

HL=Address of the Above-Screen Line Edit Buffer settings.

Point to the first row of the Above-Screen Line Edit Buffer.
Jump if the line did not exist.

The line specified as the one at the top of the screen does exists [BUG - HL points to the start of the first row of the Above-Screen Line Edit Buffer but
it should point to the settings fields 3 bytes earlier since the call to $32FC (ROM 0) will advance HL by 3 bytes. The bug manifests itself when modifying
a BASIC line that spans off the top of the screen. It causes corruption to the line number, causing a new BASIC line to be inserted rather than updating
the line being edited. When editing lines with a high line number, the corrupted line number can end up larger 9999 and hence the line is deemed invalid
when Enter is pressed to insert the line into the BASIC program. The effects of the bug are often masked by the bug at $2DC7 (ROM 0) which performs
LD HL,($F9DB) instead of LD HL,$F9DB and thereby fails to detect when the end of the Above-Screen Line Edit Buffer has been reached. The bug can
be fixed by inserted three DEC HL instructions before the call to $32FC (ROM 0). Credit: Paul Farrow]

CALL L32FC Copy the new BASIC line into the Above-Screen Line Edit Buffer.

DECA Decrement the count of the number of rows held in the Above-Screen Line Edit
Buffer.

EX DE,HL HL=Start of the next row in the Above-Screen Line Edit Buffer.

JR L3283 Jump ahead to continue.

There are rows of the BASIC line off the top of the screen

L3279: LD HL,($F9DC) HL=Address of the next location within the Above-Screen Line Edit Buffer to use.
LD BC,$0023
SBC HL,BC Paint to the previous row location within the Above-Screen Line Edit Buffer.
SCF Signal to update the number of rows held in the Above-Screen Line Edit Buffer.
DEC A Decrement the count of the number of rows held in the Above-Screen Line Edit

Buffer.

190

SPECTRUM +2 ROM o DISASSEMBLY

A=New number of rows held in the Above-Screen Line Edit Buffer.
HL=Address of a next row to use within the Above-Screen Line Edit Buffer.
Carry flag reset if no need to update the count of the number of rows in the Above-Screen Line Edit Buffer.

L3283: EX DE,HL DE=Address of next row to use within the Above-Screen Line Edit Buffer.
POP HL HL=Address of the Above-Screen Line Edit Buffer settings.
JR NC,L3288 Jump if no need to update the count of the number of rows in the Above-Screen Line
Edit Buffer.
LD (HL),A Store the number of rows held in the Above-Screen Line Edit Buffer.
L3288: INC HL
LD (HL),E
INC HL
LD (HL),D Store the address of the next row to use within the Above-Screen Line Edit Buffer.
EX DE,HL HL=Address of next row to use within the Above-Screen Line Edit Buffer.
POP DE Restore registers.
POP BC
RET

Shift Row Up into the Above-Screen Line Edit Buffer if Required

This routine is used to shift up a Screen Line Edit Buffer or a Below-Screen Line Edit Buffer row into the Above-Screen Line Edit Buffer.
If shifting the top row of the Screen Line Edit Buffer would result in a straggle into the Above-Screen Line Edit Buffer then the top row is shifted into
the next available location within the Above-Screen Line Edit Buffer. If the shift would place the start of a BASIC line on the top row then the Above-
Screen Line Edit Buffer is set as empty.
The routine is also called when relisting the BASIC program. The first BASIC line may straggle above the screen and so it is necessary to load the BASIC
line into the Above-Screen Line Edit Buffer. This is achieved by using the Below-Screen Line Edit Buffer as a temporary line workspace. This routine is
called to shift each row into the Above-Screen Line Edit Buffer as appropriate.
Entry: DE=Start address of the first row in the Screen Line Edit Buffer, or start address of a Below-Screen Line Edit Buffer row.
Exit : HL=Address of next row to use within the Below-Screen or Screen Line Edit Buffer.

Carry flag set if the Line Edit Buffer if not full.

L3290:

PUSH BC
PUSH DE
LD HL,$0020
ADD HL,DE
LD A,(HL)
CPL

AND $11

JR NZ,L32A8

Save registers.

Point to the flag byte for this row within the Below-Screen or Screen Line Edit Buffer.
Fetch the flag byte.

Jump if not the first row of the BASIC line or no associated line number stored.

First row of the BASIC line and associated line number stored

L32A8:

PUSH DE
PUSH HL

INC HL

LD D,(HL)

INC HL

LD E,(HL)

LD ($FC9A),DE
POP HL

POP DE
BIT 3,(HL)

LD HL,$F9DB
PUSH HL

JR Z,L32C6

The last row of the BASIC line

PUSH HL
CALL L3385

LD HL,($FC9A)

DE=Start address of the row.
HL=Address of the flag byte for the row in the Line Edit Buffer.

DE=Line number of the corresponding BASIC line.

Store this as the line number that is at the top of the screen.

HL=Address of the flag byte for the row in the Below-Screen or Screen Line Edit
Buffer.

DE=Start address of the row.

Is this the last row of the BASIC line?

Point to the Above-Screen Line Edit Buffer settings.

Stack the address of the Above-Screen Line Edit Buffer settings.

Jump if not the last row of the BASIC line.

Stack the address of the Above-Screen Line Edit Buffer settings.

Copy 'Insert Keyword Representation Into Keyword Construction Buffer' routine to
RAM.

Line number at top of screen.

191

SPECTRUM +2 ROM o DISASSEMBLY

CALL L3378 Create line number representation in the Keyword Construction Buffer of the next
BASIC line.

LD ($FC9A),HL Update the line number at top of screen.

POP HL HL=Address of the Above-Screen Line Edit Buffer settings.

INC HL

INC HL

INC HL Point to the start of the Above-Screen Line Edit Buffer.

LD A,$00 No rows held in the Above-Screen Line Edit Buffer. [Could have saved 1 byte by
using XOR A]

SCF Signal to update the number of rows count.

JR L3283 Jump back to store the new Above-Screen Line Edit Buffer settings.

Not the last row of the BASIC line

L32CE6: LD A,(HL) Fetch the number of rows held in the Above-Screen or Screen Line Edit Buffer.
CP $14 Are there 20 rows, i.e. the buffer is full?
JR Z,L32D9 Jump if the buffer is full, with the carry flag reset.

Shift the top row of the Screen Line Edit Buffer into the Above-Screen Line Edit Buffer

INC A Increment the count of the number of rows in the Above-Screen Line Edit Buffer.

LD HL,($F9DC) Fetch the address of the next row to use within the Above-Screen Line Edit Buffer.

LD BC,$0023 The length of one row in the edit buffer, including the 3 data bytes.

EX DE,HL DE=Address of next location within the Above-Screen Line Edit Buffer, HL=Address
of the row in the Below-Screen or Screen Line Edit Buffer to store.

LDIR Copy the row of the BASIC line into the Above-Screen Line Edit Buffer.

EX DE,HL HL=Address of next row to use within the Above-Screen Line Edit Buffer.

SCF Signal to update the count of the number of rows.

JR L3283 Jump back to store the new Above-Screen Line Edit Buffer settings.

Above-Screen Line Edit Buffer is full

L32D9: POP HL HL=Address of the Above-Screen Line Edit Buffer settings.
POP DE Restore registers.
POP BC
RET

Find Row Address in Above-Screen Line Edit Buffer

Find the address in the Above-Screen Line Edit Buffer of the specified row.
This routine calculates DE = $F9DE + $0023*C.

Entry: C=Row number.

Exit : DE=Address of edit row.

L32DD: LD HL,$F9DE Point to the start of the Above-Screen Line Edit Buffer.
JP L30DD Find the row address.

BASIC Line Character Action Handler Jump Table

L32E3: DEFB $08 Number of table entries.
DEFB $0D Code: Enter.
DEFW L35F2 Address of the 'Enter' action handler routine.
DEFB $01 Code: NULL.
DEFW L3600 Null remaining columns of an edit buffer row.
DEFB $12 Code: FLASH.
DEFW L3380 Fetch next de-tokenized character from the BASIC line within the program area.
DEFB $13 Code: BRIGHT.
DEFW L3380 Fetch next de-tokenized character from the BASIC line within the program area.
DEFB $14 Code: INVERSE.
DEFW L3380 Fetch next de-tokenized character from the BASIC line within the program area.
DEFB $15 Code: OVER.
DEFW L3380 Fetch next de-tokenized character from the BASIC line within the program area.

192

DEFB $10
DEFW L3380
DEFB $11
DEFW L3380

SPECTRUM +2 ROM o DISASSEMBLY

Code: INK.

Fetch next de-tokenized character from the BASIC line within the program area.
Code: PAPER.

Fetch next de-tokenized character from the BASIC line within the program area.

Copy a BASIC Line into the Above-Screen or Below-Screen Line Edit Buffer

Copy a BASIC line into the Above-Screen or Below-Screen Line Edit Buffer, handling indentation.

Entry: HL=Address of the previous row's flag byte in Above-Screen or Below-Screen Line Edit Buffer.
BC=Line number corresponding to the row being edited.
Exit : A=Number of rows in the Above-Screen Line Edit Buffer.

HL=Address of the first row of the BASIC line being edited in the Above-Screen Line Edit Buffer.
DE=Address of the last row of the BASIC line being edited in the Above-Screen Line Edit Buffer.

L32FC: LD D,H
LDE,L

INC DE
INC DE
INC DE
PUSH DE

LD HL,$0020
ADD HL,DE
LD (HL),$01
INC HL

LD (HL),B
INC HL

LD (HL),C
LD C,$01

LD B,$00

HL=Address of the previous row's flag byte in the Above-Screen/Below-Screen Line
Edit Buffer.
DE=Address of the previous row's flag byte in the Above-Screen/Below-Screen Line
Edit Buffer.

Advance to the start of the row in the edit buffer.
DE=Address of the start of the BASIC line in the Above-Screen/Below-Screen Line
Edit Buffer.

Point to the flag byte for the row.
Signal the first row of the BASIC line.

Store the corresponding BASIC line number.
Row 1.
Column 0.

Enter a loop to process each character from the current BASIC line

L3310: PUSH BC
PUSH DE
LD A,(3ECOE)
CP $04
CALL NZ,L353D

POP DE
POP BC
JR C,L332D

Save the column and row numbers.

Save the Above-Screen/Below-Screen Line Edit Buffer address.

Fetch mode.

Calculator mode?

If not then fetch the next de-tokenized character from the BASIC line within the
program area.

Retrieve the Above-Screen/Below-Screen Line Edit Buffer address.

Retrieve the column and row numbers.

Jump if Editor mode and a character was available (if calculator mode then carry flag
was reset by test above).

Calculator mode, or Editor mode and a character was not available

LD AC

CP $01

LD A,$0D

JR NZ,L332D

Row 1

LDAB

ORA

LD A$01

JR Z,L332D

LD A,$0D
L332D: LD HL,L32E3

CALL L3F75

JR C,L3352

JR Z,L3310

A=Row number.

Is it row 1?
A='Enter' character.
Jump if not.

A=Column number.

Is it column 0?

A='Null' character, the code used to indicate to null edit positions.

Jump if so.

A='Enter' character.

The action handler table.

Call the action handler routine to process the character.

Jump if no more characters are available.

Jump back if an action handler was found so as to process the next character.

193

SPECTRUM +2 ROM o DISASSEMBLY

A character was available but there was no action handler routine to process it

PUSH AF A=Character.

LD A $1F

CPB Exceeded column 317
JR NC,L334C Jump ahead if not.

Exceeded last column

LD A$12 New flag byte value indicating the row spans onto another row and there is an
associated line number.

CALL L3357 Mark this row as spanning onto the next and clear the following row's flags.

JR C,L3349 Jump ahead if not at bottom of the line edit buffer.

At the bottom of the edit buffer so process the line as if an 'Enter' character had been encountered

POP AF Discard the stacked item.
LD A,$0D A="Enter' character.
JR L332D Jump back to process the 'Enter' code.

The edit buffer has room for another character

L3349: CALL L361A Indent the row by setting the appropriate number of null characters in the current
Above-Screen Line Edit Buffer row.
L334C: POP AF A=Character.
CALL L35EB Store the character in the current row/column in the Above-Screen Line Edit Buffer.
JR L3310 Jump back to handle the next character.

No more characters are available

L3352: POP HL HL=Address of the BASIC line being edited in the Above-Screen Line Edit Buffer.
LD AC A=Number of rows in the Above-Screen Line Edit Buffer.
RET Z [Redundant since carry flag is always set by here, and zero flag never subsequently
checked]
SCF [Redundant since never subsequently checked]
RET

Set 'Continuation' Row in Line Edit Buffer

This routine is used when the insertion of a BASIC line needs to span onto a another row.
It marks the current row as 'not the last row of the BASIC line' and clears the following row's flags
Entry: DE=Address of start of line edit buffer row.
B=Column number (will be $20).
C=Row number.
A=New flag byte value (will be $12).
Exit : Carry flag reset if bottom of line edit buffer reached.
HL=Address of the flag byte for the new row.

L3357: PUSH AF Save the new flag byte value.
CALL L360C HL=Address of flag byte for the row.
POP AF Retrieve the new flag byte value.
XOR (HL) Toggle to set ‘associated line number' and ‘'row spans onto another row' flags.
LD (HL),A Store the new flag byte value.
LD AC A=Row number.
CP $14 At bottom of line edit buffer?
RET NC Return if so.
INC C Advance the row number.
LD HL,$0023
ADD HL,DE Paint to the start of the next row.
EX DE,HL
LD HL,$0020
ADD HL,DE Point to the flag byte for the next row.
LD (HL),$00 Clear the flags to indicate no BASIC line on this row.

194

SPECTRUM +2 ROM o DISASSEMBLY

SCF Signal still on a row within the edit buffer.
RET

BASIC Line Handling Routines

Find Address of BASIC Line with Specified Line Number

This routine finds the address of the BASIC line in the program area with the specified line number, or the next line is the specified one does not exist.

Entry:
Exit :

L3370:

HL=Line number.

Carry flag set if line exists.

DE=Points to the command of the BASIC line within the program area.
HL=Line number ($0000 for no line number).

CALL L34DC Find the address of the BASIC line in the program area with the specified line
number.

RET C Return if the line exists.

LD HL,$0000 No line number.

RET

Create Next Line Number Representation in Keyword Construction Buffer

This routine is used to create a string representation of the line number for the next line after the specified line, and store it in the Keyword Construction

Buffer.
Entry:

Exit :

L3378:

HL=Line number.

A=Print leading space flag ($00=Print leading space).
Carry flag set to indicate specified line exists.
DE=Points to the command field of the BASIC line.
HL=Line number, or $0000 if line does not exist.

CALL L3456 Create next line number representation in the Keyword Construction Buffer.
RET C Return if line exists.

LD HL,$0000 Line not found.

RET

Fetch Next De-tokenized Character from Selected BASIC Line in Program Area

Exit: Carry flag reset if a character was available.
A=Character fetched.

L3380:

CALL L353D Fetch the next de-tokenized character from the BASIC line within the program area.
CCF
RET NC Return if a character was available. [BUG - This should just be a RET. Its effect

is harmless since the routine below has previously been called and hence simply
overwrites the data already copied to RAM. Credit: lan Collier (+3), Andrew Owen
(128)]

Copy 'Insert Keyword Representation into Keyword Construction Buffer' Routine into RAM

Copies Insert Keyword Representation Into Keyword Construction Buffer routine into physical RAM bank 7, and resets pointers to indicate that there is
no BASIC line currently being de-tokenized.

L3385:

LD HL,$0000 Signal no line number of command.

LD ($FC9F),HL Signal no further character to fetch from the BASIC line within the program area.

LD ($FCAL),HL Signal no further character to fetch from the Keyword Construction Buffer.

LD HL,L339A Source for Insert Keyword Representation Into Keyword Construction Buffer routine.

LD DE,$FCAE Destination for Insert Keyword Representation Into Keyword Construction Buffer
routine.

LD BC,$00BC

LDIR Copy the routine to RAM bank 7 at address $FCAE.

195

RET

SPECTRUM +2 ROM o DISASSEMBLY

Insert Keyword Representation into Keyword Construction Buffer « RAM Routine »

This routine copies a keyword string from ROM 1 into the Keyword Construction Buffer, terminating it with an 'end of BASIC line' marker (code ' '+$80).
Only standard Spectrum keywords are handled by this routine (SPECTRUM and PLAY are processed elsewhere).

The routine is run from RAM bank 7 at $FCAE so that access to both ROMs is available.

Depending on the value of A (which should be the ASCII code less $A5, e.g. 'RND', the first (48K) keyword, has A=0), a different index into the token
table is taken. This is to allow speedier lookup since there are never more than 15 keywords to advance through.

Entry:

A=Keyword character code-$A5 (range $00-$5A).
DE-=Insertion address within Keyword Construction Buffer.

Copied to physical RAM bank 7 at $FCAE-$FCFC by subroutine at $3385 (ROM 0).

L339A:

Used for token range $A5-$B4 ($00 <= A <= $0F)

Used for token range $B5-$C4 ($10 <= A <= $1F)

L33BB:

Used for token range $C5-$D4 ($20 <= A <= $2F)

L33C2:

Used for token range $D5-$E4 ($30 <= A <= $3F)

L33C9:

Used for token range $E5-$F4 ($40 <= A <= $4F)

L33D0:

Used for token range $F5-$FF (A >= $50)

L33D7:

L33DC:

DI
LD BC,$7FFD
LD D,$17
OUT (C),D
CP $50

JR NC,L33D7
CP $40

JR NC,L33D0
CP $30

JR NC,L33C9
CP $20

JR NC,L33C2
CP $10

JR NC,L33BB

LD HL,TOKENS+$0001

JR L33DC

SUB $10

LD HL,TOKENS+$003A

JR L33DC

SUB $20

LD HL,TOKENS+$006B

JR L33DC

SUB $30

LD HL,TOKENS+$00A9

JR L33DC

SUB $40

LD HL,TOKENS+$00F6

JR L33DC

SUB $50

LD HL,TOKENS+$013F

LD B,A
ORA

Disable interrupts whilst paging.

Page in ROM 1, SCREEN 0, no locking, RAM bank 7.
Was the token $F5 or above?

Was the token $E5 or above?

Was the token $D5 or above?

Was the token $C5 or above?

Was the token $B5 or above?

$0096. Token table entry "RND" in ROM 1.

$O0CF. Token table entry "ASN" in ROM 1.

$0100. Token table entry "OR" in ROM 1.

$013E. Token table entry "MERGE" in ROM 1.

$018B. Token table entry "RESTORE" in ROM 1.

$01D4. Token table entry "PRINT" in ROM 1.
Take a copy of the index value.
If A=0 then already have the entry address.

196

SPECTRUM +2 ROM o DISASSEMBLY

L33DE: JR Z,L33E9 If indexed item found then jump ahead to copy the characters of the token.
L33EOQ: LD A,(HL) Fetch a character.

INC HL Point to next character.

AND $80 Has end of token marker been found?

JR Z,L33E0 Loop back for next character if not.

DECB Count down the index of the required token.

JR L33DE Jump back to test whether the required token has been reached.

Copy Keyword Characters « RAM Routine »

This routine copies a keyword string from ROM 1 into the Keyword Construction Buffer, terminating it with an 'end of BASIC line' marker (code ' '+$80).
A leading space will be inserted if required and a trailing space is always inserted.
The routine is run from physical RAM bank 7 so that access to both ROMs is available.
Entry: HL=Address of keyword string in ROM 1.
DE-=Insertion address within Keyword Construction Buffer.

Copied to physical RAM bank 7 at $FCFD-$FD2D by subroutine at $3385 (ROM 0).

L33E9: LD DE,$FCA3 DE=Keyword Construction Buffer.
LD ($FCA1),DE Store the start address of the constructed keyword.
LD A,($FC9E) Print a leading space?
ORA
LD A,$00
LD ($FC9E),A Signal leading space not required.
JR NZ,L33FF Jump if leading space not required.
LD A,$20 Print a leading space.
LD (DE),A Insert a leading space.
INC DE Advance to next buffer position.
L33FF: LD A,(HL) Fetch a character of the keyword.
LD B,A Store it.
INC HL Advance to next keyword character.
LD (DE),A Store the keyword character in the BASIC line buffer.
INC DE Advance to the next buffer position.
AND $80 Test if the end of the keyword string.
JR Z,L33FF Jump back if not to repeat for all characters of the keyword.
LDAB Get keyword character back.
AND $7F Mask off bit 7 which indicates the end of string marker.
DEC DE Point back at the last character of the keyword copied into the buffer
LD (DE),A and store it.
INC DE Advance to the position in the buffer after the last character of the keyword.
LD A, '+$80 $AO0. Space + end marker.
LD (DE),A Store an ‘end of BASIC line so far' marker.
LD A,$07
LD BC,$7FFD
OUT (C),A Page in ROM 0, SCREEN 0, no locking, RAM bank 7.
El Re-enable interrupts.
RET

Identify Token from Table

This routine identifies the string within the Keyword Conversion Buffer and returns the character code. The last character of the string to identify has
bit 7 set.

Only 48K mode tokens are identified.

Exit: Carry flag set if token identified.

A=Character code.

Copied to RAM at $FD2E-$FD69 by routine at $3385 (ROM 0).

L341A: DI Disable interrupts whilst paging.
LD BC,$7FFD
LD D,$17 Select ROM 1, SCREEN 0, RAM bank 7.
OuT (C),D
LD HL, TOKENS+1 $0096. Address of token table in ROM 1.
LD B,$A5 Character code of the first token - 'RND'.

Entry point here used to match 128K mode tokens and mis-spelled tokens

197

SPECTRUM +2 ROM o DISASSEMBLY

L3427: LD DE,$FD74 Keyword Conversion Buffer holds the text to match against.
L342A: LD A,(DE) Fetch a character from the buffer.
AND $7F Mask off terminator bit.
CP $61 Is it lowercase?
LD A,(DE) Fetch the character again from the buffer.
JR C,L3434 Jump if uppercase.
AND $DF Make the character uppercase.
L3434: CP (HL) Does the character match the current item in the token table?
JR NZ,L3440 Jump if it does not.
INC HL Point to the next character in the buffer.
INC DE Point to the next character in the token table.
AND $80 Has the terminator been reached?
JR Z,L342A Jump back if not to test the next character in the token.

A match was found

SCF Signal a match was found.
JR L344C Jump ahead to continue.

L3440: INCB The next character code to test against.
JR Z,L344B Jump if all character codes tested.

The token does not match so skip to the next entry in the token table

L3443: LD A,(HL) Fetch the character from the token table.
AND $80 Has the end terminator been found?
INC HL Point to the next character.
JR Z,L.3443 Jump back if no terminator found.
JR L3427 Jump back to test against the next token.

All character codes tested and no match found

L344B:

ORA

The common exit point

Clear the carry flag to indicate no match found.

L344cC: LDAB Fetch the character code of the matching token ($00 for no match).
LD D,$07 Select ROM 0, SCREEN 0, RAM bank 7.
LD BC,$7FFD
OuUT (C),D
El Re-enable interrupts.
RET « Last byte copied to RAM »

Create Next Line Number Representation in Keyword Construction Buffer

This routine is used to create a string representation of the line number for the next line after the specified line, and store it in the Keyword Construction
Buffer.

Entry: HL=Line number.
A=Print leading space flag ($00=Print leading space).
Exit : Carry flag set to indicate specified line available.

DE=Points to the command field of the BASIC line.
HL=Line number.

L3456: CALL L3510 Clear BASIC line construction pointers (address of next character in the Keyword
Construction Buffer and the address of the next character in the BASIC line within
the program area being de-tokenized).

ORA [BUG - Supposed to be XOR A to ensure that a leading space is shown before a

LD ($FC9E),A

command keyword is printed. However, most of the time the A register will enter the
routine holding $00 and so the bug is probably harmless. Credit: Paul Farrow]
Print a leading space flag.

CALL L1F3F Use Normal RAM Configuration (physical RAM bank 0).

CALL L351C Find address of the specified BASIC line, into HL.

JR NC,L34B7 Jump if suitable line number not found, i.e. end of program reached.

JR NZ,L3473 Jump if line number did not match, i.e. is higher than the line requested.

198

The line number requested exists

LDAB
ORC
JR Z,L3473

Fetch the next line

CALL L34F5
CALL L34FF
JR NC,L34B7

SPECTRUM +2 ROM o DISASSEMBLY

BC=Line number.

Jump if the first program line requested (line number of 0).

Move to the start of the next BASIC line.
Check whether at the end of the BASIC program.
Jump if at the end of the BASIC program.

Insert line number into the BASIC Line Construction Buffer

L3473:

End of program reached, no line number available

L34B7:

Insert ASCII Line Number Digit

LD D,(HL)
INC HL

LD E,(HL)
CALL L1F64
PUSH DE
PUSH HL
PUSH IX

LD IX,$FCA3
LD ($FCA1L),IX
EX DE,HL

LD B,$00

LD DE,$FC18
CALL L34BB
LD DE,$FF9C
CALL L34BB
LD DE,$FFF6
CALL L34BB
LD DE,$FFFF
CALL L34BB

DEC IX
LD A,(IX+$00)
OR $80

LD (IX+$00),A
POP IX

POP HL

POP DE

INC HL

INC HL

INC HL

LD ($FCOF),HL
EX DE,HL
SCF

RET

CALL L1F64
RET

HL=Address of the BASIC line.

DE=Line number.

Use Workspace RAM configuration (physical RAM bank 7).

Save the line number.

Save the address of the BASIC line+1.

Save IX.

IX=Keyword Construction Buffer, the location where the line number will be created.
Store the start of the buffer as the next location to store a character in.

HL=Line number.

Signal no digit printed yet.

-1000.

Insert the thousand digit.

-100.

Insert the hundred digit.

-10.

Insert the ten digit.

-1.

Insert the units digits. [Note that this is not designed to handle line number 0, which
technically is not supported by Sinclair BASIC. The call would need to be preceded
by a LD B,$01 instruction to make this function support a line number of 0. Credit:
lan Collier (+3), Andrew Owen (128)]

IX points to previous ASCII digit.

Set bit 7 to mark it as the end of the line number representation.
Restore registers.

HL=Address of the BASIC line+1.

DE=Line number.

HL=Points to length field of the BASIC line.

HL=Points to the command field of the BASIC line.

Store it as the next character to fetch when parsing the BASIC line to de-tokenize it.
DE=Points to the command field of the BASIC line, HL=Line number.

Signal line exists.

Use Workspace RAM configuration (physical RAM bank 7).
Return with carry flag reset to signal line does not exist.

Insert text representation of a line number digit in a buffer.

Insert a $00 character for every leading zero.
DE=Subtraction amount (-1000, -100, -10, -1).
HL=Line number.
IX=Address of the buffer to write the ASCII line number to.
B=Indicates if digit printed yet ($00=not printed).

Entry:

199

Exit : IX points to next buffer location.
B=$01 if digit printed.

HL=Line number remainder.

L34BB:
L34BC:

XOR A
ADD HL,DE
INC A

JR C,L34BC
SBC HL,DE
DEC A

A=Number of multiples of DE in the line number

ADD A $30
LD (IX+$00),A
CP'O

JR NZ,L34D7
LDAB

OR A

JR NZ,L34D9
LD A,$00

LD (IX+$00),A
JR L34D9

LD B,$01

INC IX

RET

L34D7:
L34D9:

SPECTRUM +2 ROM o DISASSEMBLY

A=Counter.

Keep adding DE

and incrementing the counter

until there is no carry.

Adjust for the last addition and.
counter value that caused the overflow.

Convert to an ASCII digit.
Store in the buffer.

$30. Is it a zero?

Jump ahead if not.

Get the 'digit printed' flag.

Jump ahead if already printed a digit.

Otherwise this is a leading zero, so

store a zero byte to indicate 'nothing to print'.

and jump ahead to point to the next buffer location.
Indicate 'digit printed'.

Point to the next buffer location.

Find Address of BASIC Line with Specified Line Number

This routine finds the address of the BASIC line in the program area with the specified line number, or the next line is the specified one does not exist.

DE=Points to the command of the BASIC line within the program area.

Entry: HL=Line number.
A=$00 to print a leading space.
Exit : Carry flag set if line exists.
HL=Line number.
L34DC: CALL L3510
ORA

LD ($FCOE),A
CALL L1F3F
CALL L351C
JR NC,L34B7
EX DE,HL
LD AL

ORH

SCF

JP NZ,L3473
CCF

JR L34B7

Move to Next BASIC Line

L34F5: PUSH HL
INC HL
INC HL
LD E,(HL)

INC HL

Clear BASIC line construction pointers (address of next character in the Keyword
Construction Buffer and the address of the next character in the BASIC line within
the program area being de-tokenized).

[BUG - Supposed to be XOR A to ensure that a leading space is shown before a
command keyword is printed. However, most of the time the A register will enter the
routine holding $00 and so the bug is probably harmless. Credit: Paul Farrow]
Store 'print a leading space' flag.

Use Normal RAM Configuration (physical RAM bank 0).

Find the address of the BASIC line with this line number, or the next line otherwise.
Jump if does not exist.

HL=Address of BASIC line.

Address of $0000, i.e. no line exists?

Assume line number found.

Jump if a line was found.

Reset carry flag to indicate line number does not exist
and jump to make a return.

Save the address of the original line.
Skip past the line number.

Retrieve the line length into DE.

200

SPECTRUM +2 ROM o DISASSEMBLY

LD D,(HL)

INC HL

ADD HL,DE Point to the start of the next line.
POP DE DE=Address of original line.
RET

Check if at End of BASIC Program

Check whether at the end of the BASIC program.

Entry: HL=Address of BASIC line.

Exit : Carry flag reset if end of BASIC program reached.

L34FF: LD A,(HL)
AND $CO
SCF Signal not at end of BASIC.
RET Z Return if not at end of program.
CCF Signal at end of BASIC.
RET

Compare Line Numbers

Compare line number at (HL) has line number held in BC.

Entry: HL=Address of first line number.
BC=Second line number.
Exit : Carry flag and zero flag set if the line number matches.

Zero flag reset if no match, with carry flag set if line number held in BC
is lower than the line number pointed to by HL.

L3506: LDAB Test the first byte.
CP (HL)
RET NZ Return if not the same.
LD A,C Test the second byte.
INC HL
CP (HL)
DEC HL
RET NZ Return if not the same.
SCF Signal line number matches.
RET

Clear BASIC Line Construction Pointers

L3510: PUSH HL
LD HL,$0000
LD ($FCA1L),HL Signal no next character to fetch from the Keyword Construction Buffer.
LD ($FC9F),HL Signal no next character to fetch within the BASIC line in the program area.
POP HL
RET

Find Address of BASIC Line

This routine finds the address of the BASIC line within the program area with the specified line number.
Entry: HL=Line number to find ($0000 for first program line).
Exit : Carry flag set if requested or next line exists.
Zero flag reset if no match, with carry flag set if line number is lower than the first program line number.
HL=Address of the BASIC line number, or $0000 if line does not exist.
DE=Address of previous BASIC line number, or $0000 if line does not exist.
BC=Line number.

L351C: PUSH HL

201

L3530:

POP BC
LD DE,$0000
LD HL,($5C53)
CALL L34FF
RET NC

CALL L3506
RET C

LDAB

ORC

SCF

RET Z

CALL L34F5
CALL L34FF
RET NC
CALL L3506
JR NC,L3530
RET

SPECTRUM +2 ROM o DISASSEMBLY

BC=Line number. [Quicker to have used the instructions LD B,H /LD C,L]

PROG. Address of the start of BASIC program.

Test for end of BASIC program.

Return if at end of program.

Compare line number at (HL) with BC.

Return if line number matches or is lower than the first program line number.

Return with carry and zero flags set if first program line was requested (line number
0).

Get address of next BASIC line.

Test for end of BASIC program.

Return if at end of program.

Compare line number at (HL) with BC.

If line number not the same or greater then back to test next line.

Exit with carry flag set if line found.

Fetch Next De-tokenized Character from BASIC Line in Program Area
This routine translates a tokenized BASIC line within the program area into the equivalent 'typed' line, i.e. non-tokenized.

The line number has been previously converted into a string representation and is held within the Keyword Construction Buffer at $FCA3. On each call
of this routine, the next character of the BASIC line representation is fetched. Initially this is the line number characters from the Keyword Construction
Buffer, and then the characters from the program line itself. As a token character is encountered, it is converted into its string representation and stored in
the Keyword Construction Buffer. Then each character of this string is fetched in turn. Once all of these characters have been fetched, the next character

will be from the last position accessed within the BASIC line in the program area.
Exit: Carry flag set to indicate that a character was available.
A=Character fetched.

L353D:

LD HL,($FCA1)

LD AL
ORH
JR Z,L3562

Fetch the address of the character within the Keyword Construction Buffer.

Is there an address defined, i.e. characters still within the buffer to fetch?
Jump ahead if not.

There is a character within the Keyword Construction Buffer

L354F:

L355A:

LD A,(HL)
INC HL

CP ' '+$80
LD B,A

LD A,$00

JR NZ,L354F
LD A $FF

LD ($FCOE),A
LD A,B

BIT 7,A

JR Z,L355A
LD HL,$0000

LD ($FCAL),HL

AND $7F
JP L35B5

Fetch a character from the buffer.

Paint to the next character.

$A0. Was it a trailing space, i.e. the last character?

Save the character.

Signal 'print a leading space'.

Jump ahead if not.

Signal 'do not print a leading space'.

Store the ‘print a leading space' flag value.

Get the character back.

Is it the last character in the buffer, i.e. the terminator bit is set?

Jump ahead if not.

Signal no more characters within the Keyword Construction Buffer to fetch.
Store the address of the next line number/keyword character within the construction
buffer, or $0000 if no more characters.

Mask off the terminator bit.

Jump ahead to continue. [Could have saved 1 byte by using JR $35B5 (ROM 0)]

There is no line number/keyword defined within the buffer so fetch the next tokenized character from the BASIC line in the program area

L3562:

L356D:

LD HL,($FC9F)

LDAL
ORH

JP Z,L35B7
CALL L1F3F
LD A,(HL)
CP $0E

JR NZ,L357A

Fetch the address of the next character within the BASIC line construction
workspace.

Is there a character defined, i.e. end of line not yet reached?

Jump ahead if not. [Could have saved 1 byte by using JR $35B7 (ROM 0)]
Use Normal RAM Configuration (physical RAM bank 0).

Fetch a character from the buffer.

Is it the hidden number marker indicating a floating-point representation?
Jump ahead if it is not.

202

SPECTRUM +2 ROM o DISASSEMBLY

INC HL Skip over it the floating-point representation.
INC HL
INC HL
INC HL
INC HL
INC HL
JR L356D Jump back to fetch the next character.
L357A: CALL L1F64 Use Workspace RAM configuration (physical RAM bank 7).
INC HL Paint to the next character.
LD ($FC9F),HL Store the address of the next command within the BASIC line to fetch.
CP $A5 'RND'. Is the current character a standard '48K' keyword? (‘RND' = first 48K
keyword)
JR C,L358D Jump ahead if not.
SUB $A5 Reduce command code range to $00-$5A.

[BUG - The routine assumes all tokens require a leading and trailing space. However, this is not true for tokens '<=', '>=' and '<>'. Credit: lan Collier
(+3), Paul Farrow (128)]

[To fix the bug, the call to $FCAE
would need to be replaced with
code such as the following.
Credit: Paul Farrow.

PUSH AF
CALL $FCAE Construct a string representation of the keyword in the Keyword Construction Buffer.
POP AF DE=Address of last character copied.
CP $22 Was it '<=' or above?
JR C,$353D (ROM 0) Jump back if not to fetch and return the first character of the keyword string.
CP $25 Was it '<>' or below?
JR NC,$353D (ROM 0) Jump back if not to fetch and return the first character of the keyword string.
LD HL,($FCA1) Is there a leading space?
LD A,(HL)
CP"'
JR NZ,NOT_LEADING Jump if there is not.
INC HL
LD ($FCA1L),HL Skip past the leading space.
NOT_LEADING
LD A,$FF Signal ‘do not print a leading space'.
LD ($FC9E),A
LD A,(DE) Is there a trailing space?
CP ' '+$80
JR NZ,NOT_TRAILING Jump if there is not.
DEC DE
EX DE,HL
SET 7,(HL) Set the terminator bit on the preceding character.
NOT_TRAILING
CALL $FCAE Construct a string representation of the keyword in the Keyword Construction Buffer.
JP L353D Jump back to fetch and return the first character of the keyword string. [Could have

saved 1 byte by using JR $353D (ROM 0)]
It is not a standard 48K keyword

L358D: CP $A3 Isita'128K' keyword, i.e. 'SPECTRUM' or 'PLAY'?
JR C,L35A1 Jump if not.

Itis a 128K keyword
JR NZ,L3598 Jump if it is 'PLAY".

Handle 'SPECTRUM'

LD HL,L35BA Keyword string "SPECTRUM".
JR L359B Jump forward.
L3598: LD HL,L35C2 Keyword string "PLAY".
L359B: CALL $FCFD Copy the keyword string characters into the Keyword Construction Buffer.

203

Not a keyword

L35A1:

JP L353D

PUSH AF
LD A,$00

LD ($FC9E),A
POP AF

CP $0D

JR NZ,L35B5

SPECTRUM +2 ROM o DISASSEMBLY

Jump back to fetch and return the first character of the keyword string. [Could have
saved 1 byte by using JR $353D (ROM 0)]

Save the character.

Signal to print a trailing space.
Get the character back.

Is it an 'Enter' character?
Jump if not to exit.

The end of the line was found so signal no further characters to fetch

L35B5:

There was no character within the buffer

L35B7:

LD HL,$0000
LD ($FCAL),HL
LD ($FCOF),HL
SCF

RET

SCF
CCF
RET

Signal no further character to fetch from the Keyword Construction Buffer.
Signal no further character to fetch from the BASIC line within the program area.
Set the carry flag to indicate that a character was available.

Reset the carry flag to indicate that a character was not available.

Edit Buffer Routines — Part 2

Keywords String Table

The following strings are terminated by having bit 7 set, referenced at $3593 (ROM 0) and $3F2E (ROM 0).
The table consists of the new 128K mode keywords and mis-spelled keywords.

L35BA:

L35C2:

DEFM "SPECTRU"

DEFB 'M'+$80
DEFM "PLA"
DEFB 'Y'+$80
DEFM "GOT"
DEFB 'O'+$80
DEFM "GOSU*"
DEFB 'B'+$80
DEFM "DEFF"
DEFB 'N'+$80
DEFM "OPEN"
DEFB '#'+$80

DEFM "CLOSE"

DEFB '#'+$80

Indentation Settings
Copied to $FD6A-$FD6B.

L35DF:

DEFB $02
DEFB $01

DEFB $05

Number of bytes in table.

Flag never subsequently used. Possibly intended to indicate the start of a new
BASIC line and hence whether indentation required.

Number of characters to indent by.

204

SPECTRUM +2 ROM o DISASSEMBLY

Set Indentation Settings

L35E2: LD HL,L35DF HL=Address of the indentation settings data table.
LD DE,$FD6A Destination address.
JP L3F61 Copy two bytes from $35DF-$35E0 (ROM 0) to $FD6A-$FD6B.

Store Character in Column of Edit Buffer Row

Store character in the specified column of the current edit buffer row.
Entry: B=Column number.

DE=Start address of row.

A=Character to insert.
Exit : B=Next column number.

L35EB: LDL,B
LD H,$00
ADD HL,DE Paint to the required column.
LD (HL),A Store the character.
INCB Advance to the next column.
RET

'Enter' Action Handler Routine

L35F2: CALL L360C Null remaining column positions in the edit buffer row.

LD A,(HL) Fetch the flag byte.

OR $18 Signal associated line number and last row in the BASIC line.

LD (HL),A Update the flag byte.

LD HL,$FD6A [Redundant since flag never subsequently tested. Deleting these instructions would
have saved 5 bytes]

SET 0,(HL) Flag possibly intended to indicate the start of a new BASIC line and hence whether
indentation required.

SCF Signal no more characters are available, i.e. end of line.

RET

'Null Columns' Action Handler Routine

L3600: CALL L360C Null remaining column positions in the edit buffer row.

SET 3,(HL) Signal last row of the BASIC line in the row flag byte.

LD HL,$FD6A [Redundant since flag never subsequently tested. Deleting these instructions would
have saved 5 bytes]

SET 0,(HL) Flag possibly intended to indicate the start of a new BASIC line and hence whether
indentation required.

SCF Signal no more characters are available, i.e. end of line.

RET

Null Column Positions

This routine inserts null characters into the remainder of a line edit buffer row.
Entry: B=Initial column to null.

DE=Address of start of edit row.
Exit : HL=Address of the row's flag byte.

L360C: LDL,B
LD H,$00 HL=Number of columns.
ADD HL,DE Paint to column position in line edit buffer row.
LD A,$20 32 columns.

205

SPECTRUM +2 ROM o DISASSEMBLY

L3612: CPB Found specified column?
RET Z Return if so.
LD (HL),$00 Store a null in the location.
INC HL Next buffer position.
INCB Increment column position counter.
JR L3612 Repeat for next column.

Indent Edit Buffer Row

Indent a row by setting the appropriate number of characters in an edit buffer row to nulls, i.e. character $00.

Entry: DE=Address of row within edit buffer.

Exit : B=First usable column number in the row.

L361A: LD A,($FD6B) Get the number of indentation columns.
LD B,$00 Start at first column.

L361F: LD H,$00
LDL,B HL=Column position.
ADD HL,DE
LD (HL),$00 Put a null in the column position.
INCB Next position.
DEC A
JR NZ,L361F Repeat for all remaining columns.
RET

Print Edit Buffer Row to Display File if Required

Print a row of the edit buffer to the display file if required.

Entry: HL=Address of edit buffer row.
L362A: PUSH BC Save registers.
PUSH DE
PUSH HL
PUSH HL Save edit buffer row address.
LD HL,$EEF5
BIT 2,(HL) Is printing of the edit buffer row required?
POP HL Retrieve edit buffer row address.
JR NZ,L363A Jump if printing is not required.
LD B,C B=Cursor row position.
CALL L3B3F Print the edit buffer row to the screen. Returns with the carry flag set.
L363A: POP HL Restore registers.
POP DE
POP BC
RET

Shift Up Edit Rows in Display File if Required

This routine shifts edit rows in the display file up if required, replacing the bottom row with the top entry from the Below-Screen Line Edit Buffer.
Entry: HL=Address of first row within the Below-Screen Line Edit Buffer.

C =Number of editing rows on screen.

B =Row number to shift from.

L363E: PUSH BC Save registers.
PUSH DE
PUSH HL
PUSH HL Save edit buffer row address.
LD HL,$EEF5
BIT 2,(HL) Is updating of the display file required?
POP HL Retrieve edit buffer row address.
JR NZ,L364E Jump if updating is not required.
LD E,C E=Cursor row position, i.e. row to shift from.
CALL L3AEO Shift up edit rows in the display file, replacing the bottom row with the top entry from

the Below-Screen Line Edit Buffer.

206

SPECTRUM +2 ROM o DISASSEMBLY

L364E: POP HL Restore registers.
POP DE
POP BC
RET

Shift Down Edit Rows in Display File if Required

This routine shifts edit rows in the display file down if required, replacing the top row with the bottom entry from the Above-Screen Line Edit Buffer.
Entry: HL=Address of next row to use within the Above-Screen Line Edit Buffer.

C =Number of editing rows on screen.

B =Row number to shift from.

L3652: PUSH BC Save registers.

PUSH DE

PUSH HL

PUSH HL Save edit buffer row address.

LD HL,$EEF5

BIT 2,(HL) Is updating of the display file required?

POP HL Retrieve edit buffer row address.

JR NZ,L3662 Jump if updating is not required.

LD E,C E=Cursor row position, i.e. row to shift from.

CALL L3AE7 Shift down edit rows in the display file, replacing the top row with the bottom entry

from the Above-Screen Line Edit Buffer.

L3662: POP HL Restore registers.

POP DE

POP BC

RET

Set Cursor Attribute Colour

L3666: PUSH AF Save registers.
PUSH BC
PUSH DE
PUSH HL
LDAB Swap B with C.
LD B,C
LD CA
CALL L3ABE Set cursor position attribute.
POP HL Restore registers.
POP DE
POP BC
POP AF
RET

Restore Cursor Position Previous Attribute

L3675: PUSH AF Save registers
PUSH BC
PUSH DE
PUSH HL
LD AB Column.
LD B,C Row.
LD C,A Column.
CALL L3AD3 Restore cursor position attribute.
POP HL Restore registers.
POP DE
POP BC
POP AF
RET

207

Reset 'L' Mode

L3684: LD A,$00
LD ($5C41),A
LD A,$02
LD ($5C0A),A
L368E: LD HL,$5C3B
LD A,(HL)
OR $0C
LD (HL),A
LD HL,$ECOD
BIT 4,(HL)
LD HL,FLAGS3
JR NZ,L36A2
RES 0,(HL)
RET
L36A2: SET 0,(HL)
RET

Wait for a Key Press
Exit: A holds key code.

L36A5: PUSH HL
L36A6: LD HL,$5C3B
L36A9: BIT 5,(HL)
JR Z,L36A9
RES 5,(HL)
LD A,($5C08)
LD HL,$5C41
RES 0,(HL)
CP $20
JR NC,L36C8
CP $10
JR NC,L36A6
CP $06
JR C,L36A6

Control code or cursor key

CALL L36CA
JR NC,L36A6
L36C8: POP HL
RET
L36CA: RST 28H
DEFW KEY_M_CL
RET

SPECTRUM +2 ROM o DISASSEMBLY

Select 'L' mode.

MODE.

Reset repeat key duration.
REPPER

FLAGS.

Select L-Mode and Print in L-Mode.

Editor flags.

Return to the calculator?
$5B66.

Jump ahead if so.

Select Editor/Menu mode.

Select BASIC/Calculator mode.

Preserve contents of HL.
FLAGS.

Wait for a key press.

Clear the new key indicator flag.
Fetch the key pressed from LAST_K.
MODE.

Remove extended mode.

Is it a control code?

Jump if not to accept all characters and token codes (used for the keypad).

Is it a cursor key?
Jump back if not to wait for another key.
Is it a cursor key?
Jump back if not to wait for another key.

Handle CAPS LOCK code and 'mode' codes.
Jump back if mode might have changed.
Restore contents of HL.

$10DB. Handle CAPS LOCK code and 'mode’ codes via ROM 1.

MENU ROUTINES — PART 5

Display Menu

HL=Address of menu text.

L36CE: PUSH HL
CALL L3761
LD HL,$5C3C
RES 0,(HL)
POP HL
LD E,(HL)

Save address of menu text.

Store copy of menu screen area and system variables.

TVFLAG.

Signal using main screen.
HL=Address of menu text.
Fetch number of table entries.

208

L36F7:

L36FD:

L3706:

L3709:

INC HL
PUSH HL

LD HL,L3812
CALL L3759
POP HL
CALL L3759
PUSH HL
CALL L3848
LD HL,L3820
CALL L3759
POP HL
PUSH DE
LD BC,$0807
CALL L3751
PUSH BC
LD B,$0C

LD A,$20
RST 10H

LD A,(HL)
INC HL

CP $80

JR NC,L3706
RST 10H
DJINZ L36FD
AND $7F
RST 10H

LD A,$20
RST 10H
DJNZ L3709
POP BC

INC B

CALL L3751
DECE

JR NZ,L36F7
LD HL,$6F38
POP DE
SLAE
SLAE
SLAE

LD D,E

DEC D

LD E,$6F

LD BC,$FF00
LD AD
CALL L373F
LD BC,$0001
LD AE
CALL L373F
LD BC,$0100
LD AD

INC A

CALL L373F
XOR A
CALL L37F0
RET

Plot a Line

L373F:

PUSH AF
PUSH HL
PUSH DE
PUSH BC
LD B,H
LDC,.L

SPECTRUM +2 ROM o DISASSEMBLY

Point to first entry.

Set title colours.
Print them.

Print menu title pointed to by HL.

Print Sinclair stripes.

Black ' ".

Print it.

HL=Address of first menu item text.
Save number of menu items left to print.

Perform 'Print AT 8,7;' (this is the top left position of the menu).

Save row print coordinates.
Number of columns in a row of the menu.
Print ' ".

Fetch menu item character.

End marker found?

Jump if end of text found.

Print menu item character

Repeat for all characters in menu item text.
Clear bit 7 to yield a final text character.
Print it.

Print trailing spaces

Until all columns filled.
Fetch row print coordinates.
Next row.

Print AT.

Repeat for all menu items.
Coordinates, pixel (111, 56) = end row 13, column 7.
Fetch number of menu items to E.

Determine number of pixels to span all menu items.

D=8*Number of menu items - 1.

Number of pixels in width of menu.

B=-1, C=0. Plot a vertical line going up.
A=Number of vertical pixels to plot.

Plot line.

B=0, C=1. Plot a horizontal line going to the right.
A=Number of horizontal pixels to plot.

Plot line.

B=1, C=0. Plot a vertical line going down.
A=Number of vertical pixels to plot.

Include end pixel.

Plot line.

A=Index of menu option to highlight.

Toggle menu option selection so that it is highlight.
[Could have saved one byte by using JP $37F0 (ROM 0)]

Save registers.

Coordinates to BC.

209

Print "AT B,C" Characters

L3751:

RST 28H

DEFW PLOT_SUB+4

POP BC
POP DE
POP HL
POP AF
ADD HL,BC
DECA

JR NZ,L373F
RET

LD A $16
RST 10H
LDAB
RST 10H
LDAC
RST 10H
RET

Print String

Print characters pointed to by HL until $FF found.

L3759:

Store Menu Screen Area

LD A,(HL)
INC HL
CP $FF
RET Z
RST 10H
JR L3759

SPECTRUM +2 ROM o DISASSEMBLY

$22E9. Plot pixel
Restore registers.

Determine coordinates of next pixel.

Repeat for all pixels.

'‘AT".

Print.

B=Row number.
Print.

C=Column number.
Print.

Fetch a character.
Advance to next character.
Reach end of string?
Return if so.

Print the character.

Back for the next character.

Store copy of menu screen area and system variables.

L3761:

Restore Menu Screen Area

SCF
JR L3765

Set carry flag to signal to save screen area.
Jump ahead to continue.

Restore menu screen area and system variables from copy.

Entry:

L3764:
L3765:

L376E:

L3773:

L3779:

L3781:

AND A

LD DE,$EEF6
LD HL,$5C3C
JR C,L376E
EX DE,HL
LDI

JR C,L3773
EX DE,HL

LD HL,$5C7D
JR C,L3779
EX DE,HL

LD BC,$0014
LDIR

JR C,L3781
EX DE,HL

EX AF,AF'

IX=Address of the cursor settings information.

Reset carry flag to signal restore screen area.
Store for TVFLAG.

TVFLAG.

Jump if storing copies.

Exchange source and destination pointers.
Transfer the byte.

Jump if storing copies.

Restore source and destination pointers.
COORDS. DE=$EEF7 by now.

Jump if storing copies.

Exchange source and destination pointers.
Copy 20 bytes.

Copy COORDS until ATTR_T.

Jump if storing copies.

Restore source and destination pointers.
Save copy direction flag.

210

L378F:

LD BC,$0707
CALL L3BB5

LD A,(IX+$01)

ADD A,B
LD B,A
LD A, $0C

PUSH BC
PUSH AF
PUSH DE
RST 28H
DEFW CL_ADDR
LD BC,$0007
ADD HL,BC
POP DE
CALL L37A4
POP AF
POP BC
DECB

DEC A

JR NZ,L378F
RET

SPECTRUM +2 ROM o DISASSEMBLY

Menu will be at row 7, column 7.

B=Number of rows to end row of screen. C=Number of columns to the end column
of the screen.

A=Rows above the editing area ($16 when using the lower screen, $00 when using
the main screen).

B=Row number within editing area.

B=Bottom screen row to store.

A=Number of rows to store. [Could have been just $07 freeing up 630 bytes of
workspace]

B holds number of row to store.

A holds number of rows left to store.

DE=End of destination address.

$OE9B. HL=Display file address of row B.
Menu always starts at column 7.
HL=Address of attribute byte at column 7.

Store / restore menu screen row.
Next row.

More rows to store / restore?
Repeat for next row

Store / Restore Menu Screen Row

Entry:

Exit :

Save the display file bytes

L37A4:
L37AT:

L37AF:

L37B4:

LD BC,$080E
PUSH BC
LD B,$00
PUSH HL
EX AF,AF'
JR C,L37AF
EX DE,HL
LDIR

JR C,L37B4
EX DE,HL
EX AF,AF'
POP HL
INCH

POP BC
DJNZ L37A7

Now save the attributes

L37Ce6:

PUSH BC
PUSH DE
RST 28H
DEFW CL_ATTR
EX DE,HL
POP DE
POP BC

EX AF,AF'
JR C,L37C6
EX DE,HL
LDIR

JR C,L37CB
EX DE,HL

HL=Start address of menu row in display file.

DE=Screen location/Workspace store for screen row.

AF'=Carry flag set for store to workspace, reset for restore to screen.
DE=Screen location/workspace store for next screen row.

B=Menu row is 8 lines deep. C=Menu is 14 columns wide.
Save number of row lines.

Just keep the column count in BC.

Save display file starting address.

Retrieve copy direction flag.

Jump if storing copies of display file bytes.
Exchange source and destination pointers.
Copy the row of menu display file bytes.
Jump if storing copies of display file bytes.
Restore source and destination pointers.
Save copy direction flag.

Fetch display file starting address.
Advance to next line

Fetch number of lines.

Repeat for next line.

B=0. C=Number of columns.
DE=Destination address.

$OE88. HL=Address of attribute byte.
DE=Address of attribute byte.

Retrieve copy direction flag.

Jump if storing copies of attribute bytes.
Restore source and destination pointers.
Copy the row of menu attribute bytes.
Jump if storing copies of attribute bytes.
Restore source and destination pointers.

211

L37CB:

EX AF,AF'
RET

Move Up Menu

L37CD:

L37D7:

CALL L37F0
DEC A

JP P,L37D7
LD A,(HL)
DEC A

DEC A
CALL L37F0
SCF

RET

Move Down Menu

L37DC:

L37EB:

PUSH DE
CALL L37F0
INC A

LD D,A

LD A,(HL)
DEC A

DEC A
CPD

LD AD

JP P,L37EB
XOR A
CALL L37F0
POP DE
RET

SPECTRUM +2 ROM o DISASSEMBLY

Save copy direction flag.

Toggle old menu item selection to de-highlight it.
Decrement menu index.

Jump if not exceeded top of menu.

Fetch number of menu items.

Ignore the title.

Make it indexed from 0.

Toggle new menu item selection to highlight it.
Ensure carry flag is set to prevent immediately
calling menu down routine upon return.

Save DE.

Toggle old menu item selection to de-highlight it.
Increment menu index.

Save menu index.

fetch number of menu items.

Ignore the title.

Make it indexed from 0.

Has bottom of menu been exceeded?

Fetch menu index.

Jump if bottom menu not exceeded.

Select top menu item.

Toggle new menu item selection to highlight it.
Restore DE.

Toggle Menu Option Selection Highlight

L37FO0:

L37FC:

L3800:

L3807:
L3809:

PUSH AF
PUSH HL
PUSH DE
LD HL,$5907
LD DE,$0020
AND A

JR Z,L3800
ADD HL,DE
DEC A

JR NZ,L37FC
LD A $78

CP (HL)

JR NZ,L3807
LD A,$68

LD D,$0E

LD (HL),A
INC HL

DEC D

JR NZ,L3809
POP DE
POP HL
POP AF
RET

Save registers.

First attribute byte at position (9,7).
The increment for each row.

Jump ahead if highlighting the first entry.
Otherwise increase HL
for each row.

Flash 0, Bright 1, Paper 7, Ink O = Bright white.
Is the entry already highlighted?

Jump ahead if not.

Flash 0, Bright 1, Paper 5, Ink O = Bright cyan.
There are 14 columns to set.

Set the attributes for all columns.

Restore registers.

212

Menu Title Colours Table

L3812:

DEFB $16, $07, $07
DEFB $15, $00
DEFB $14, $00
DEFB $10, $07
DEFB $11, 00
DEFB $13, $01
DEFB $FF

Menu Title Space Table

L3820:

Menu Sinclair Stripes Bitmaps

DEFB $11, $00
DEFB "'

DEFB $11, $07
DEFB $10, $00
DEFB $FF

SPECTRUM +2 ROM o DISASSEMBLY

AT 7,7
OVER O
INVERSE 0
INK 7
PAPER 0
BRIGHT 1

PAPER 0

PAPER 7
INK 0

Bit-patterns for the Sinclair stripes used on the menus.

L3828:

DEFB $01
DEFB $03
DEFB $07
DEFB $0F
DEFB $1F
DEFB $3F
DEFB $7F
DEFB $FF
DEFB $FE
DEFB $FC
DEFB $F8
DEFB $FO
DEFB $EO
DEFB $CO
DEFB $80
DEFB $00

Sinclair Strip 'Text'

CHARS points to RAM at $5A98, and characters '’

L3838:

DEFB $10, $02, '*
DEFB $11, $06, '
DEFB $10, $04, '*
DEFB $11, $05, '
DEFB $10, $00, ''
DEFB $FF

OFrRrFFRPFRPPFPFRPPPOOOOOOO
OCOoOFrRPFPFRPFPFRPFRPPRPPOOOOOO
OCOoOOFrRRFPPFPFRPRFRPFRPPPOOOOO
OO O0OOFrRPFPFRPFPFRPFPFPFPLROOOO
OO0 Oo0OOo0OOoOkrRRFRPFPFPFPFRPFRLPFPLOOO
OO0 o0oOo0oOo0OoOoOkrRPFPFPFPFRPFRPELEFLOO
[eNeoNeoleolNoNoNaoll Nl ol o e
OO OO0 O0OO0OOFrRRFRPRFRPFRPERPEPRERER

and '!" redefined as the Sinclair strips using the bit patterns above.

INK 2
PAPER 6
INK 4
PAPER 5
INK 0

Print the Sinclair stripes on the menu

L3848:

PUSH BC
PUSH DE
PUSH HL

LD HL,L3828
LD DE,STRIP1

Save registers.

Graphics bit-patterns
$5B98.

X
XX
XXX
XXXX
XXHKXX
XXXXXX
XXKXXXX
XHXKKXXXX
XXXKXXX
XXHXKXX
XXHKXX
XXXX
XXX
XX
X

213

LD BC,$0010
LDIR

LD HL,($5C36)
PUSH HL

LD HL,STRIP1-$0100
LD ($5C36),HL
LD HL,L3838
CALL L3759
POP HL

LD ($5C36),HL
POP HL

POP DE

POP BC

RET

Print '128 BASIC' Banner

L386E:

LD HL,L2785
JR L387B

Print 'Calculator' Banner

L3873:

LD HL,L278E
JR L387B

Print 'Tape Loader' Banner

L3878:

LD HL,L277A

Print Banner

L387B:

L3886:

PUSH HL
CALL L38A2
LD HL,$5AA0
LD B,$20

LD A,$40

LD (HL),A
INC HL

DJNZ L3886
LD HL,L3812
CALL L3759
LD BC,$1500
CALL L3751
POP DE
CALL L0O59C
LD C,$1A
CALL L3751
JP L3848

Clear Lower Editing Display

L38A2:

LD B,$15
LD D,$17
JP L3B7F

SPECTRUM +2 ROM o DISASSEMBLY

Copy two characters.
Save CHARS.

$5A98.

Set CHARS to point to new graphics.
Point to the strip string.

Print it.

Restore CHARS.

Restore registers.

"128 BASIC" text from main menu.
Jump ahead to print banner.

"Calculator" text from main menu.
Jump ahead to print banner.

"Tape Loader" text from main menu.

Address in memory of the text of the selected menu item.
Clear lower editing area display.

Address of banner row in attributes.

32 columns.

FLASH 0, BRIGHT 1, PAPER 0, INK 0.

Set a black row.

Menu title colours table.
Print the colours as a string.

Perform 'Print AT 21,0;".

Address in memory of the text of the selected menu item.
Print the text.

B has not changed and still holds 21.

Perform 'Print AT 21,26;'.

Print Sinclair stripes and return to calling routine.

Top row of editing area.
Bottom row of editing area.
Reset Display.

214

SPECTRUM +2 ROM o DISASSEMBLY

RENUMBER ROUTINE

Exit: Carry flag reset if required to produce an error beep.

L38A9: CALL L1F3F Use Normal RAM Configuration (physical RAM bank 0).
CALL L3A26 DE=Count of the number of BASIC lines.
LD A,D
ORE Were there any BASIC lines?
JP Z,L39E1 Jump if not to return since there is nothing to renumber.
LD HL,(RNSTEP) $5B96. Fetch the line number increment for Renumber.
RST 28H

$30A9. HL=HL*DE in ROM 1. HL=Number of lines * Line increment = New last line
number. [BUG - If there are more than 6553 lines then an arithmetic overflow will
occur and hence the test below to check if line 9999 would be exceeded will fail. The
carry flag will be set upon such an overflow and simply needs to be tested. The bug
can be resolved by following the call to HL_MULT_DE with a JP C,$39E1 (ROM 0)

DEFW HL_MULT_DE

There is a program that can be renumbered

instruction. Credit: lan Collier (+3), Andrew Owen (128)]

EX DE,HL DE=0ffset of new last line number from the first line number.
LD HL,(RNFIRST) $5B94. Starting line number for Renumber.

ADD HL,DE HL=New last line number.

LD DE,$2710 10000.

ORA

SBC HL,DE Would the last line number above 9999?

JP NC,L39E1 Jump if so to return since Renumber cannot proceed.

LD HL,($5C53)

PROG. HL=Address of first BASIC line.

L38CB: RST 28H Find the address of the next BASIC line from the
DEFW NEXT_ONE $19B8. location pointed to by HL, returning it in DE.
INC HL Advance past the line number bytes to point
INC HL at the line length bytes.
LD (RNLINE),HL $5B92. Store the address of the BASIC line's length bytes.
INC HL Advance past the line length bytes to point
INC HL at the command.
LD (N_STR1+4),DE $5B6B. Store the address of the next BASIC line.
L38D9: LD A,(HL) Get a character from the BASIC line.
RST 28H Advance past a floating point number, if present.
DEFW NUMBER $18B6.
CP $0D Is the character an 'ENTER'?
JR Z,L38E6 Jump if so to examine the next line.
CALL L392F Parse the line, renumbering any tokens that may be followed by a line number.
JR L38D9 Repeat for all remaining character until end of the line.
L38E®6: LD DE,(N_STR1+4) $5B6B. DE=Address of the next BASIC line.
LD HL,($5C4B) VARS. Fetch the address of the end of the BASIC program.
AND A
SBC HL,DE Has the end of the BASIC program been reached?
EX DE,HL HL=Address of start of the current BASIC line.
JR NZ,L38CB Jump back if not to examine the next line.

The end of the BASIC program has been reached so now it is time to update the line numbers and line lengths.

CALL L3A26 DE=Count of the number of BASIC lines.
LD B,D
LD C,E BC=Count of the number of BASIC lines.
LD DE,$0000
LD HL,($5C53) PROG. HL=Address of first BASIC line.
L38FE: PUSH BC BC=Count of number of lines left to update.
PUSH DE DE=Index of the current line.
PUSH HL HL=Address of current BASIC line.
LD HL,(RNSTEP) $5B96. HL=Renumber line increment.
RST 28H Calculate new line number offset, i.e. Line increment * Line index.

DEFW HL_MULT_DE
LD DE,(RNFIRST)

$30A9. HL=HL*DE in ROM 1.
$5B94. The initial line number when renumbering.

215

SPECTRUM +2 ROM o DISASSEMBLY

ADD HL,DE HL=The new line number for the current line.

EX DE,HL DE=The new line number for the current line.

POP HL HL=Address of current BASIC line.

LD (HL),D Store the new line number for this line.

INC HL

LD (HL),E

INC HL

LD C,(HL) Fetch the line length.

INC HL

LD B,(HL)

INC HL

ADD HL,BC Point to the next line.

POP DE DE=Index of the current line.

INC DE Increment the line index.

POP BC BC=Count of number of lines left to update.

DEC BC Decrement counter.

LD AB

ORC

JR NZ,L38FE Jump back while more lines to update.

CALL L1F64 Use Workspace RAM configuration (physical RAM bank 7).

LD (RNLINE),BC $5B92. Clear the address of line length bytes of the 'current line being renumbered'.
[No need to clear this]

SCF Signal not to produce an error beep.

RET

Tokens Using Line Numbers
A list of all tokens that maybe followed by a line number and hence require consideration.

L3928: DEFB $CA 'LINE'.
DEFB $FO 'LIST".
DEFB $E1 'LLIST".
DEFB $EC ‘GO TO.
DEFB $ED ‘GO SUB'.
DEFB $E5 'RESTORE".
DEFB $F7 'RUN".

Parse a Line Renumbering Line Number References

This routine examines a BASIC line for any tokens that may be followed by a line number reference and if one is found then the new line number if
calculated and substituted for the old line number reference. Although checks are made to ensure an out of memory error does not occur, the routine
simply returns silently in such scenarios and the renumber routine will continue onto the next BASIC line.
Entry: HL=Address of current character in the current BASIC line.

A=Current character.

L392F: INC HL Point to the next character.
LD (HD_11+1),HL $5B79. Store it.
EX DE,HL DE=Address of next character.
LD BC,$0007 There are 7 tokens that may be followed by a line
LD HL,L3928 number, and these are listed in the table at $3928 (ROM 0).
CPIR Search for a match for the current character.
EX DE,HL HL=Address of next character.
RET NZ Return if no match found.

A token that might be followed by a line number was found. If it is followed by a line number then proceed to renumber the line number reference. Note
that the statements such as GO TO VAL "100" will not be renumbered. The line numbers of each BASIC line will be renumbered as the last stage of
the renumber process at $38F3 (ROM 0).

LD C,$00 Counts the number of digits in the current line number representation. B will be $00
from above.
L3940: LD A,(HL) Fetch the next character.
CP"' $20. Is it a space?
JR Z,L3960 Jump ahead if so to parse the next character.

216

RST 28H
DEFW NUMERIC
JR NC,L3960
cp

JR Z,L3960
CP $0E

JR Z,L3964
OR $20
CP'e'

JR NZ,L395C
LDAB

ORC

JR NZ,L3960

A line number reference was not found

L395C: LD HL,(HD_11+1)
RET

L3960: INC BC
INC HL
JR L3940

An embedded number was found

L3964 LD (HD_00),BC
PUSH HL
RST 28H
DEFW NUMBER
CALL L3A57
LD A,(HL)
POP HL
cp
JR Z,L3978
CP $0D
RET NZ

End of statement/line found

L3978: INC HL
RST 28H
DEFW STACK_NUM
RST 28H
DEFW FP_TO_BC

LD H,B
LDL,.C

RST 28H

DEFW LINE_ADDR
JR Z,L.3990

LD A,(HL)

CP $80

JR NZ,L3990
LD HL,$270F
JR L39A1

The reference line exists

1.3990: LD (HD_OF+1),HL

SPECTRUM +2 ROM o DISASSEMBLY

$2D1B. Is the character a numeric digit?

Jump if a numeric digit to parse the next character.
$2E. Is it a decimal point?

Jump ahead if so to parse the next character.
Does it indicate a hidden number?

Jump ahead if so to process it.

Convert to lower case.

$65. Is it an exponent 'e'?

Jump if not to parse the next character.

Have any digits been found?

Jump ahead to parse the next character.

$5B79. Retrieve the address of the next character.

Increment the number digit counter.
Paint to the next character.
Jump back to parse the character at this new address.

$5B71. Note the number of digits in the old line number reference.
Save the address of the current character.

$18B6. Advance past internal floating point representation, if present.
Skip over any spaces.

Fetch the new character.

HL=Address of the current character.

$3A. Isit:'?

Jump if so.

Is it 'ENTER"?

Return if not.

Point to the next character.
$33B4. Move floating point number to the calculator stack.

$2DA2. Fetch the number line to BC. [BUG - This should test the carry flag to check
whether the number was too large to be transferred to BC. If so then the line number
should be set to 9999, as per the instructions at $398B (ROM 0). As a result, the call
the LINE_ADDR below can result in a crash. The bug can be resolved using a JR C,
$398B (ROM 0) instruction. Credit: lan Collier (+3), Andrew Owen (128)]

Transfer the number line to HL.

Find the address of the line number specified by HL.

$196E. HL=Address of the BASIC line, or the next one if it does not exist.

Jump if the line exists.

Has the end of the BASIC program been reached?

[BUG - This tests for the end of the variables area and not the end of the BASIC
program area. Therefore, the renumber routine will not terminate properly if variables
exist in memory when it is called. Executing CLEAR prior to renumbering will
overcome this bug. It can be fixed by replacing CP $80 with the instructions AND
$C0/JR Z,$3990 (ROM 0). Credit: lan Collier (+3), Andrew Owen (128)]

Jump ahead if not.

Make the reference point to line 9999.

Jump ahead to update the reference to use the new line number.

$5B77. Store the address of the referenced line.

217

SPECTRUM +2 ROM o DISASSEMBLY

CALL L3A2C DE=Count of the number of BASIC lines up to the referenced line.

LD HL,(RNSTEP) $5B96. Fetch the line number increment.

RST 28H

DEFW HL_MULT_DE $30A9. HL=HL*DE in ROM 1. HL=Number of lines * Line increment = New

referenced line number. [An overflow could occur here and would not be detected.
The code at $38B9 (ROM 0) should have trapped that such an overflow would occur
and hence there would have been no possibility of it occurring here.]

LD DE,(RNFIRST) $5B94. Starting line number for Renumber.

ADD HL,DE HL=New referenced line number.

HL=New line number being referenced

L39A1: LD DE,HD_0B+1 $5B73. Temporary buffer to generate ASCII representation of the new line number.
PUSH HL Save the new line number being referenced.
CALL L3A5D Create the ASCII representation of the line number in the buffer.
LD E,B
INCE
LD D,$00 DE=Number of digits in the new line number.
PUSH DE DE=Number of digits in the new line number.
PUSH HL HL=Address of the first non-'0' character in the buffer.
LD L,E
LD H,$00 HL=Number of digits in the new line number.
LD BC,(HD_00) $5B71. Fetch the number of digits in the old line number reference.
ORA
SBC HL,BC Has the number of digits changed?
LD (HD_00),HL $5B71. Store the difference between the number of digits in the old and new line
numbers.
JR Z,L39F0 Jump if they are the same length.
JR C,L39E6 Jump if the new line number contains less digits than the old.

The new line number contains more digits than the old line number

LD B,H

LD C,L BC=Length of extra space required for the new line number.

LD HL,(HD_11+1) $5B79. Fetch the start address of the old line number representation within the
BASIC line.

PUSH HL Save start address of the line number reference.

PUSH DE DE=Number of non-'0' characters in the line number string.

LD HL,($5C65) STKEND. Fetch the start of the spare memory.

ADD HL,BC Would a memory overflow occur if the space were created?

JR C,L39DF Jump if not to return without changing the line number reference.

EX DE,HL DE=New STKEND address.

LD HL,$0082 Would there be at least 130 bytes at the top of RAM?

ADD HL,DE

JR C,L39DF Jump if not to return without changing the line number reference.

SBC HL,SP Is the new STKEND address below the stack?

CCF

JR C,L39DF Jump if not to return without changing the line number reference.

POP DE DE=Number of non-'0' characters in the line number string.

POP HL HL=Start address of line number reference.

RST 28H

DEFW MAKE_ROOM $1655. Create the space for the extra line number digits.

JR L39F0 Jump ahead to update the number digits.

No room available to insert extra line number digits

L39DF: POP DE Discard stacked items.
POP HL

[At this point the stack contains 3 surplus items. These are not explicitly popped off the stack since the call to $1F64 (ROM 0) will restore the stack to the
state it was in at $38A9 (ROM 0) when the call to $1F3F (ROM 0) saved it.] Exit if no BASIC program, renumbering would cause a line number overflow

or renumbering would cause an out of memory condition

L39E1: CALL L1F64 Use Workspace RAM configuration (physical RAM bank 7).
AND A Reset the carry flag so that an error beep will be produced.

218

RET

SPECTRUM +2 ROM o DISASSEMBLY

The new line number contains less digits than the old line number

L39E®6:

DEC BC
DECE
JR NZ,L39E6

LD HL,(HD_11+1)

RST 28H
DEFW RECLAIM_2

BC=Number of digits in the old line number reference.

Decrement number of digits in the new line number.

Repeat until BC has been decremented by the number of digits in the new line
number, thereby leaving BC holding the number of digits in the BASIC line to be
discarded.

$5B79. Fetch the start address of the old line number representation within the
BASIC line.

$19E8. Discard the redundant bytes.

The appropriate amount of space now exists in the BASIC line so update the line number value

L39FO0:

LD DE,(HD_11+1)

POP HL
POP BC

LDIR

EX DE,HL

LD (HL),$0E

POP BC

INC HL

PUSH HL

RST 28H

DEFW STACK_BC

POP DE
LD BC,$0005

LDIR

EX DE,HL

PUSH HL

LD HL,(RNLINE)
PUSH HL

LD E,(HL)

INC HL

LD D,(HL)

LD HL,(HD_00)
ADD HL,DE

EX DE,HL

POP HL

LD (HL),E

INC HL

LD (HL),D

LD HL,(N_STR1+4)
LD DE,(HD_00)
ADD HL,DE

LD (N_STR1+4),HL
POP HL

RET

$5B79. Fetch the start address of the old line number representation within the
BASIC line.

HL=Address of the first non-'0' character in the buffer.

BC=Number of digits in the new line number.

Copy the new line number into place.

HL=Address after the line number text in the BASIC line.

Store the hidden number marker.

Retrieve the new line number being referenced.

HL=Address of the next position within the BASIC line.

$2D2B. Put the line number on the calculator stack, returning HL pointing to it. [BUG
- This stacks the new line number so that the floating point representation can be
copied. However, the number is not actually removed from the calculator stack.
Therefore the amount of free memory reduces by 5 bytes as each line with a line
number reference is renumbered. A call to FP_TO_BC (at $2DA2 within ROM 1)
after the floating point form has been copied would fix the bug. Note that all leaked
memory is finally reclaimed when control is returned to the Editor but the bug could
prevent large programs from being renumbered. Credit: Paul Farrow]

DE=Address of the next position within the BASIC line.

Copy the floating point form into the BASIC line.
HL=Address of character after the newly inserted floating point number bytes.

$5B92. HL=Address of the current line's length bytes.

DE=Existing length of the current line.
$5B71. HL=Change in length of the line.

DE=New length of the current line.
HL=Address of the current line's length bytes.

Store the new length.
$5B6B. HL=Address of the next BASIC line.
$5B71. DE=Change in length of the current line.

$5B6B. Store the new address of the next BASIC line.
HL=Address of character after the newly inserted floating point number bytes.

Count the Number of BASIC Lines

This routine counts the number of lines in the BASIC program, or if entered at $3A2C (ROM 0) counts the number of lines up in the BASIC program

to the address specified in HD_OF+1.
Exit: DE=Number of lines.

219

L3A26: LD HL,($5C4B)
LD (HD_OF+1),HL
L3A2C: LD HL,($5C53)
LD DE,(HD_OF+1)
ORA
SBC HL,DE
JR Z,L3A52
LD HL,($5C53)
LD BC,$0000
L3A3E: PUSH BC
RST 28H
DEFW NEXT_ONE
LD HL,(HD_OF+1)
AND A
SBC HL,DE
JR Z,L3A4F
EX DE,HL
POP BC
INC BC
JR L3A3E
L3A4F: POP DE
INC DE
RET

No BASIC program

L3A52: LD DE,$0000
RET

Skip Spaces

L3A56: INC HL

L3A57: LD A,(HL)
CP"'
JR Z,L3A56
RET

SPECTRUM +2 ROM o DISASSEMBLY

VARS. Fetch the address of the variables

$5B77. and store it.

PROG. Fetch the start of the BASIC program
$5B77. and compare against the address of

the end address to check whether there is

a BASIC program.

Jump if there is no BASIC program.

PROG. Fetch the start address of the BASIC program.
A count of the number of lines.

Save the line number count.

Find the address of the next BASIC line from the
$19B8. location pointed to by HL, returning it in DE.
$5B77. Fetch the start of the variables area,

i.e. end of the BASIC program.

Jump if end of BASIC program reached.
HL=Address of current line.

Retrieve the line number count.

Increment line number count.

Jump back to look for the next line.
Retrieve the number of BASIC lines and
increment since originally started on a line.

There are no BASIC lines.

Point to the next character.

Fetch the next character.

$20. Is it a space?

Jump if so to skip to next character.

Create ASCII Line Number Representation

Creates an ASCII representation of a line number, replacing leading zeros with spaces.

Entry: HL=The line number to convert.

DE=Address of the buffer to build ASCII representation in.
B=Number of non-'0' characters minus 1 in the ASCII representation.

Exit : HL=Address of the first non-'0' character in the buffer.

L3A5D: PUSH DE Store the buffer address.
LD BC,$FC18 BC=-1000.
CALL L3A81 Insert how many 1000s there are.
LD BC,$FF9C BC=-100.
CALL L3A81 Insert how many 100s there are.
LD C,$F6 BC=-10.
CALL L3A81 Insert how many 10s there are.
LD AL A=Remainder.
ADD A,'0' $30. Convert into an ASCII character ('0'..'9").
LD (DE),A Store it in the buffer.
INC DE Point to the next buffer position.

Now skip over leading zeros

LD B,$03
POP HL
L3A7T: LD A,(HL)

Skip over 3 leading zeros at most.
Retrieve the buffer start address.
Fetch a character.

220

SPECTRUM +2 ROM o DISASSEMBLY

CP'0' $30. Is it a leading zero?

RET NZ Return as soon as a non-'0' character is found.
LD (HL),"" $20. Replace it with a space.

INC HL Point to the next buffer location.

DJNZ L3A77 Repeat until all leading zeros removed.

RET

Insert Line Number Digit

This routine effectively works out the result of HL divided by BC. It does this by repeatedly adding a negative value until no overflow occurs.
Entry: HL=Number to test.

BC=Negative amount to add.

DE=Address of buffer to insert ASCII representation of the number of divisions.
Exit : HL=Remainder.

DE=Next address in the buffer.

L3A81: XOR A Assume a count of 0 additions.
L3A82: ADD HL,BC Add the negative value.
INC A Increment the counter.
JR C,L3A82 If no overflow then jump back to add again.
SBC HL,BC Undo the last step
DEC A and the last counter increment.
ADD A,'0' $30. Convert to an ASCII character ('0'..'9").
LD (DE),A Store it in the buffer.
INC DE Point to the next buffer position.
RET

EDITOR ROUTINES — PART 4

Initial Lower Screen Cursor Settings
Copied to $FD6C-$FD73.

L3AS8E: DEFB $08 Number of bytes in table.
DEFB $00 $FD6C. [Setting never used]
DEFB $00 $FD6D = Rows above the editing area.
DEFB $14 $FD6E. [Setting never used]
DEFB $00 $FD6F. [Setting never used]
DEFB $00 $FD70. [Setting never used]
DEFB $00 $FD71. [Setting never used]
DEFB $0F $FD72 = Cursor attribute colour (blue paper, white ink).
DEFB $00 $FD73 = Stored cursor position screen attribute colour (None = black paper, black
ink).

Initial Main Screen Cursor Settings
Copied to $FD6C-$FD73.

L3A97: DEFB $08 Number of bytes in table.
DEFB $00 $FD6C. [Setting never used]
DEFB $16 $FD6D = Rows above the editing area.
DEFB $01 $FDG6E. [Setting never used]
DEFB $00 $FD6F. [Setting never used]
DEFB $00 $FD70. [Setting never used]
DEFB $00 $FD71. [Setting never used]
DEFB $0F $FD72 = Cursor attribute colour (blue paper, white ink).
DEFB $00 $FD73 = Stored cursor position screen attribute colour (None = black paper, black
ink).

221

SPECTRUM +2 ROM o DISASSEMBLY

Set Main Screen Editing Cursor Details

Set initial cursor editing settings when using the main screen.
Copies 8 bytes from $3A8F-$3A96 (ROM 0) to $FD6C-$FD73.

L3AAOQ: LD IX,$FD6C Poaint IX at cursor settings in workspace.
LD HL,L3A8E Initial values table for the lower screen cursor settings.
JR L3AAC Jump ahead.

Set Lower Screen Editing Cursor Details

Set initial cursor editing settings when using the lower screen.
Copies 8 bytes from $3A98-$3A9F (ROM 0) to $FD6C-$FD73.

L3AA9: LD HL,L3A97 Initial values table for the main screen cursor settings.
L3AAC: LD DE,$FD6C DE=Cursor settings in workspace.
JP L3F61 Jump to copy the settings.

UNUSED ROUTINES — PART 2

Print 'AD'
This routine prints to the current channel the contents of register A and then the contents of register D.
[Never called by ROM].

L3AB2: RST 10H Print character held in A.
LD AD
RST 10H Print character held in D.
SCF
RET

EDITOR ROUTINES — PART 5

Store Cursor Colour

L3AB7: AND $3F Mask off flash and bright bits.
LD (IX+$06),A Store it as the new cursor attribute value.
SCF
RET

Set Cursor Position Attribute

L3ABE: LD A,(IX+$01) A=Rows above the editing area ($16 when using the lower screen, $00 when using

the main screen).

ADD AB B=Row number within editing area.

LD B,A B=Screen row number.

CALL L3BC1 Get address of attribute byte into HL.

LD A,(HL) Fetch current attribute byte.

LD (IX+$07),A Store the current attribute byte.

CPL Invert colours.

AND $CO Mask off flash and bright bits.

OR (IX+$06) Get cursor colour.

LD (HL),A Store new attribute value to screen.

SCF [Redundant since calling routine preserves AF]

RET

222

SPECTRUM +2 ROM o DISASSEMBLY

Restore Cursor Position Attribute

L3AD3: LD A,(IX+$01)

ADD AB
LD B,A

CALL L3BC1
LD A,(IX+$07)
LD (HL),A
RET

A=Rows above the editing area ($16 when using the lower screen, $00 when using

the main screen).

B=Row number within editing area.
B=Screen row number.

Get address of attribute byte into HL.
Get previous attribute value.

Set colour.

Shift Up Edit Rows in Display File

This routine shifts edit rows in the display file up, replacing the bottom row with the top entry from the Below-Screen Line Edit Buffer.

Entry: HL=Address of first row in the Below-Screen Line Edit Buffer.

E =Number of editing rows on screen.
B =Row number to shift from.

L3AEOQ: PUSH HL
LD H,$00
LD AE
SUB B
JR L3AEE

Save the address of the Below-Screen Line Edit Buffer row.

Indicate to shift rows up.

A=Number of editing rows on screen.

A=Number of rows to shift, i.e. from current row to end of edit screen.
Jump ahead.

Shift Down Edit Rows in Display File

This routine shifts edit rows in the display file down, replacing the top row with the bottom entry from the Above-Screen Line Edit Buffer.

Entry: HL=Address of next row to use within the Above-Screen Line Edit Buffer.

E =Number of editing rows on screen.
B =Row number to shift from.

L3AE7: PUSH HL
LD AE
LDEB
LD B,A
SUBE
LD H,$FF

Shift Rows

L3AEE: LD CA
LDAB
CPE
JR Z,L3B3E

Shift all display file and attributes rows up

PUSH DE

CALL L3BB9
L3AFT7: PUSH BC

LD CH

RST 28H

DEFW CL_ADDR

EX DE,HL

XOR A

ORC

JR Z,L3B04

INC B

JR L3B05
L3B04: DECB

Save the address of the first row in Below-Screen Line Edit Buffer.
A=Number of editing rows on screen.

E=Row number to shift from.

B=Number of editing rows on screen.

A=Number of rows to shift, i.e. from current row to end of edit screen.
Indicate to shift rows down.

C=Number of rows to shift.

A=Row number to shift from.

Is it the final row of the editing screen?
Jump if so to simply display the row.

Save number of editing rows on screen, in E.
B=Inverted row number, i.e. 24-row number.
B=Inverted row number, C=Number of rows left to shift.
Store the direction flag.

$OE9B. HL=Destination display file address, for the row number specified by 24-B.

DE=Destination display file address.

Fetch the direction flag.

Jump if moving up to the previous row.

Move to the previous row (note that B is inverted, i.e. 24-row number).
Jump ahead.

Move to the next row (note that B is inverted, i.e. 24-row number).

223

L3B05:

PUSH DE

RST 28H

DEFW CL_ADDR
POP DE

Copy one row of the display file

L3BOF:

LDAC
LD C,$20
LD B,$08
PUSH BC
PUSH HL
PUSH DE
LD B,$00
LDIR
POP DE
POP HL
POP BC
INCH
INC D
DJINZ L3BOF

Copy one row of display attributes

PUSH AF
PUSH DE

RST 28H

DEFW CL_ATTR
EX DE,HL

EX (SP),HL

RST 28H
DEFW CL_ATTR
EX DE,HL

EX (SP),HL
POP DE

LD BC,$0020
LDIR

Repeat to shift the next row

L3B37:

L3B38:

L3B3E:

POP AF
POP BC
AND A

JR Z,L3B37
INC B

JR L3B38
DECB

DECC
LD H,A
JR NZ,L3AF7
POP DE
LD B,E
POP HL

SPECTRUM +2 ROM o DISASSEMBLY

DE=Destination display file address.

$OE9B. HL=Source display file address, for the row number held in B.
DE=Destination display file address.

Fetch the direction flag.
32 columns.
8 lines.

Copy one line in the display file.

Next source line in the display file.
Next destination line in the display file.
Repeat for all lines in the row.

Save the duration flag.

DE=Address of next destination row in the display file.

HL=Address of next source row in the display file.

$OE88. DE=Address of corresponding attribute cell.

HL=Address of corresponding source attribute cell.

Store source attribute cell on the stack, and fetch the next destination row in the
display file in HL.

HL=Address of next destination row in the display file.

$0E88. DE=Address of corresponding destination attribute cell.

HL=Address of corresponding destination attribute cell.

Store destination attribute cell on the stack, and fetch the source attribute cell in HL.
DE=Destination attribute cell.

Copy one row of the attributes file.

Retrieve the direction flag.

B=Inverted row number, C=Number of rows left to shift.

Shifting up or down?

Jump if shifting rows up.

Move to the previous row, i.e. the row to copy (note that B is inverted, i.e. 24-row
number).

Jump ahead.

Move to the next row, i.e. the row to copy (note that B is inverted, i.e. 24-row
number).

Decrement the row counter.

H=Direction flag.

Jump if back more rows to shift.

E=Number of editing rows on screen.

B=Number of editing rows on screen.

HL=Address of the Line Edit Buffer row to print (either in the Above-Screen Line Edit
Buffer or in the Below-Screen Line Edit Buffer).

Print a Row of the Edit Buffer to the Screen

This routine prints all 32 characters of a row in the edit buffer to the display file.
When shifting all rows up, this routine prints the top entry of the Below-Screen Line Edit Buffer to the first row of the display file.
When shifting all rows down, this routine prints the bottom entry of the Above-Screen Line Edit Buffer to the last editing row of the display file.

Entry:

B =Row number to print at.

224

HL=Address of edit buffer row to print.

SPECTRUM +2 ROM o DISASSEMBLY

L3B3F: CALL L3BD9 Exchange colour items.
EX DE,HL Transfer address of edit buffer row to DE.
LD A,($5C3C) TVFLAG.
PUSH AF
LD HL,$ECOD Editor flags.
BIT 6,(HL) Test the editing area flag.
RES 0,A Allow leading space.
JR Z,L3B52 Jump if editing area is the main screen.
SET 0,A Suppress leading space.
L3B52: LD ($5C3C),A TVFLAG.
LD C,$00 The first column position of the edit row.
CALL L3751 Print AT.
EX DE,HL HL=Address of edit buffer row.
LD B,$20 32 columns.
L3B5D: LD A,(HL) Character present in this position?
AND A
JR NZ,L3B63 Jump if character found.
LD A,$20 Display a space for a null character.
L3B63: CP $90 Is it a single character or UDG?
JR NC,L3B76 Jump if it is a UDG.
RST 28H Print the character.
DEFW PRINT_A_ 1 $0010.
L3B6A: INC HL
DJNZ L3B5D Repeat for all column positions.
POP AF Restore original suppress leading space status.
LD ($5C3C),A TVFLAG.
CALL L3BD9 Exchange colour items.
SCF [Redundant since never subsequently checked]
RET
L3B76: CALL L1F3F Use Normal RAM Configuration (physical RAM bank 0).
RST 10H Print it (need to page in RAM bank 0 to allow access to UDGS).
CALL L1F64 Use Workspace RAM configuration (physical RAM bank 7).
JR L3B6A Jump back for next character.

Clear Display Rows

L3B7F: CALL L3BD9 Exchange 48 and 128 editing colour items.
LD AD Bottom row to clear.
SUB B
INC A A=Number of rows to clear.
LDCA C=Number of rows to clear.
CALL L3BB9 B=Number of rows to end of screen.

Clear display file row

L3B89: PUSH BC B=Row number. C=Row to clear.
RST 28H
DEFW CL_ADDR $0E9B. Find display file address.
LD C,$08 8 lines in the row.
L3B8F: PUSH HL Save start of row address.
LD B,$20 32 columns.
XOR A
L3B93: LD (HL),A Blank the row.
INC HL
DJNZ L3B93
POP HL Get start of row address.
INC H Next line.
DECC
JR NZ,L3B8F Repeat for all rows.
LD B,$20 32 columns.
PUSH BC
RST 28H

225

SPECTRUM +2 ROM o DISASSEMBLY

DEFW CL_ATTR $0E88. Find attribute address.
EX DE,HL
POP BC BC=32 columns.

Reset display file attributes

LD A,($5C8D) ATTR_P.

L3BA7: LD (HL),A Set display file position attribute.
INC HL
DJNZ L3BA7 Repeat for all attributes in the row.

Repeat for next row

POP BC B=Row number. C=Number of rows to clear.
DEC B

DECC

JR NZ,L3B89 Repeat for all rows.

CALL L3BD9 Exchange 48 and 128 editing colour items.
SCF [Redundant since never subsequently checked]
RET

Find Rows and Columns to End of Screen

This routine calculates the number of rows to the end row of the screen and the number of columns to the end column of the screen. It takes into account
the number of rows above the editing area.

Entry: B=Row number.
C=Column number.
Exit : B=Number of rows to end row of screen.

C=Number of columns to the end column of the screen.

L3BB5: LD A$21 Reverse column number.
SUBC
LDCA C=33-C. Columns to end of screen.

Find Rows to End of Screen

This routine calculates the number of rows to the end row of the screen. It takes into account the number of rows above the editing area.
Entry: B=Row number.
Exit : B=Number of rows to end of screen.

IX=Address of the cursor settings information.

L3BB9: LD A,$18 Row 24.
SUB B A=24-B.
SUB (IX+$01) Subtract the number of rows above the editing area.
LD B,A B=Rows to end of screen.
RET

Get Attribute Address

Get the address of the attribute byte for the character position (B,C).
Entry: B=Row number.

C=Column number.
Exit : HL=Address of attribute byte.

L3BC1: PUSH BC Save BC.
XOR A A=0.
LD D,B
LD EA DE=B*256.
RR D
RRE

226

SPECTRUM +2 ROM o DISASSEMBLY

RR D

RRE

RR D

RRE DE=B*32.

LD HL,$5800 Start of attributes file.
LD B,A B=0.

ADD HL,BC Add column offset.
ADD HL,DE Add row offset.

POP BC Restore BC.

RET

Exchange Colour Items

Exchange 128 Editor and main colour items.

L3BD9: PUSH AF Save registers.
PUSH HL
PUSH DE
LD HL,($5C8D) ATTR_P, MASK_P. Fetch main colour items.
LD DE,($5C8F) ATTR_T, MASK_T.
EXX Store them.
LD HL,($ECOF) Alternate Editor ATTR_P, MASK_P. Fetch alternate Editor colour items.
LD DE,($EC11) Alternate Editor ATTR_T, MASK_T.
LD ($5C8D),HL ATTR_P, MASK_P. Store alternate Editor colour items as main colour items.
LD ($5C8F),DE ATTR_T, MASK_T.
EXX Retrieve main colour items ATTR_T and MASK_T.
LD ($ECOF),HL Alternate Editor ATTR_P, MASK_P.
LD ($EC11),DE Alternate Editor ATTR_T, MASK_T. Store alternate Editor colour items as main
colour items.
LD HL,$EC13 Alternate P_FLAG. Temporary Editor store for P_FLAG.
LD A,($5C91) P_FLAG.
LD D,(HL) Fetch alternate Editor version.
LD (HL),A Store main version in alternate Editor store.
LD AD A=Alternate Editor version.
LD ($5C91),A P_FLAG. Store it as main version.
POP DE Restore registers.
POP HL
POP AF
RET

EDITOR ROUTINES — PART 5

Tokenize BASIC Line

This routine serves two purposes. The first is to tokenize a typed BASIC line into a tokenized version. The second is when a syntax error is subsequently
detected within the tokenized line, and it is then used to search for the position within the typed line where the error marker should be shown.

This routine parses the BASIC line entered by the user and generates a tokenized version in the workspace area as pointed to by system variable E_LINE.
It suffers from a number of bugs related to the handling of >' and '<' characters. The keywords '<>', '>=" and '<=" are the only keywords that do not
commence with letters and the routine traps these in a different manner to all other keywords. If a '<' or '>' is encountered then it is not immediately copied
to the BASIC line workspace since the subsequent character must be examined as it could be a >' or '=' character and therefore might form the keywords
'<>' '>=" or '<=". A problem occurs if the subsequent character is a letter since the parser now expects the start of a possible keyword. It should at this
point insert the '<' or *>' into the BASIC line workspace but neglects to do this. It is only when the next non-letter character is encountered that the '<' or
'>' gets inserted, but this is now after the previously found string has been inserted. This results the following types of errors:

'PRINT varA>varB' is seen by the parser as 'PRINT varAvarB>' and hence a syntax error occurs.

'PRINT varA>varB1' is seen by the parser as 'PRINT varAvarB>1' and hence is accepted as a valid statement.

A work-around is to follow the '<' or '>' with a space since this forces the '<' or '>' to be inserted before the next potential keyword is examined.

A consequence of shifting a '<' or '>' is that a line such as 'PRINT a$>b$' is seen by the parser as 'PRINT ah>' and so it throws a syntax error.

The parser saved the *>' character for consideration when the next character was examined to see if it was part of the keywords '<>', '>=' or '<=', but fails
to discard it if the end of the statement is immediately encountered. Modifying the statement to a form that will be accepted will still cause a syntax error
since the parser mistakenly believes the '>' character applies to this statement.

The parser identifies string literals contained within quotes and will not tokenize any keywords that appear inside them, except for the keywords "<>", "<="
and ">=" which it neglects to check for. Keywords are also not tokenized following a REM statement, except again for "<>", "<=" and ">=", until the end
of the line is reached. This differs slightly to 48K BASIC mode. In 48K BASIC mode, typing a "' following a REM statement will cause a change from 'L’

227

cursor mode to 'K' cursor mode and hence the next key press results in a keyword token being inserted. In 128K BASIC mode, typing a ":' will not change
to 'K' cursor mode and hence the next key press will just be the letter, number or symbol. This does not affect the running of the program since 48K
BASIC mode will ignore all characters after a REM command until the end of the line. However, creating such a REM statement in 128K BASIC mode
that appears similar to one created in 48K BASIC mode will result in more memory being used since the 'keyword' must be spelled out letter by letter.
When being used to locate the error marker position, the same process is performed as when tokenizing but no characters are actually inserted into
the workspace (they are still there from when the line was originally tokenized). Instead, a check is made after each character is processed to see if the
error marker address held in system variable X_PTR has been reached. If it does match then the routine returns with BC holding the character position
where the error marker should be displayed at.

SPECTRUM +2 ROM o DISASSEMBLY

Entry point - A syntax error was detected so the error marker must be located

L3COA:

Entry point - Tokenize the BASIC line

L3COE:
L3C10:

LD A,$01
JR L3C10

LD A,$00

LD ($FD8A),A
LD HL,$0000
LD ($FD85),HL
LD ($FD87),HL

ADD HL,SP
LD ($FDSB),HL
CALL L3510

LD A,$00
LD ($FD84),A

LD HL,$FD74
LD ($FD7D),HL
CALL L1F3F
RST 28H

DEFW SET_MIN
CALL L1F64

LD A,$00

LD ($FD81),A

LD HL,($5C59)
LD ($FD82),HL
LD HL,$0000

LD ($FD7F),HL

Signal to locate the error marker.
Jump forward.

Signal to tokenize the BASIC line. [Could have saved 1 byte by using XOR A]
Store the 'locate error marker' flag.

Reset count of the number of characters in the typed BASIC line being inserted.
Reset count of the number of characters in the tokenized version of the BASIC line
being inserted.

Store the stack pointer.

Clear BASIC line construction pointers (address of next character in the Keyword
Construction Buffer and the address of the next character in the BASIC line within
the program area being de-tokenized).

[Could have saved 1 byte by using XOR A]

Signal last character was not a keyword and was not a space. [BUG - Should reset
the '<" and '>' store at $FD89 to $00 here. Attempting to insert a BASIC line such
as 'PRINT VAL a$>b' will fail since the parser does not like ">' immediately after
'a$', due to the bug at $3C5F (ROM 0). The parser stores the ">' in $FD89 since

it will check the following character in case it should replace the two characters
with the token '<>', '>=" or '<=". After the parser throws the syntax error, it does not
clear $FD89 and so even if the line is modified such that it should be accepted, e.g.
'PRINT VAL a$=b', the parser believes the line is really '>PRINT VAL n$=b' and so
throws another syntax error. Since a letter follows the '>', the contents of $FD89 will
get cleared and hence a second attempt to insert the line will now succeed. Credit:
Paul Farrow]

HL=Start address of the Keyword Conversion Buffer.

Store as the next available location.

Use Normal RAM Configuration (physical RAM bank 0).

$16BO0. Clear the editing areas.

Use Workspace RAM configuration (physical RAM bank 7).

[Could have saved 1 byte by using XOR A, or 2 bytes by clearing this above]
Clear Keyword Conversion Buffer flags - not within REM, not with Quotes, no
characters in the buffer.

E_LINE.

Store the address of the workspace for the tokenized BASIC line.

[Could have saved 1 byte by using LD H,A followed by LD L,A]

Signal no space character between words in the Keyword Conversion Buffer.

Enter a loop to fetch each character from the BASIC line and insert it into the workspace, tokenizing along the way

L3C48:

LD HL,($FD85)
INC HL

LD ($FD85),HL
CALL L3D44
LD CA

Increment count of the number of characters in the typed BASIC line.

Fetch the next character from BASIC line being inserted, return in B.
Save the character status value.

C=%$01 if not a space, not a letter, not a '# and not a '$'.

$02 ifa'# or'$.
$03 if a space.
$06 if a letter.

B=Character fetched.

228

SPECTRUM +2 ROM o DISASSEMBLY

LD A,($FD81) Have any Keyword Conversion Buffer flags been set?
CP $00 Has anything be put into the buffer yet?
JR NZ,L3C9B Jump if so.

The first character to potentially put into the Keyword Conversion Buffer

L3C5A: LDAC Retrieve the character status value.
AND $04 Is the character a letter?
JR Z,L3C94 Jump if not.

Insert the character
L3C5F:

[BUG - At this point a '>' or '<' that was previously stored should be inserted into the BASIC line workspace. However, the routine proceeds with the
new potential keyword and this is entered into the BASIC line workspace next. The '>' or '<' will only be inserted when the next non-letter character is
encountered. This causes an expression such as 'a>b1' to be translated into ‘ab>1". Credit: lan Collier (+3), Paul Farrow (128)] [The bug can be fixed
by testing if whether a '<' or '>' character is stored. Credit: Paul Farrow.

LD A,($FD89)
AND A Was the last character a ">' or '<'?
JR Z,INSERT Jump if not.
PUSH BC Save the new character.
LD B,A
CALL $3E0B (ROM 0) Insert the ">' or '<' into the BASIC line workspace.
POP BC Retrieve the new character.
XOR A
LD ($FD89),A Clear the >' or '<'.
INSERT
CALL L3D90 Insert the character into the Keyword Conversion Buffer.
JR NC,L3C6B Jump if no more room within the buffer, hence string is too large to be a token.
LD A,$01 Signal Keyword Conversion Buffer contains characters.
LD ($FD81),A
JR L3C48 Jump back to fetch and process the next character.

No room to insert the character into the Keyword Conversion Buffer hence string is too large to be a valid token

L3C6B: LD HL,($FD7F) Fetch the address of the space character between words within the Keyword
Conversion Buffer.
LD AL
ORH Is there an address set?
JP NZ,L3CC5 Jump if so to copy the first word into the BASIC line workspace and the move the

second word to the start of the Keyword Conversion Buffer. Further characters can
then be appended and the contents re-evaluated in case a complete keyword is then
available.

Copy the Keyword Conversion Buffer into the BASIC line workspace

L3C73: PUSH BC Save the character to insert.
CALL L3D74 Copy Keyword Conversion Buffer contents into BASIC line workspace.
POP BC Retrieve the character to insert.
LD A,$00
LD ($FD81),A Signal the Keyword Conversion Buffer is empty.

C=$01 if not a space, not a letter, not a '# and not a '$'.
$02if a'# or '$".

$03 if a space.

$06 if a letter.

B=Character fetched.

L3C7D: LD AC Retrieve the character status value.
AND $01 Is it a space, or not a letter and not a '# and not a '$'?

229

SPECTRUM +2 ROM o DISASSEMBLY

JR NZ,L3C5A Jump back if so to insert the character either into the Keyword Conversion Buffer or
the BASIC line workspace.

The string was too long to be a keyword and was followed by a space, a '# or a '$'. Enter a loop to insert each character of the string into the BASIC
line workspace.

LD AB Retrieve the character to insert.

CALL L3DBD Insert character into BASIC line workspace.

RET NC Return if tokenizing is complete.

LD HL,($FD85)

INC HL Increment the count of the number of characters in the typed BASIC line being
inserted.

LD ($FD85),HL

CALL L3D44 Fetch the next character from BASIC line being inserted.

LDCA Save the flags.

JR L3C7D Jump back to insert the character of the non-keyword string into the BASIC line
workspace.

The character is not a letter so insert directly into the BASIC line workspace

L3C94: LD AB Retrieve the character to insert.
CALL L3DBD Insert character into BASIC line workspace, tokenizing '<>', '<="and '>=" if
encountered.
RET NC Return if tokenizing is complete.
JR L3C48 Jump back to fetch and process the next character.

Keyword Conversion buffer flags are set - either the buffer already contains characters, or within quotes or within a REM statement

L3C9B: CP $01 Is the Keyword Conversion Buffer empty or the contents marked as being within
quotes or within a REM?
JR NZ,L3C94 Jump back if so to insert the character since this is either the first character of a new

word or is within quotes or within a REM.

C=$01 if not a space, not a letter, not a '# and not a '$'.
$02ifa'# or'$'.

$03 if a space.

$06 if a letter.

LDAC Retrieve the character status value.
AND $01 Is it a letter or a '#' or a '$'?
JR Z,L3C5F Jump if so to simply insert the character.

The character is a space, or is not a letter and not a '#' and not a'$', i.e. the last character was the end of a potential keyword

PUSH BC Save the next character to insert and the character status value.
L3CAS5: CALL L3F25 Attempt to identify the string in Keyword Conversion Buffer.

POP BC Retrieve the next character to insert and the character status value.

JR C,L3D24 Jump if keyword identified.

The string in the Keyword Conversion Buffer was not identified as a keyword

LD HL,($FD7F) Fetch the address of the space character between words within the Keyword
Conversion Buffer.

LD AH

ORL Is there an address set, i.e. a space between words?

JR NZ,L3CC5 Jump if there is a space character.

LD AC Retrieve the character status value.

AND $02 Is it a space?

JR Z,L3C73 Jump if not to copy Keyword Conversion Buffer into the workspace since it is not a

keyword.
Character is a space. Allow this as the keyword could be DEF FN, GO TO, GO SUB, etc.
CALL L3D90 Insert the character into the Keyword Conversion Buffer.

230

SPECTRUM +2 ROM o DISASSEMBLY

JR NC,L3C6B
LD HL,($FD7D)

Jump back if no room to insert the character, i.e. not a keyword since too large.
Fetch the next location address.

DEC HL Point back to the last character.

LD ($FD7F),HL Store as the address of the space character. This is used for double keywords such
as DEF FN.

JR L3C48 Jump back to fetch and process the next character.

The string in the Keyword Conversion Buffer contains two words separated by a space that do not form a valid double keyword (such as DEF FN, GO
SUB, GO TO, etc).

For a BASIC line such as 'IF FLAG THEN' the Keyword Conversion Buffer holds the characters 'FLAG THEN'.

The 'FLAG' characters get moved to the workspace and the 'THEN' characters are shifted to the start of the Keyword Conversion Buffer before being
re-evaluated to see if they form a keyword.

L3CCs5: PUSH BC Save the character to insert and the character status value.

LD HL,$FD74 Point to the start address of the Keyword Conversion Buffer.

LD DE,($FD7F) Fetch the address of the space character between words within the Keyword

Conversion Buffer.

LD A,D

CPH Is the space possibly at the start of the buffer?

JR NZ,L3CD6 Jump if not.

LD AE

CPL Is the space at the start of the buffer?

JR NZ,L3CD6 Jump if not.

INC DE Point to the next location within the buffer, counter-acting the following decrement.
L3CD6: DEC DE Point to the previous location within the buffer.

JR L3CDA Jump ahead to copy all characters to the BASIC line workspace.

Copy all characters from the Keyword Conversion Buffer prior to the space into the BASIC line workspace

L3CD9: INC HL Point to the next location within the Keyword Conversion Buffer.
L3CDA: LD A,(HL) Fetch a character from the Keyword Conversion Buffer.

AND $7F Mask off the terminator bit.

PUSH HL HL=Location within Keyword Conversion Buffer.

PUSH DE DE=Location of last character within the Keyword conversion Buffer.

CALL L3DBD Insert character into BASIC line workspace, including a stored '<' or '>' character.

POP DE

POP HL

LD AH

CPD Possibly reached the character prior to the space?

JR NZ,L3CD9 Jump back if not to copy the next character.

LD AL

CPE Reached the character prior to the space?

JR NZ,L3CD9 Jump back if not to copy the next character.

Now proceed to handle the next word

LD DE,($FD7F)
LD HL,$FD74

LD ($FD7F),HL
LD BC,($FD7D)

DE=Address of the space character between words.

Set the address of the space character to be the start of the buffer.
BC=Next location within the Keyword Conversion Buffer.

DEC BC Point to the last used location.

LD A,D

CPH Is the space possibly at the start of the buffer?
JR NZ,L3D17 Jump if not.

LD AE

CPL Is the space at the start of the buffer?

JR NZ,L3D17 Jump if not.

The space character is at the start of the Keyword Conversion Buffer

INC DE DE=Address after the space character within the Keyword Conversion Buffer.
PUSH HL HL=Start address of the Keyword Conversion Buffer.

LD HL,$0000

LD ($FD7F),HL Signal no space character between words.

POP HL HL=Start address of the Keyword Conversion Buffer.

231

SPECTRUM +2 ROM o DISASSEMBLY

LD AB

CPH Is the space possibly the last character in the buffer?

JR NZ,L3D17 Jump if not.

LD AC

CPL Is the space the last character in the buffer?

JR NZ,L3D17 Jump if not.

POP BC Retrieve the character to insert and the character status value.
JR L3D36 Jump ahead to continue.

The space is not at the start of the Keyword Conversion Buffer, i.e. the buffer contains another word after the space.

The first word has already been copied to the BASIC line workspace so now copy the second word to the start of the Keyword Conversion Buffer and
then see if it is a valid keyword. [It is not recommended to name a variable as per a keyword since statements such as 'PRINT then' will fail the syntax
check since the variable 'then' is interpreted as the keyword 'THEN' and so the statement is seen as 'PRINT THEN', which in this case is invalid.] HL
points to the start of the Keyword Conversion Buffer. DE points to the space between the two words.

L3D17: LD A,(DE) Fetch a character from the second word.
LD (HL),A Store it at the beginning of the buffer.
INC HL
INC DE
AND $80 Reached the last character in the buffer, i.e. the terminator bit set?
JR Z,L3D17 Jump if not to copy the next character.
LD ($FD7D),HL Store the new address of the next free location.
JR L3CA5 Jump back to attempt identification of the 'second’ word as a keyword.

The string in the Keyword Conversion Buffer was identified as a keyword, so insert the token character code of the keyword into the BASIC line workspace.
A=Character code of identified token.

L3D24: PUSH BC Save the next character to insert and the character status value.
CALL L3DBD Insert character held in A into BASIC line workspace.
POP BC Retrieve the next character to insert and the character status value.

The token has been inserted into the BASIC line workspace so reset the Keyword Conversion Buffer

LD HL,$0000
LD ($FD7F),HL Indicate no space character between words in the Keyword Conversion Buffer.
LD A,($FD81) Fetch the flag bits.
CP $04 Within a REM statement?
JR Z,L.3D3B Jump if so to retain the 'within a REM' flag bit.
L3D36: LD A,$00
LD ($FD81),A Signal no characters within the Keyword Conversion Buffer.
L3D3B: LD HL,$FD74 Start address of the Keyword Conversion Buffer.
LD ($FD7D),HL Store this as the next location within the buffer.
JP L3C5A Jump back to insert the next character either into the Keyword Conversion Buffer or

the BASIC line workspace.

Fetch Next Character and Character Status from BASIC Line to Insert

Fetch the next character from the BASIC line being inserted and check whether a letter, a space, a ‘# or a'$'.
Exit: B=Character.

A=$01 if not a space, not a letter, not a '# and not a '$'.

$02if a'# or '$".

$03 if a space.

$06 if a letter.

L3D44: CALL L2D7A Fetch the next character from the BASIC line being inserted.
LD B,A Save the character.
CP'? $3F. Is it below '?' (the error marker)?
JR C,L3D56 Jump if so.
OR $20 Make lowercase.
CALL L3D6D Is it a letter?
JR C,L3D6A Jump if so.
L3D53: LD A,$01 Indicate not space, not letter, not '# and not '$".
RET
L3D56: CP $20 Is it a space?

232

L3D64:

L3D67:

L3D6A:

Is Lowercase Letter?

L3D6D:

JR Z,L3D67
CP'#

JR Z,L3D64
JR C,L3D53
CP'$

JR NZ,L3D53
LD A,$02
RET

LD A,$03
RET

LD A,$06
RET

CP $7B
RET NC
CP $61
CCF
RET

SPECTRUM +2 ROM o DISASSEMBLY

Jump if so.

$23. Is it '#'?
Jump if so.

Jump if below '#.
$24. Is it '$'?
Jump if not.
Indicate a '#' or '$'.

Indicate a space.

Indicate a letter.

Is the character above 'z'?
Return with carry flag reset if above 'z'.
Is the character below 'a'?
Return with carry flag reset if below 'a'.

Copy Keyword Conversion Buffer Contents into BASIC Line Workspace

L3D74:

[To fix the error marker bug at $3EA2 (ROM 0), the code below up until the instruction at $3D81 (ROM 0) should have been as follows]

L3D81:

LD HL,$FD74

CALL $3D81 (ROM 0)

LD HL,$FD74
LD ($FD7D),HL
SUB A

LD ($FD7F),A
LD ($FD80),A
RET

LD HL,$FD74
LD ($FD7D),HL
SUB A

LD ($FD7F),A
LD ($FD80),A
LD A,(HL)
AND $7F
PUSH HL
CALL L3E43
POP HL

LD A,(HL)
AND $80
RET NZ

INC HL

JR L3D81

Start address of the Keyword Conversion Buffer.
Copy all characters into the BASIC line workspace.
Start address of the Keyword Conversion Buffer.
Store the next available location.

A=0.

Signal no space character between words in the Keyword Conversion Buffer.

Start address of the Keyword Conversion Buffer.
Store the next available location.
A=0.

Signal no space character between words in the Keyword Conversion Buffer.
Fetch a character from the buffer.

Mask off the terminator bit.

Save buffer location.

Insert the character into the BASIC line workspace, suppressing spaces as required.
Retrieve buffer location.

Re-fetch the character from the buffer.

Is it the terminator character?

Return if so.

Point to the next character in the buffer.

Jump back to handle next buffer character.

Insert Character into Keyword Conversion Buffer

Entry; B=Character to insert.
Exit : Carry flag reset if no room to insert the character within the buffer.

L3D90:

LD HL,($FD7D)
LD DE,$FD7D
LDAD

Fetch address within Keyword Conversion Buffer.
Address after Keyword Conversion Buffer.

233

CPH
JR NZ,L3D9F
LDAE

CPL

JP Z,L3DBA

End of buffer not reached

L3D9F:

LD DE,$FD74
LD AD

CPH

JR NZ,L3DAA
LD AE

CPL

JR Z,L3DBO

SPECTRUM +2 ROM o DISASSEMBLY

Has end of buffer possibly been reached?
Jump if not.

Has end of buffer been reached?

Jump if so. [Could have saved a byte by using JR instead of JP]

Start address of Keyword Conversion Buffer.

Possibly at the start of the buffer?
Jump if not.

At the start of the buffer?
Jump if so to simply store the character.

Not at the start of the buffer so need to remove terminator bit from the previous character

L3DAA: DEC HL Point to the last character.
LD A,(HL)
AND $7F Clear the terminator bit from the last character.
LD (HL),A
INC HL Point back at the current location.
L3DBO: LD AB Retrieve the new character.
OR $80 Set the terminator bit.
LD (HL),A Store the character in the buffer.
INC HL Point to the next location.
LD ($FD7D),HL Store the address of the next location.
SCF Signal character inserted.
RET
End of buffer reached
L3DBA: SCF
CCF Clear the carry flag to indicate no room to insert the character within the buffer.
RET

Insert Character into BASIC Line Workspace, Handling '>' and '<'

This routine inserts a character into the BASIC line workspace, tokenizing '>=', '<=" and '<>".

Entry: A=Character to insert.

Exit : If tokenizing a BASIC line then returns with carry flag reset if tokenizing is complete.
If searching for the error marker location then returns with the carry flag set if the error marker has not been found,
otherwise a return is made to the main calling routine with BC holding the number of characters in the typed BASIC line,
i.e. the error marker location is at the end of the line.

L3DBD: PUSH AF Save the character to insert.

[BUG - The string characters "<>", "<="and ">=" get tokenized to a single character '<>', '<="and '>=' respectively even within quotes or a REM statement.
Credit: Paul Collins (+3), Paul Farrow (128)] [BUG - 128 BASIC mode handles a colon character found following a REM statement differently to 48K
mode. In 48K mode, typing a colon returns the cursor into 'K' mode and hence the next key press inserts a keyword token. In 128K mode, typing a colon
does not cause the characters following it to be interpreted as a possible keyword. There is no noticeable difference when executing the REM statement
since subsequent statements are ignored following a REM command. However, for consistency the 128K mode editor ought to generate identical BASIC
lines to those that would be created from 48K mode. Credit: Paul Farrow] [The following instructions would be required fix the two bugs described above.
Credit: Paul Farrow.

LD A,($FD81)

BIT 1,A Within quotes?

JR NZ,WITHIN Jump forward if within quotes.

BIT 2,A Within a REM statement?

JR Z,NOT_WITHIN Jump forward if not within a REM statement.
POP AF

PUSH AF

234

cp"

JR NZ,WITHIN

LD A,($FD81)

AND $FB

LD ($FD81),A
WITHIN

POP AF

JP $3E0B (ROM 0)
NOT_WITHIN

LD A,($FD89)

ORA

JR NZ,L3DD6

POP AF

Cp >

JR Z,L3DD1

CP <

JR Z,L3DD1
L3DCD: CALL L3EOB

RET

The character was '<' or >'

L3DD1: LD ($FD89),A
SCF
RET

The previous character was '<' or '>'

L3DD6: CP <
LD A,$00
LD ($FD89),A
JR NZ,L3DF9

Previous character was '<'

POP AF

CP ">

JR NZ,L3DES8

LD A,$C9

JR L3DCD
L3DES: CP'=

JR NZ,L3DFO

LD A,$C7

JR L3DCD

Previous character was '<' and new character is '<'

L3DFO: PUSH AF
LD A<
CALL L3EOB
POP AF
JR L3DCD

Previous character was ">'

L3DF9: POP AF
Cp'=
JR NZ,L3EO02
LD A,$C8
JR L3DCD

Previous character was '>' and new character is >'

SPECTRUM +2 ROM o DISASSEMBLY

Jump if not a colon.

Signal not within a REM statement.

Retrieve the character to insert.
Simply insert the character into the BASIC line workspace.

Was the previous character '<' or '>'?

Jump if so.

Retrieve the character to insert.

$3E. Is it >'?

Jump if so to store for special treatment later.

$3C. Isit'<'?

Jump if so to store for special treatment later.

Insert the character into the BASIC line workspace.
[Could have saved 1 byte by using JP $3E0B (ROM 0)]

Store '<' or >'.
Signal tokenizing not complete or error marker not found.

$3C. Was the previous character '<'?
Reset the indicator that the previous
character was '<' or *>'.

Jump ahead if not '<'.

Retrieve the character to insert.

$3E. Is it >'?

Jump ahead if not.

Tokenize to the single character '<>'.

Jump back to insert the character and return.
$3D. Isit'="?

Jump ahead if not.

Tokenize to '<=".

Jump back to insert the character and return.

Save the current character to insert.

$3C.

Put the preceding '<' character into the line.
Retrieve the character to insert.

Jump back to insert the character and return.

Retrieve the character to insert.

$3D. Isit'="?

Jump ahead if not.

Tokenize to '>=".

Jump back to insert the character and return.

235

SPECTRUM +2 ROM o DISASSEMBLY

L3EO2: PUSH AF Save the current character to insert.
LD A,>' $3E.
CALL L3EOB Put the preceding '>' character into the line.
POP AF Retrieve the character to insert.
JR L3DCD Jump back to insert the character and return.

Insert Character into BASIC Line Workspace, Handling 'REM' and Quotes

This routine inserts a character into the BASIC line workspace, with special handling of a 'REM' command and strings contained within quotes.
Entry: A=Character to insert.
Exit : If tokenizing a BASIC line then returns with carry flag reset if tokenizing is complete.
If searching for the error marker location then returns with the carry flag set if the error marker has not been found,
otherwise a return is made directly to the main calling routine with BC holding the number of characters in the typed BASIC line,
i.e. the error marker location is at the end of the line.

L3EOB: CP $0D Is it 'ENTER'?
JR Z,L3E2F Jump ahead if so.
CP $EA Is it 'REM'?
LD B,A Save the character.
JR NZ,L3E1B Jump ahead if not REM.

It is a 'REM' character

LD A,$04 Indicate that within a REM statement.

LD ($FD81),A

JR L3E29 Jump ahead to insert the character into the BASIC line workspace.
L3E1B: CP $22 Is it a quote?

JR NZ,L3E29 Jump ahead if not.

It is a quote character

LD A,($FD81)
AND $FE Signal last character was not a keyword.
XOR $02 Toggle the ‘within quotes' flag. Will be 1 for an opening quote, then 0 for a closing
quote.
LD ($FD81),A
L3E29: LD AB Retrieve the character.
CALL L3E43 Insert the character into the BASIC line workspace, suppressing spaces as required.
SCF Indicate BASIC line tokenization not complete.

RET

Itis an 'ENTER' character

[BUG - At this point a check should be made to see whether the last character was a space. If it was then it will not have been inserted but instead the
flag in $FD84 (ROM 0) will have been set. The purpose of the flag is to filter out double spaces caused by the leading/trailing spaces of tokens. Only if
the following character is not a space will the previous character, the space, be inserted. When the end of the line is found, there is no attempt to insert
this space. The bug can be fixed by the two modifications shown below. Credit: Paul Farrow]

L3E2F: LD A,($FD8A) Fetch the 'locate error marker' flag.
CP $00 Searching for the error marker following a syntax error? [Could have saved 1 byte by
using AND A]
JR Z,L3E40 Jump if tokenizing the BASIC line.

The end of the line was reached and no error marker was found so assume the error marker exists at the end of the typed line

LD BC,($FD85) BC=Count of number of the characters in the typed BASIC line being inserted.
LD HL,($FD8B)

[The first part of the fix for the
trailing space bug is as follows:

LD A,($FD84) Fetch the BASIC line insertion flags.
AND $02 Was the last character a space?

JR Z,GOT_COUNT Jump if not.

INC BC Increment to account for the final space.

236

SPECTRUM +2 ROM o DISASSEMBLY

GOT_COUNT
LD SP,HL Restore the stack pointer.
SCF Indicate the error marker was not found within the tokenized BASIC line.
RET Return back to the top level calling routine, to $2D2A (ROM 0).

Tokenizing the BASIC line

L3E40:

[The second part of the fix for the
trailing space bug is as follows:

LD A,($FD84) Fetch the BASIC line insertion flags.
AND $02 Was the last character a space?
LD A,$20 Insert a space into the line.

CALL NZ,$3EA2 (ROM 0)

SCF
CCF

If so then insert the character into the BASIC line workspace.]

Carry flag reset to indicate tokenizing complete.

RET

Insert Character into BASIC Line Workspace With Space Suppression

This routine is called to insert a character into the BASIC line workspace, suppressing both leading and trailing spaces around tokens, e.g. 'PRINT 10’
does not require a space stored between 'PRINT' and '10' within the BASIC line.

The routine maintains two flags which indicate whether the last character was a space or was a token. Whenever a space is encountered, it is noted
but not inserted straight away. It is only after the subsequent character is examined that the routine can determine whether the space should or should
not be inserted.

Entry: A=Character to insert.
Exit : A=Updated BASIC line insertion flags.
L3E43: LD E,A Save the character to insert in E.
LD A,($FD84)
LDD,A D=BASIC line insertion flags.
LD AE Restore character to insert back to A.
CP $20 Is it a space?
JR NZ,L3E6D Jump ahead if not.

Character to insert is a space

Character to insert is a space and the last character was not a space/token. This could be the start of a new keyword so note the space but do not

insert it now.

Character to insert is a space and the last character was a space. The new space could be the start of a new keyword so keep the 'last character was

LD AD A=BASIC line insertion flags.
AND $01 Was the last character a token?
JR NZ,L3E66 Jump ahead if so.

LD AD A=BASIC line insertion flags.
AND $02 Was the last character a space?
JR NZ,L3E5E Jump ahead if so.

LD AD
OR $02

LD ($FD84),A
RET

A=BASIC line insertion flags.
Signal the last character was a space.
Store the updated BASIC line insertion flags.

a space' flag set but insert a space for the previous space that was noted.

L3ESE: LD AE Retrieve the character to insert.
CALL L3EA2 Insert the character into the BASIC line workspace.
LD A,($FD84) A=BASIC line insertion flags.
RET

237

SPECTRUM +2 ROM o DISASSEMBLY

Character to insert is a space and the last character was a token. Do not insert trailing spaces for tokens.

L3E66: LD AD A=BASIC line insertion flags.
AND $FE Signal last character was not a token.
LD ($FD84),A Store the updated BASIC line insertion flags.
RET [Could have saved 2 bytes by using JR $3E5A (ROM 0)]

Character to insert is not a space

L3E6D: CP $A3 Compare against the token 'SPECTRUM' (the first 128K keyword).
JR NC,L3E95 Jump ahead if a token.

Character to insert is not a space and not a token

LD AD A=BASIC line insertion flags.
AND $02 Was the last character a space?
JR NZ,L3E81 Jump ahead if it was.

Character to insert is not a space and not a token and the last character inserted was not a space, so just insert the character

LD AD A=BASIC line insertion flags.

AND $FE Signal last character was not a keyword.

LD ($FD84),A Store the new flags.

LD AE Retrieve the character to insert.

CALL L3EA2 Insert the character into the BASIC line workspace.

RET [Could have saved one byte by using JP $3EA2 (ROM 0)]

Character to insert is not a space and not a token and the last character was a space. Since the new character is not a token, the previous space was
not the start of a new keyword so insert a space and then the new character.

L3ES81: PUSH DE Save the BASIC line insertion flags.
LD A,$20 Insert a space into the line.
CALL L3EA2 Insert the character into the BASIC line workspace.
POP DE Retrieve the flags.
LD AD A=BASIC line insertion flags.
AND $FE Signal last character was not a keyword.
AND $FD Signal last character was not a space.
LD ($FD84),A Store the updated BASIC line insertion flags. [Could have saved 6 bytes by using JR
$3E79 (ROM 0)]
LD AE Retrieve the character to insert.
CALL L3EA2 Insert the character into the BASIC line workspace.
RET

Character to insert is a token. Clear any previously noted space since leading spaces are not required for tokens.

L3E95: LD AD A=BASIC line insertion flags.
AND $FD Signal last character was not a space.
OR $01 Signal last character was a keyword.
LD ($FD84),A Store the updated BASIC line insertion flags. [Could have saved 6 bytes by using JR
$3E79 (ROM 0)]
LD AE Retrieve the character to insert.
CALL L3EA2 Insert the character into the BASIC line workspace.
RET

Insert a Character into BASIC Line Workspace

This routine is called for two purposes. The first use is for inserting a character or token into the BASIC line workspace (situated at E_LINE).

The second use is after a syntax error has been identified within the tokenized BASIC line in the workspace and the location of the error marker needs
to be established. For the second case, the system variable X_PTR holds the address of where the error occurred within the tokenized BASIC line in
the workspace.

The Editor needs to identify how many characters there are before the equivalent error position is reached within the typed BASIC line. To locate it, the
typed BASIC line is re-parsed but this time without inserting any characters into the BASIC line workspace, since this still contains the tokenized line
from before. This tokenized line will now also include embedded floating point numbers for any numeric literals contained within the BASIC line. As the

238

SPECTRUM +2 ROM o DISASSEMBLY

typed line is re-parsed, a count of the characters examined so far is kept and instead of inserting tokenized characters within the BASIC line workspace,
a check is made to see whether the insertion location has reached the address of the error marker. If it has then the parsing of the BASIC line terminates
and the count of the typed line characters indicates the equivalent position within it of the error. However, should the last character have been a token
then the typed line count will also include the number of characters that form the keyword, and so this must be subtracted from the count.

Entry:

Exit :

L3EA2:

A=Character to insert.
DE=Address of insertion position within the BASIC line workspace.

If searching for the error marker position and it is found then a return is made directly to the top level calling routine with BC holding the
number of characters in

the typed BASIC line prior to the equivalent error marker position.

LD HL,($FD87)
INC HL

LD ($FD87),HL
LD HL,($FD82)
LD B,A

LD A,(3FD8A)
CP $00

LDAB
JR Z,L3EDA

Locating the error marker

The error marker has been reached

LD DE,($5C5F)
LD AH

CPD

JR NZ,L3ED7
LD AL

CPE

JR NZ,L3ED7

Increment the count of the number of characters in the tokenized BASIC line.

HL=Address of next insertion position in the BASIC line workspace.

Save the character to insert.

Fetch the 'locate error marker' flag.

Searching for the error marker following a syntax error? [Could have saved 1 byte by
using AND A]

A=Character to insert.

Jump if tokenizing the BASIC line.

X_PTR. Fetch the address of the character after the error marker.

Has the error marker position possibly been reached?
Jump ahead if not.

Has the error marker position been reached?
Jump ahead if not.

[BUG - The desired character count until the error marker is held at address $FD85 and needs the length of the last character to be removed from it,
which for a token would be several bytes. However, the routine simply returns the lower of the tokenized and typed counts, and this yields very unhelpful
error marker positions shown within the typed BASIC line. Credit: lan Collier (+3), Andrew Owen (128)] [The code below up until the instruction at $3ED1
(ROM 0) should have been as follows. Changes to the code at $3D74 (ROM 0) are also required. Credit: Paul Farrow.

L3ED1:

The error marker has not yet been reached

LD HL,($FD7D)
LD DE,$FD74
AND A

SBC HL,DE

EX DE,HL

LD HL,($FD85)

SBC HL,DE
LD B,H
LD C,L

LD BC,($FD85)
LD HL,($FD87)

AND A
SBC HL,BC

JR NC,L3ED1
LD BC,($FD87)

LD HL,($FD8B)
LD SP,HL

SCF

RET

Fetch the next address within the Keyword Conversion Buffer.
Fetch the start address of the Keyword Conversion Buffer.

HL=Length of the keyword (excluding leading or trailing spaces).

DE=Length of the keyword (excluding leading or trailing spaces).

BC=Count of the number of characters in the typed BASIC line until the error marker
location was found.

Subtract the number of characters in the keyword text.

Transfer the result to BC, and then return via the instructions at $3ED1 (ROM 0)
onwards.]

Count of the number of characters in the typed BASIC line until the error marker
location was found.

Count of the number of characters in the tokenized BASIC line until the error marker
location.

Jump if the tokenized version is longer than the typed version.

Count of the number of characters in the tokenized version of the BASIC line until
the error marker location.

Fetch the saved stack pointer.

Restore the stack pointer.

Set the carry flag to indicate the error marker has been located.

Return back to the top level calling routine, to $2D2A (ROM 0).

239

SPECTRUM +2 ROM o DISASSEMBLY

L3ED7: SCF Set the carry flag to indicate error marker locating mode.
JR L3EDC Jump ahead to continue.

Tokenizing the BASIC line

L3EDA: SCF
CCF Reset carry flag to signal BASIC line tokenizing mode.
L3EDC: CALL L1F3F Use Normal RAM Configuration (physical RAM bank 0).
JR NC,L3EEE Jump if tokenizing the BASIC line.

Searching for the error marker so need to consider embedded floating point numbers

[BUG - This should fetch the next character from the tokenized BASIC line and not the current character. This routine is called to process every visible
character in the BASIC line, but is not called for embedded floating point numbers. It must therefore test whether the current character is followed by an
embedded floating point number and if so to skip over it. The routine does make an attempt to detect embedded floating point numbers but incorrectly
performs the test on the visible character and not the character that follows it. The bug can be fixed as replacing the LD A,(HL) instruction with the
following instructions. Credit: Paul Farrow.

Come here if tokenizing the BASIC line

INC HL Advance to the next character in the tokenized BASIC line.

LD A,(HL) Fetch the next character in the tokenized BASIC line.

DEC HL Point back to the current character in the tokenized BASIC line.]

LD A,(HL) Fetch the current character in the tokenized BASIC line.

EX DE,HL DE=Insert position within the tokenized BASIC line.

CP $0E Is it the 'number' marker?

JR NZ,L3F04 Jump ahead if not.

INC DE Skip over the 5 byte hidden number representation.

INC DE [BUG - There should be another INC DE instruction here to take into account the
character that the tokenizer would

INC DE have inserted. As a result, the attempt to locate the error marker location will drift off
by one byte for every numeric

INC DE literal within the BASIC statement, and if there are many numeric literals in the
statement then the error marker location

INC DE may never be found before the end of the statement is parsed. Credit: lan Collier
(+3), Andrew Owen (128)]

JR L3F04 Jump ahead to continue.

L3EEE: PUSH AF Save the character to insert and the carry flag reset.
LD BC,$0001 Request to insert 1 byte.
PUSH HL
PUSH DE
CALL L3FOD Check that there is memory available for 1 byte,
POP DE automatically producing error ‘4" if not.
POP HL
RST 28H BC=Number of bytes. HL=Address location before the position.
DEFW POINTERS $1664. Update all system variables due to the insertion. Exit with DE pointing to old
STKEND position, BC with number of bytes 'shifted'.
LD HL,($5C65) STKEND. Fetch the start of the spare memory.
EX DE,HL DE=Address of spare memory. HL=Address of character in the BASIC line.
LDDR Shift up all affected bytes to make the room for the new character.
POP AF Retrieve the character to insert and the flags. The carry flag will be reset and hence
will indicate that tokenizing the BASIC line is not complete.
LD (DE),A Store the character in the BASIC line workspace.
L3F04: INC DE Advance to the next character in the BASIC line.
CALL L1F64 Use Workspace RAM configuration (physical RAM bank 7).

LD ($FD82),DE
RET

Store the address of the next insertion position within the BASIC line workspace.

Room for BC Bytes?

Test whether there is room for the specified number of bytes in the spare memory, producing error "4 Out of memory" if not.
Entry: BC=Number of bytes required.
Exit : Returns if the room requested room is available else an error '4' is produced.

240

SPECTRUM +2 ROM o DISASSEMBLY

L3FOD: LD HL,($5C65) STKEND.
ADD HL,BC Would adding the specified number of bytes overflow the RAM area?
JR C,L3F1D Jump to produce an error if so.
EX DE,HL DE=New end address.
LD HL,$0082 Would there be at least 130 bytes at the top of RAM?
ADD HL,DE
JR C,L3F1D Jump to produce an error if not.
SBC HL,SP If the stack is lower in memory, would there still be enough room?
RET C Return if there would.
L3F1D: LD A,$03
LD ($5C3A),A ERR_NR. Signal error "4 Out of Memory".
JP L0321 Jump to error handler routine.

Identify Keyword

This routine identifies the string within the Keyword Conversion Buffer and returns the token character code. The last character of the string has bit 7 set.
The routine attempts to identify 48K mode keywords, 128K mode keywords and a number of mis-spelled keywords (those that require a space within them).

Exit: Carry flag set if a keyword was identified.

A=Token character code.

L3F25:

CALL $FD2E
RET C

Attempt to identify 48K mode keyword.
Return if keyword identified.

Attempt to identify 128K mode keywords and mis-spelled keywords.

Attempt to convert mis-spelled keywords

LD B,$F9 Base character code (results in codes $F9-$FF).
LD DE,$FD74 DE=Address of Keyword Conversion Buffer.

LD HL,L35BA HL=Keywords string table.

CALL $FD3B Attempt to identify 128K mode/mis-spelled keyword.
RET NC Return if no keyword identified.

CP $FF Was it "CLOSE#"?
JR NZ,L3F3D
LD A,$D4 Use character code for 'CLOSE #'.
JR L3F5F Jump ahead to continue.
L3F3D: CP $FE Was it "OPEN#"?
JR NZ,L3F45 Jump if not.
LD A$D3 Use character code for 'OPEN #'.
JR L3F5F Jump ahead to continue.
L3F45: CP $FD Was it "DEFFN"?
JR NZ,L3F4D Jump if not.
LD A $CE Use character code for 'DEF FN'.
JR L3F5F Jump ahead to continue.
L3F4D: CP $FC Was it "GOSUB"?
JR NZ,L3F55 Jump if not.
LD A $ED Use character code for 'GO SUB'.
JR L3F5F Jump ahead to continue.
L3F55: CP $FB Was it "GOTO"?
JR NZ,L3F5D Jump if not.
LD A$EC Use character code for 'GO TO'.
JR L3F5F Jump ahead to continue.
L3F5D: SUB $56 Reduce to $A3 for 'SPECTRUM' and $A4 for 'PLAY".
L3F5F: SCF Signal keyword identified.
RET

Copy Data Block

This routine is used on 8 occasions to copy a block of default data.

Entry: DE=Destination address.
HL=Address of source data table, which starts with the number of bytes to copy
followed by the bytes themselves.

241

L3F61: LD B,(HL)
INC HL

L3F63: LD A,(HL)
LD (DE),A
INC DE
INC HL
DJNZ L3F63
RET

SPECTRUM +2 ROM o DISASSEMBLY

Get number of bytes to copy.
Point to the first byte to copy.
Fetch the byte from the source
and copy it to the destination.
Increment destination address.
Increment source address.
Repeat for all bytes.

Get Numeric Value for ASCII Character

Exit: Carry flag set if character was numeric and A holding value.

[Never called by this ROM]

L3F6A: CP'0
CCF
RET NC
Cp"
RET NC
SUB'0'
SCF
RET

Call Action Handler Routine

$30. Test against '0".

Return with carry flag reset if not numeric character.
$3A. Test against "'

Return with carry flag reset if not numeric character.

$30. Get numeric value.

Return with carry flag set to indicate a numeric character.

If the code in A matches an entry in the table pointed to by HL then execute the action specified by the entry's routine address.

Entry: A=Code.

HL=Address of action table.
Exit : Zero flag reset if no match found.

Carry flag reset if an error beep is required, or to signal no suitable action handler found.
HL=Address of next table entry if a match was found.

L3F75: PUSH BC
PUSH DE
LD B,(HL)
INC HL
L3F79: CP (HL)
INC HL
LD E,(HL)
INC HL
LD D,(HL)
JR Z,L3F88
INC HL
DJINZ L3F79

No match found

SCF
CCF
POP DE
POP BC
RET

Found a match

L3F88: EX DE,HL
POP DE
POP BC
CALL L3F95
JR C,L3F92
CPA
RET

L3F92: CPA

Save registers.

Fetch number of table entries.
Point to first entry.
Possible match for A?

DE=Address to call if a match.
Jump if a match.

Next table entry.

Repeat for next table entry.

Return with carry flag reset to signal an error beep is required
and with the zero flag reset to signal a match was not found.
Restore registers.

HL=Action routine to call.

Indirectly call the action handler routine.

Jump if no error beep is required.

Set zero flag to indicate a match was found.

Exit with carry flag reset to indicate error beep required.
Set zero flag to indicate a match was found.

242

L3F95:

PROGRAMMERS' INITIALS

SCF
RET
JP (HL)

[Provided by Andrew Owen]

L3F96:

DEFB $00
DEFM "MB"
DEFB $00
DEFM "SB"
DEFB $00
DEFM "AC"
DEFB $00
DEFM "RG"
DEFB $00
DEFM "KM"
DEFB $00

UNUSED SPACE

L3FAG:

END OF ROM MARKER

L3FFF:

DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00, $00, $00, $00
DEFB $00

DEFB $01
END

SPECTRUM +2 ROM o DISASSEMBLY

Signal no error beep required.

Jump to the action handler routine.

Martin Brennan.
Steve Berry.
Andrew Cummins.
Rupert Goodwins.

Kevin Males.

243

SPECTRUM +2 ROM o DISASSEMBLY

REFERENCE INFORMATION — PART 2

Routines Copied/Constructed in RAM

Construct Keyword Representation

This routine copies a keyword string from ROM 1 into the BASIC Line Construction Buffer, terminating it with an ‘end of BASIC line’ marker (code ' '+$80).
Only standard Spectrum keywords are handled by this routine (SPECTRUM and PLAY are processed elsewhere).

The routine is run from RAM bank 7 at $FCAE so that access to both ROMs is available.

Depending on the value of A (which should be the ASCII code less $A5, e.g. 'RND', the first (48K) keyword, has A=0), a different index into the token
table is taken. This is to allow speedier lookup since there are never more than 15 keywords to advance through.

Entry:

A=Keyword character code-$A5 (range $00-$5A).
DE-=Insertion address within BASIC Line Construction Buffer.

Copied to physical RAM bank 7 at $SFCAE-$FCFC by routine at $3385 (ROM 0).

$FCAE

DI
LD BC,$7FFD
LD D,$17
OuUT (C),D

CP $50

JR NC,$FCEB
CP $40

JR NC,$FCE4
CP $30

JR NC,$FCDD
CP $20

JR NC,$FCD6
CP $10

JR NC,$FCCF

Disable interrupts whilst paging.

Page in ROM 1, SCREEN 0, no locking, RAM bank 7.
Was the token $F5 or above?

Was the token $E5 or above?

Was the token $D5 or above?

Was the token $C5 or above?

Was the token $B5 or above?

Used for token range $A5-$B4 ($00 <= A <= $0F)

LD HL,$0096
JR $FCFO0

Token table entry 'RND' in ROM 1.

Used for token range $B5-$C4 ($10 <= A <= $1F)

$FCCF

SUB $10
LD HL,$00CF
JR $FCFO

Token table entry 'ASN'in ROM 1.

Used for token range $C5-$D4 ($20 <= A <= $2F)

$FCD6

SUB $20
LD HL,$0100
JR $FCFO0

Token table entry 'OR' in ROM 1.

Used for token range $D5-$E4 ($30 <= A <= $3F)

$FCDD

SUB $30
LD HL,$013E
JR $FCFO0

Token table entry 'MERGE' in ROM 1.

Used for token range $E5-$F4 ($40 <= A <= $4F)

$FCE4

SUB $40
LD HL,$018B
JR $FCFO

Token table entry 'RESTORE' in ROM 1.

Used for token range $F5-$FF (A >= $50)

244

SPECTRUM +2 ROM o DISASSEMBLY

$FCEB SUB $50
LD HL,$01D4 Token table entry 'PRINT' in ROM 1.
$FCFO LD B,A Take a copy of the index value.
ORA If A=0 then already have the entry address.
$FCF2 JR Z,$FCFD If indexed item found then jump ahead to copy the characters of the token.
$FCF4 LD A,(HL) Fetch a character.
INC HL Point to next character.
AND $80 Has end of token marker been found?
JR Z,$FCF4 Loop back for next character if not.
DECB Count down the index of the required token.

Copy Keyword Characters

This routine copies a keyword string from ROM 1 into the BASIC Line Construction Buffer, terminating it with an ‘end of BASIC line' marker (code ' '+$80).
The routine is run from RAM bank 7 so that access to both ROMs is available.
Entry: HL=Address of keyword string in ROM 1.

DE-=Insertion address within BASIC Line Construction Buffer.

Copied to physical RAM bank 7 at $FCFD-$FD2D by subroutine at $3385 (ROM 0).

$FCFD LD DE,$FCA3 DE=Keyword Construction Buffer.
LD ($FCA1),DE Store the start address of the constructed keyword.
LD A,($FC9IE) Print a leading space?
ORA
LD A,$00
LD ($FC9E),A Signal leading space not required.
JR NZ,$FD13 Jump if leading space not required.
LD A,$20 Print a leading space.
LD (DE),A Insert a leading space.
INC DE Advance to next buffer position.
$FD13 LD A,(HL) Fetch a character of the keyword.
LD B,A Store it.
INC HL Advance to next keyword character.
LD (DE),A Store the keyword character in the BASIC line buffer.
INC DE Advance to the next buffer position.
AND $80 Test if the end of the keyword string.
JR Z,$FD13 Jump back if not to repeat for all characters of the keyword.
LDAB Get keyword character back.
AND $7F Mask of bit 7 which indicates the end of string marker.
DEC DE Point back at the last character of the keyword copied into the buffer
LD (DE),A and store it.
INC DE Advance to the position in the buffer after the last character of the keyword.
LD A, '+$80 $A0. ' ' + end marker
LD (DE),A Store an 'end of BASIC line so far' marker.
LD A,$07
LD BC,$7FFD
OUT (C),A Page in ROM 0, SCREEN 0, no locking, RAM bank 7.
El Re-enable interrupts.

Identify Token

This routine identifies the string within the Keyword Conversion Buffer and returns the character code. The last character of the string to identify has
bit 7 set.

Exit: Carry flag set if token identified.

B=Character code.

Copied to physical RAM bank 7 at $FD2E-$FD69 by subroutine at $3385 (ROM 0).

$FD2E DI Disable interrupts whilst paging.
LD BC,$7FFD
LD D,$17 Select ROM 1, SCREEN 0, RAM bank 7.
OuT (C),D
LD HL,$0096 Address of token table in ROM 1.
LD B,$A5 Character code of the first token - 'RND'.

Entry point here used to match 128K mode tokens and mis-spelled tokens

245

SPECTRUM +2 ROM o DISASSEMBLY

$FD3B LD DE,$FD74 Keyword Conversion Buffer holds the text to match against.
$FD3E LD A,(DE) Fetch a character from the buffer.
AND $7F Mask off terminator bit.
CP $61 Is it lowercase?
LD A,(DE) Fetch the character again from the buffer.
JR C,$FD48 Jump if uppercase.
AND $DF Make the character uppercase.
$FD48 CP (HL) Does the character match the current item in the token table?
JR NZ,$FD54 Jump if it does not.
INC HL Point to the next character in the buffer.
INC DE Point to the next character in the token table.
AND $80 Has the terminator been reached?
JR Z,$FD3E Jump back if not to test the next character in the token.

A match was found

SCF Signal a match was found.
JR $FD60 Jump ahead to continue.

$FD54 INC B The next character code to test against.
JR Z,$FD5F Jump if all character codes tested.

The token does not match so skip to the next entry in the token table

$FD57 LD A,(HL) Fetch the character from the token table.
AND $80 Has the end terminator been found?
INC HL Point to the next character.
JR Z,$FD57 Jump back if no terminator found.
JR $FD3B Jump back to test against the next token.

All character codes tested and no match found

$FD5F

ORA

The common exit point

Clear the carry flag to indicate no match found.

$FD60 LD AB Fetch the character code of the matching token ($00 for no match).
LD D,$07 Select ROM 0, SCREEN 0, RAM bank 7.
LD BC,$7FFD
OuUT (C),D
El Re-enable interrupts.

Insert Character into Display File

Copy a character into the display file.

Entry: HL=Character data.
DE=Display file address.
This ro utine is constructed from three segments and stitched together in physical RAM bank 7 to form a single routine.

Created in physical RAM Bank 7 at $FF28-$FF60 by routine at $248E (ROM 0). [Construction routine never actually called by the ROM]

$FF28 PUSH BC Save BC
DI Disable interrupts whilst paging.
LD BC,$7FFD
LD A,(BANK_M) $5B5C. Fetch current paging configuration.
XOR $10 Toggle ROMs.
OUT (C),A Perform paging.
El Re-enable interrupts.
EX AF,AF' Save the new configuration in A'.
LDC,D Save D.
LD A,(HL)
LD (DE),A Copy byte 1.
INC HL
INCD
LD A,(HL)

246

LD (DE),A
INC HL
INC D

LD A,(HL)
LD (DE),A
INC HL
INC D

LD A,(HL)
LD (DE),A
INC HL
INC D

LD A,(HL)
LD (DE),A
INC HL
INC D

LD A,(HL)
LD (DE),A
INC HL
INC D

LD A,(HL)
LD (DE),A
INC HL
INC D

LD A,(HL)
LD (DE),A
LD D,C
EX AF,AF'
DI

LD C,$FD
XOR $10
OUT (C),A
El

POP BC

SPECTRUM +2 ROM o DISASSEMBLY

Copy byte 2.

Copy byte 3.

Copy byte 4.

Copy byte 5.

Copy byte 6.

Copy byte 7.

Copy byte 8.

Restore D.

Retrieve current paging configuration.
Disable interrupts whilst paging.
Restore Paging I/O port number.
Toggle ROMs.

Perform paging.

Re-enable interrupts.

Restore BC.

Standard Error Report Codes

0—OK
1 — NEXT without FOR

2 — Variable not found

3 — Subscript wrong
4 — Out of memory
5 — Out of screen

6 — Number too big

7 — RETURN without GO SUB
8 — End of file

9 — STOP statement

A — Invalid argument

B — Integer out of range

C — Nonsense in BASIC

D — BREAK - CONT repeats
E — Out of DATA

F — Invalid file name

G — No room for line

H — STOP in INPUT

| — FOR without NEXT

J — Invalid I/O device
K — Invalid colour
L — BREAK into program

Successful completion, or jump to a line number bigger than any existing.

The control variable does not exist (it has not been set up by a FOR statement), but there is an ordinary
variable with the same name.

For a simple variable, this will happen if the variable is used before it has been assigned to by a LET,
READ or INPUT statement, loaded from disk (or tape), or set up in a FOR statement. For a subscripted
variable, it will happen if the variable is used before it has been dimensioned in a DIM statement, or loaded
from disk (or tape).

A subscript is beyond the dimension of the array or there are the wrong number of subscripts.

There is not enough room in the computer for what you are trying to do.

An INPUT statement has tried to generate more than 23 lines in the lower half of the screen. Also occurs
with 'PRINT AT 22,xx'".

Calculations have yielded a number greater than approximately 10738.

There has been one more RETURN than there were GO SUBs.

Input returned unacceptable character code.

After this, CONTINUE will not repeat the STOP but carries on with the statement after.

The argument for a function is unsuitable.

When an integer is required, the floating point argument is rounded to the nearest integer. If this is outside
a suitable range, then this error results.

The text of the (string) argument does not form a valid expression.

BREAK was pressed during some peripheral operation.

You have tried to READ past the end of the DATA list.

SAVE with filename empty or longer than 10 characters.

There is not enough room left in memory to accommodate the new program line.

Some INPUT data started with STOP.

A FOR loop was to be executed no times (e.g. FOR n=1 TO 0) and corresponding NEXT statement could
not be found.

Attempting to input characters from or output characters to a device that doesn't support it.

The number specified is not an appropriate value.

BREAK pressed. This is detected between two statements.

247

M — RAMTOP no good
N — Statement lost
O — Invalid Stream

P — FN without DEF
Q — Parameter error
R — Tape loading error

SPECTRUM +2 ROM o DISASSEMBLY

The number specified for RAMTOP is either too big or too small.

Jump to a statement that no longer exists.

Trying to input from or output to a stream that isn't open or that is out of range (0...15), or trying to open a
stream that is out of range.

User-defined function used without a corresponding DEF in the program.

Wrong number of arguments, or one of them is the wrong type.

A file on tape was found but for some reason could not be read in, or would not verify.

Standard System Variables
These occupy addresses $5C00-$5CB5.

KSTATE $5C00
LASTK $5C08
REPDEL $5C09
REPPER $5COA
DEFADD $5C0B
K_DATA $5C0D
TVDATA $5COE
STRMS $5C10
CHARS $5C36
RASP $5C38
PIP $5C39
ERR_NR $5C3A
FLAGS $5C3B
TVFLAG $5C3C
ERR_SP $5C3D
LISTSP $5C3F
MODE $5C41
NEWPPC $5C42
NSPPC $5C44
PPC $5C45
SUBPPC $5C47
BORDCR $5C48
E_PPC $5C49
VARS $5C4B
DEST $5C4D
CHANS $5C4F

8
1
1

N -

N)

1

PR NRN

NN NN

1Y-$3A Used in reading the keyboard.
1Y-$32 Stores newly pressed key.

1Y-$31 Time (in 50ths of a second) that a key must be held down before it repeats. This
starts off at 35.

1Y-$30 Delay (in 50ths of a second) between successive repeats of a key held down -
initially 5.
1Y-$2F Address of arguments of user defined function (if one is being evaluated), otherwise
0.
1Y-$2D Stores second byte of colour controls entered from keyboard.
1Y-$2C Stores bytes of colour, AT and TAB controls going to TV.
1Y-$2A Addresses of channels attached to streams.
1Y-$04 256 less than address of character set, which starts with ' * and carries on to '©'.
1Y-$02 Length of warning buzz.
1Y-$01 Length of keyboard click.
1Y+$00 1 less than the report code. Starts off at 255 (for -1) so 'PEEK 23610' gives 255.
IY+$01 Various flags to control the BASIC system:
Bit 0: 1=Suppress leading space.
Bit 1: 1=Using printer, 0=Using screen.
Bit 2: 1=Print in L-Mode, 0=Print in K-Mode.
Bit 3: 1=L-Mode, 0=K-Mode.
Bit 4: 1=128K Mode, 0=48K Mode. [Always 0 on 48K Spectrum]
Bit 5: 1=New key press code available in LAST_K.
Bit 6: 1=Numeric variable, 0=String variable.
Bit 7: 1=Line execution, 0=Syntax checking.
1Y+$02 Flags associated with the TV:
Bit 0 : 1=Using lower editing area, 0=Using main screen.
Bit 1-2: Not used (always 0).
Bit 3 : 1=Mode might have changed.
Bit 4 : 1=Automatic listing in main screen, 0=Ordinary listing in main screen.
Bit 5 : 1=Lower screen requires clearing after a key press.

Bit 6 : 1=Tape Loader option selected (set but never tested). [Always 0 on 48K
Spectrum]

Bit 7 : Not used (always 0).
IY+$03 Address of item on machine stack to be used as error return.
IY+$05 Address of return address from automatic listing.
1Y+$07 Specifies cursor type:
$00="L" or 'C'.
$01="E".
$02='G".
$04='K".
1Y+$08 Line to be jumped to.
IY+$0A Statement number in line to be jumped to.
IY+$0B Line number of statement currently being executed.
IY+$0D Number within line of statement currently being executed.

IY+$0E Border colour multiplied by 8; also contains the attributes normally used for the
lower half

of the screen.
IY+$0F Number of current line (with program cursor).
IY+$11 Address of variables.
IY+$13 Address of variable in assignment.
IY+$15 Address of channel data.

248

SPECTRUM +2 ROM o DISASSEMBLY

CURCHL $5C51 2 IY+$17 Address of information currently being used for input and output.
PROG $5C53 2 IY+$19 Address of BASIC program.
NXTLIN $5C55 2 IY+$1B Address of next line in program.
DATADD $5C57 2 IY+$1D Address of terminator of last DATA item.
E_LINE $5C59 2 IY+$1F Address of command being typed in.
K_CUR $5C5B 2 IY+$21 Address of cursor.
CH_ADD $5C5D 2 IY+$23 Address of the next character to be interpreted - the character after the argument of
PEEK,
or the NEWLINE at the end of a POKE statement.
X _PTR $5C5F 2 IY+$25 Address of the character after the *?' marker.
WORKSP $5C61 2 IY+$27 Address of temporary work space.
STKBOT $5C63 2 IY+$29 Address of bottom of calculator stack.
STKEND $5C65 2 IY+$2B Address of start of spare space.
BREG $5C67 1 IY+$2D Calculator's B register.
MEM $5C68 2 IY+$2E Address of area used for calculator's memory (usually MEMBOT, but not always).
FLAGS2 $5C6A 1 IY+$30 Flags:
Bit 0 : 1=Screen requires clearing.
Bit 1 : 1=Printer buffer contains data.
Bit 2 : 1=In quotes.
Bit 3 : 1=CAPS LOCK on.
Bit 4 : 1=Using channel 'K'.
Bit 5-7: Not used (always 0).
DF_Sz $5C6B 1 1Y+$31 The number of lines (including one blank line) in the lower part of the screen.
S_TOP $5C6C 2 IY+$32 The number of the top program line in automatic listings.
OLDPPC $5C6E 2 IY+$34 Line number to which CONTINUE jumps.
OSPPC $5C70 1 IY+$36 Number within line of statement to which CONTINUE jumps.
FLAGX $5C71 1 IY+$37 Flags:
Bit 0 : 1=Simple string complete so delete old copy.
Bit 1 : 1=Indicates new variable, O=Variable exists.
Bit 2-4: Not used (always 0).
Bit 5 : 1=INPUT mode.
Bit 6 : 1=Numeric variable, 0=String variable. Holds nature of existing variable.
Bit 7 : 1=Using INPUT LINE.
STRLEN $5C72 2 IY+$38 Length of string type destination in assignment.
T_ADDR $5C74 2 IY+$3A Address of next item in syntax table.
SEED $5C76 2 IY+$3C The seed for RND. Set by RANDOMIZE.
FRAMES $5C78 3 IY+$3E 3 byte (least significant byte first), frame counter incremented every 20ms.
UDG $5C7B 2 IY+$41 Address of first user-defined graphic. Can be changed to save space by having
fewer
user-defined characters.
COORDS $5C7D 1 IY+$43 X-coordinate of last point plotted.
$5C7E 1 IY+$44 Y-coordinate of last point plotted.
P_POSN $5C7F 1 IY+$45 33-column number of printer position.
PR_CC $5C80 2 1Y+$46 Full address of next position for LPRINT to print at (in ZX Printer buffer).
Legal values $5B00 - $5B1F. [Not used in 128K mode]
ECHO_E $5C82 2 1Y+$48 33-column number and 24-line number (in lower half) of end of input buffer.
DF_CC $5C84 2 IY+$4A Address in display file of PRINT position.
DF_CCL $5C86 2 IY+$4C Like DF CC for lower part of screen.
S_POSN $5C88 1 IY+$4E 33-column number for PRINT position.
$5C89 1 IY+$4F 24-line number for PRINT position.
SPOSNL $5C8A 2 1Y+3$50 Like S_POSN for lower part.
SCR_CT $5C8C 1 1Y+$52 Counts scrolls - it is always 1 more than the number of scrolls that will be done
before
stopping with 'scroll?".
ATTR_P $5C8D 1 1Y+$53 Permanent current colours, etc, as set up by colour statements.
MASK_P $5C8E 1 1Y+$54 Used for transparent colours, etc. Any bit that is 1 shows that the corresponding
attribute
bit is taken not from ATTR_P, but from what is already on the screen.
ATTR_T $5C8F 1 1Y+$55 Temporary current colours (as set up by colour items).
MASK_T $5C90 1 1Y+$56 Like MASK_P, but temporary.
P_FLAG $5C91 1 1Y+$57 Flags:

249

SPECTRUM +2 ROM o DISASSEMBLY

Bit 0: 1=OVER 1, 0=OVER 0.

Bit 1: Not used (always 0).

Bit 2: 1=INVERSE 1, 0=INVERSE 0.
Bit 3: Not used (always 0).

Bit 4: 1=Using INK 9.

Bit 5: Not used (always 0).

Bit 6: 1=Using PAPER 9.

Bit 7: Not used (always 0).

MEMBOT $5C92 30 1Y+$58 Calculator's memory area - used to store numbers that cannot conveniently be put
on the
calculator stack.
$5CBO 2 1Y+$76 Not used on standard Spectrum. [Used by ZX Interface 1 Edition 2 for printer
WIDTH]
RAMTOP $5CB2 2 IY+$78 Address of last byte of BASIC system area.
P_RAMT $5CB4 2 IY+$7A Address of last byte of physical RAM.
Memory Map
The conventional memory is used as follows:
BASIC Display Attributes New System System
ROM File File Variables Variables
$0000 $4000 $5800 $5B00 $5C00 $5CB6 = CHANS
Channel BASIC Variables Edit Line $
80
Info $80 Program | Area $80 or Command | N
CHANS PROG VARS E_LINE WORKSP
INPUT Temporary Calculator Machine | GOSUB
NL Spare ? 3E D
data Work Space | Stack P Stack Stack $ UDGs
WORKSP STKBOT STKEND SP RAMTOP UDG P_RAMT
| Register

The | register is used along with the R register by the Z80 for automatic memory refreshing. Setting the | register to a value between $40 and $7F causes

memory refreshes to occur to the lower 16K RAM. This RAM is contended with the ULA which uses it for the generation of the video display.

The memory refreshes get interpreted by the ULA as the CPU requesting to access the lower 16K RAM bank very rapidly and very often. The ULA is
not able to handle reads at such a high frequency, with the consequence that it fails to fetch and output the next screen byte. Instead it uses re-uses
the byte previously read. This causes a visible corruption to the video display output, often referred to a 'snow', although no actual corruption occurs to
the video display RAM. This also happens when the | register is set to a value between $C0 and $FF when a contended RAM bank is paged in and,
unlike the Spectrum 16K/48K, can lead to a machine crash.

Screen File Formats

The two screens available on the Spectrum +2, the normal screen in RAM bank 5 ($4000-$5AFF) and the shadow screen in RAM bank 7 ($C000-$FFFF),

both use the same file format.

Display File

The display file consists of 3 areas, each consisting of 8 characters rows, with each row consisting of 8 pixel lines.
Each pixel line consists of 32 cell columns, with each cell consisting of a byte that represents 8 pixels.
The address of a particular cell is formed as follows:

Lsl1fofafaf il frjtrjrjrfrfcfjcficfclel]

Bit: 15 14 13 12 11 10 9

7

5 4 3 2 1 0

250

SPECTRUM +2 ROM o DISASSEMBLY

where: s = Screen (0-1: 0=Normal screen, 1=Shadow Screen)
aa = Area (0-2)
rrr = Row (0-7)
Il = Line (0-7)
ccccc = Column (0-31)
An area value of 3 denotes the attributes file, which consists of a different format.

Attributes File

The attributes file consists of 24 characters rows, with each row consisting of 32 cell columns.
Each cell consisting of a byte that holds the colour information.
The address of a particular cell is formed as follows:
[sl1fofi1frfofrfrjrfjrfjrfclcfcfciec]
Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
where: s = Screen (0-1: 0=Normal screen, 1=Shadow Screen)
rrrrr = Row (0-23)
ccccc = Column (0-31)
Each cell holds a byte of colour information:
LfIblelplp[iTifil
Bit: 7 6 5 4 3 2 1 0
where: f = Flash (0-1: 0=0ff, 1=0n)
b = Bright (0-1: 0=0ff, 1=0n)
ppp = Paper (0-7: 0=Black, 1=Blue, 2=Red, 3=Magenta, 4=Green, 5=Cyan, 6=Yellow, 7=White)
iii = Ink (0-7: 0=Black, 1=Blue, 2=Red, 3=Magenta, 4=Green, 5=Cyan, 6=Yellow, 7=White)

Address Conversion Between Display File and Attributes File

The address of the attribute cell corresponding to an address in the display file can be constructed by moving bits 11 to 12 (the area value) to bit positions
810 9, setting bit 10 to 0 and setting bits 11 to 12 to 1.

The address of the display file character cell corresponding to an address in the attributes file can be constructed by moving bits 8 to 9 (the row value)
to bit positions 11 to 12, and then setting bits 8 to 9 to 0.

Standard I/O Ports

Port $FE

This controls the cassette interface, the speaker, the border colour and is used to read the keyboard.

Since it is the ULA that controls these facilities, it will introduce a delay when accessing the port if it is busy at the time, and hence 1/0 port $FE is
subject to contention.

OUTPUT:

Bit 0-2: Border colour (0=Black, 1=Blue, 2=Red, 3=Magenta, 4=Green, 5=Cyan, 6=Yellow, 7=White).

Bit 3 : MIC output (1=0ff, 0=0n).

Bit 4 : Speaker output (1=0n, 0=0ff).

Bit 5-7: Not used.

INPUT:
Upper byte selects keyboard row to read.

Bit0 Bitl Bit2 Bit3 Bit4 Bit4 Bit3 Bit2 Bitl Bit0
$F7FE 1 2 3 4 5 6 7 8 9 0 $EFFE
$FBFE Q W E R T Y] | (0] P $DFFE
$FDFE A S D F G H J K L ENTER $BFFE
$FEFE SHIFT Z X C \ B N M SYM SPACE $7FFE

Bit 0-4 : Key states (corresponding bit is O if the key is pressed).
Bit 5 : Not used (always 1).

Bit 6 : EAR input.

Bit 7 : Not used (always 1).

Cassette Header Format

A file consists of a header block followed by a data block. Each block begins with a flag that indicates whether it is a header block or a data block. Next
are the header or data bytes, and finally a checksum of the flag and header/data bytes.
Flag - A value of $00 for a header and $FF for a data block.

251

SPECTRUM +2 ROM o DISASSEMBLY

Bytes - The bytes forming the header information or the file data.

Checksum - An XOR checksum of the Flag and Bytes fields.

The header information consists of 17 bytes and these describe the size and type of data that the data block contains.
The header bytes have the following meaning:

Byte $00 : File type - $00=Program, $01=Numeric array, $02=Character array, $03=Code/Screen$.
Bytes $01-$0A: File name, padding with trailing spaces.

Bytes $0B-$0C: Length of program/code block/screen$/array ($1B00 for screen$).

Bytes $0D-$0E: For a program, it holds the auto-run line number ($80 in byte $OE if no auto-run).
For code block/screen$ it holds the start address ($4000 for screen$).

For an array, it holds the variable name in byte $0E.

Bytes $0F-$10: Offset to the variables (i.e. length of program) if a program.

AY-3-8912 Programmable Sound Generator Registers

This is controlled through output I/O port $FFFD. It is driven from a 1.77345 MHz clock.
The datasheet for the AY-3-8912 lists to the registers in octal, but below they are listed in decimal.

Registers 0 and 1 (Channel A Tone Generator)

Forms a 12 bit pitch control for sound channel A. The basic unit of tone is the clock frequency divided by 16, i.e. 110.841 kHz. With a 12 bit counter range,
4095 different frequencies from 27.067 Hz to 110.841 kHz (in increments of 27.067 Hz) can be generated.

Bits 0-7 : Contents of register 0.

Bits 8-11 : Contents of lower nibble of register 1.

Bits 12-15: Not used.

Registers 2 and 3 (Channel B Tone Generator)

Forms a 12 bit pitch control for sound channel B.
Bits 0-7 : Contents of register 2.

Bits 8-11 : Contents of lower nibble of register 3.
Bits 12-15: Not used.

Registers 4 and 5 (Channel C Tone Generator)

Forms a 12 bit pitch control for sound channel C.
Bits 0-7 : Contents of register 4.

Bits 8-11 : Contents of lower nibble of register 5.
Bits 12-15: Not used.

Register 6 (Noise Generator)

The frequency of the noise is obtained in the PSG by first counting down the input clock by 16 (i.e. 110.841 kHz), then by further counting down the
result by the programmed 5 bit noise period value held in bits 0-4 of register 6. With a 5 bit counter range, 31 different frequencies from 3.576 kHz to
110.841 kHz (in increments of 3.576 kHz) can be generated.

Register 7 (Mixer — I/O Enable)

This controls the enable status of the noise and tone mixers for the three channels, and also controls the 1/O port used to drive the RS232 and Keypad
sockets.

Bit 0: Channel A Tone Enable (O=enabled).

Bit 1: Channel B Tone Enable (0=enabled).

Bit 2: Channel C Tone Enable (O=enabled).

Bit 3: Channel A Noise Enable (0O=enabled).

Bit 4: Channel B Noise Enable (O=enabled).

Bit 5: Channel C Noise Enable (O=enabled).

Bit 6: I/O Port Enable (O=input, 1=output).

Bit 7: Not used.

Register 8 (Channel A Volume)

This controls the volume of channel A.

Bits 0-4: Channel A volume level.

Bit 5 : 1=Use envelope defined by register 13 and ignore the volume setting.
Bits 6-7: Not used.

252

SPECTRUM +2 ROM o DISASSEMBLY

Register 9 (Channel B Volume)

This controls the volume of channel B.

Bits 0-4: Channel B volume level.

Bit 5 : 1=Use envelope defined by register 13 and ignore the volume setting.
Bits 6-7: Not used.

Register 10 (Channel C Volume)

This controls the volume of channel C.

Bits 0-4: Channel C volume level.

Bit 5 : 1=Use envelope defined by register 13 and ignore the volume setting.
Bits 6-7: Not used.

Register 11 and 12 (Envelope Period)

These registers allow the frequency of the envelope to be selected.

The frequency of the envelope is obtained in the PSG by first counting down the input clock by 256 (6.927 kHz), then further counting down the result
by the programmed 16 bit envelope period value. With a 16 bit counter range, 65535 different frequencies from 1.691 Hz to 110.841 kHz (in increments

of 1.691 Hz) can be generated.
Bits 0-7 : Contents of register 11.
Bits 8-15: Contents of register 12.

Register 13 (Envelope Shape)

This register allows the shape of the envelope to be selected.

The envelope generator further counts down the envelope frequency by 16, producing a 16-state per cycle envelope pattern. The particular shape and
cycle pattern of any desired envelope is accomplished by controlling the count pattern of the 4 bit counter and by defining a single cycle or repeat cycle

pattern.

Bit 0 : Hold.

Bit 1 : Alternate.

Bit 2 : Attack.

Bit 3 : Continue.

Bits 4-7: Not used.

These control bits can produce the following envelope waveforms:

253

SPECTRUM +2 ROM o DISASSEMBLY

Bit: 3210

00XX Single decay then off.

Used by WO PLAY command.
01XX Single attack then off.

Used by W1 PLAY command.
1000 Repeated decay.

Used by W4 PLAY command.
1001 Single decay then off.

Not used by PLAY command (use WO instead).

1010 Repeated decay-attack.
Used by W7 PLAY command.
Single decay then hold.

1011 \l Used by W2 PLAY command.

Repeated attack.
1100 Used by W5 PLAY command.

Single attack then hold.

1101 Used by W3 PLAY command.
Repeated attack-delay.
1110 /\/\/\/\ Used by W6 PLAY command.
Single attack then off.
1111 Not used by PLAY command (use W1 instead).

% ‘ ‘ e Envelope period

Register 14 (1/0O Port)

This controls the RS232 and Keypad sockets.

Once the register has been selected, it can be read via port $FFFD and written via port $BFFD.

Bit 0: KEYPAD CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 1: KEYPAD RXD (out) - 0=Transmit high bit, 1=Transmit low bit

Bit 2: RS232 CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 3: RS232 RXD (out) - 0=Transmit high bit, 1=Transmit low bit

Bit 4: KEYPAD DTR (in) - 0=Keypad ready for data, 1=Busy

Bit 5: KEYPAD TXD (in) - 0=Receive high bit, 1=Receive low bit

Bit 6: RS232 DTR (in) - 0=Device ready for data, 1=Busy

Bit 7: RS232 TXD (in) - 0=Receive high bit, 1=Receive low bit

The RS232 port also doubles up as a MIDI port, with communications to MIDI devices occurring at 31250 baud.
Commands and data can be sent to MIDI devices. Command bytes have the most significant bit set, whereas data bytes have it reset.

Socket Pin Outs

RS232/MIDI Socket

The RS232/MIDI socket is controlled by register 14 of the AY-3-8912 sound generator.

6 54 3 2 1 Front view
Pin Signal
1 ov

254

SPECTRUM +2 ROM o DISASSEMBLY

TXD - In (Bit 7)
RXD - Out (Bit 3)
DTR - In (Bit 6)
CTS - Out (Bit 2)
12v

o0 WN

Keypad Socket

The keypad socket is controlled by register 14 of the AY-3-8912 sound generator.

Only bits 0 and 5 are used for communications with the keypad (pins 2 and 5).

Writing a 1 to bit O (pin 2) will eventually force the keypad to reset.

Summary information about the keypad and its communications protocol can be found in the Spectrum 128 Service Manual and a detailed description
can be found at www.fruitcake.plus.com.

6 54 3 2 1 Front view

Pin Signal

ov

OUT - Out (Bit 0)

n/u - In (Bit 4)

n/u - Out (Bit 1)

IN - In (Bit 5)

12v

n/u = Not used for keypad communications.

The keypad socket was later used by Amstrad to support a lightgun. There are no routines within the ROMs to handle communication with the lightgun
so each game has to implement its own control software. Only bits 4 and 5 are used for communication with the lightgun (pins 3 and 5).
The connections to the lightgun are as follows:

o0 WN PP

Pin Signal

1 ov

2 n/u - Out (Bit 0)

3 SENSOR - In (Bit 4)
4 n/u - Out (Bit 1)

5 TRIGGER - In (Bit 5)
6 12v

n/u = Not used for lightgun communication.

Monitor Socket

Pin Signal Level

1 Composite PAL 1.2V pk-pk (75 Ohms)

2 0 Volts ov

3 Bright Output TTL

4 Composite Sync TTL

5 Vertical Sync TTL

6 Green TTL

7 Red TTL

8 Blue TTL

A detailed description of the monitor socket and circuitry, and how to construct a suitable RGB SCART cable can be found at www.fruitcake.plus.com.

255

SPECTRUM +2 ROM o DISASSEMBLY

Edge Connector

Pin Side A Side B

1 Al5 Ala

2 Al3 Al2

3 D7 +5V

4 n/u +9V

5 Slot Slot

6 DO ov

7 D1 ov

8 D2 ICLK

9 D6 A0

10 D5 Al

11 D3 A2

12 D4 A3

13 /INT /IORQULA

14 INMI ov

15 IHALT n/u (On 48K Spectrum = VIDEO)
16 /MREQ n/u (On 48K Spectrum =/Y)
17 /IORQ n/u (On 48K Spectrum = V)
18 IRD n/u (On 48K Spectrum = U)
19 /WR /BUSREQ

20 -5v IRESET

21 IWAIT A7

22 +12V A6

23 -12v A5

24 /M1 A4

25 IRFSH /ROMCS

26 A8 /BUSACK

27 A10 A9

28 n/u All

Side A=Component Side, Side B=Underside.
n/u = Not used.

Sound Socket

ROM 0 Differences Between Models

The Spectrum +2 contains all of the functionality of the Spectrum 128 but excludes all routines relating to the Tape Tester option. Aside from this, the only
other changes are to the copyright message and the message displayed when the Tape Loader option is invoked. All of the bugs that exist in the Spectrum
128 ROM 0 are still present in the Spectrum +2. English, Spanish and French versions of the Spectrum +2 were produced and these differed only in the
language of the menu and error messages. However, a consequence of these translations was that the location of various routines were shifted.

The following shows a comparison of ROM 0 for the range of Spectrum +2 models and the Spectrum 128, and details how the address ranges correspond
between them.

Spectrum 128
$0000-$0565
$0566-$057C

$057D-$2743
$2744

$2745-$2750
$2751-$2753

Spectrum +2
$0000-$0565
$0566-$059B
$059C-$276C
$2763
$2764-$276F

French +2
$0000-$0565
$0566-$059B
$059C-$276C
$2763
$2764-$276F

Spanish +2

$0000-$0565
$0566-$059B
$059C-$276C

$2763
$2764-$276F

$2754 $2770 $2770 $2770
$2755-$275D $2771-$2779 $2771-$2779 $2771-$2779
$275E-$2768 $277A-$2784 $277A-$2781 $277A-$2784

$2769-$2771
$2772-$278B
$277C-$2783
$2784-$278E
$278F-$27A0
$27A1-$27A9

$2785-$278D
$278E-$2797
$2798-$279F

$27A0-$27B1
$27B2-$27BA

$2782-$278B
$278C-$2797
$2798-$27A0

$27A1-$27B2
$27B3-$27BB

$2785-$278D
$278E-$2798
$2799-$27A0

$27A1-$27B2
$27B3-$27BB

256

$27AA-$27B2
$27B3-$27BA
$27BB-$27C0
$27C1-$27C5
$27C6-$27C9
$27CA-$27D2
$27D3-$27DB
$27DC-$27E5
$27E6-$27E9
$27EA-$27EB
$27EC
$27ED-$27F3
$27F4-$2810
$2811-$2815
$2816-$281B
$281C-$3854
$3855-$3859
$385A-$3BE8
$3BE9-$3C62
$3C63-$3FFE

$3FFF

$27BB-$27C3
$27C4-$27CB
$27CC-$27D1
$27D2-$27D6
$27D7-$27DA
$27DB-$27E3
$27E4-$27EC
$27ED-$27F6
$27F7-$27FA
$27FB-$27FC
$27FD
$27FE-$2804
$2805-$283C

$283D-$2841
$2842-$387A
$387B-$3C09
$3COA-$3FA5

$3FA6-$3FFE
$3FFF

SPECTRUM +2 ROM o DISASSEMBLY

$27BC-$27C5
$27C6-$27D0
$27D1-$27D5
$27D6-$27DF
$27E0-$27E5
$27E6-$27EE
$27EF-$27F7
$27F8-$2803
$2804-$2809
$280A-$280B
$280C
$280D-$2813
$2814-$2851

$2852-$2856
$2857-$388F
$3890-$3C1E
$3C1F-$3FBA

$3FBB-$3FFE
$3FFF

$27BC-$27C4
$27C5-$27CD
$27CE-$27D5
$27D6-$27DD
$27DE-$27E3
$27E4-$27EC
$27ED-$27F5
$27F6-$2800
$2801-$2806
$2807-$2808
$2809
$280A-$2810
$2811-$284E

$284F-$2853
$2854-$388C
$388D-$3C1B
$3C1C-$3FB7

$3FB8-$38FE
$3FFF

257

	SPECTRUM +2 ROM 0 DISASSEMBLY
	NOTES
	Release Date
	Disassembly Contributors
	Markers

	REFERENCE INFORMATION — PART 1
	128 BASIC Mode Limitations
	Timing Information
	I/O Details
	Memory Paging
	Memory Map
	Shadow Display File
	Contended Memory
	Logical RAM Banks
	AY-3-8912 Sound Generator
	I/O Port A (AY-3-8912 Register 14)
	Standard I/O Ports

	Error Report Codes
	Standard Error Report Codes
	New Error Report Codes

	System Variables
	New System Variables
	Standard System Variables
	RAM Disk Catalogue
	Editor Workspace Variables

	Called ROM 1 Subroutines
	RESTART ROUTINES — PART 1
	RST $00 — Reset Machine
	RST $10 — Print A Character
	RST $18 — Collect A Character
	RST $20 — Collect Next Character
	RST $28 — Call Routine in ROM 1

	MASKABLE INTERRUPT ROUTINE
	ERROR HANDLER ROUTINES — PART 1
	128K Error Routine

	RESTART ROUTINES — PART 2
	Call ROM 1 Routine (RST $28 Continuation)

	RAM ROUTINES
	Swap to Other ROM (copied to $5B00)
	Return to Other ROM Routine (copied to $5B14)
	Error Handler Routine (copied to $5B1D)
	'P' Channel Input Routine (copied to $5B2F)
	'P' Channel Output Routine (copied to $5B34)
	'P' Channel Exit Routine (copied to $5B4A)

	ERROR HANDLER ROUTINES — PART 2
	Call Subroutine

	INITIALISATION ROUTINES — PART 1
	Reset Routine (RST $00 Continuation, Part 1)

	ROUTINE VECTOR TABLE
	INITIALISATION ROUTINES — PART 2
	Fatal RAM Error
	Reset Routine (RST $00 Continuation, Part 2)

	COMMAND EXECUTION ROUTINES — PART 1
	Execute Command Line
	Return from BASIC Line Syntax Check
	Parse a BASIC Line with No Line Number

	ERROR HANDLER ROUTINES — PART 3
	Error Handler Routine
	Error Handler Routine When Parsing BASIC Line

	COMMAND EXECUTION ROUTINES — PART 2
	Parse a BASIC Line with a Line Number

	ERROR HANDLER ROUTINES — PART 4
	New Error Message Vector Table
	New Error Message Table
	Print Message

	INITIALISATION ROUTINES — PART 3
	The 'Initial Channel Information'
	The 'Initial Stream Data'

	ERROR HANDLER ROUTINES — PART 5
	Produce Error Report
	Check for BREAK into Program

	RS232 PRINTER ROUTINES
	RS232 Channel Handler Routines
	FORMAT Routine
	Baud Rate Table
	RS232 Input Routine
	Read Byte from RS232 Port
	RS232 Output Routine
	Write Byte to RS232 Port
	COPY Command Routine
	Output Half Row
	Output Nibble of Pixels
	Output Characters from Table
	Test Whether Pixel (B,C) is Set
	EPSON Printer Control Code Tables

	PLAY COMMAND ROUTINES
	Command Data Block Format
	Channel Data Block Format
	Calculate Timing Loop Counter « RAM Routine »
	Test BREAK Key
	Select Channel Data Block Duration Pointers
	Select Channel Data Block Pointers
	Get Channel Data Block Address for Current String
	Next Channel Data Pointer
	PLAY Command (Continuation)
	PLAY Command Character Table
	Get Play Character
	Get Next Note in Semitones
	Get Numeric Value from Play String
	Multiply DE by 10
	Find Next Note from Channel String
	Play Command '!' (Comment)
	Play Command 'O' (Octave)
	Play Command 'N' (Separator)
	Play Command '(' (Start of Repeat)
	Play Command ')' (End of Repeat)
	Get Address of Bracket Pointer Store
	Play Command 'T' (Tempo)
	Tempo Command Return
	Play Command 'M' (Mixer)
	Play Command 'V' (Volume)
	Play Command 'U' (Use Volume Effect)
	Play command 'W' (Volume Effect Specifier)
	Play Command 'X' (Volume Effect Duration)
	Play Command 'Y' (MIDI Channel)
	Play Command 'Z' (MIDI Programming Code)
	Play Command 'H' (Stop)
	Play Commands 'a'..'g', 'A'..'G', '1'.."12", '&' and '_'
	End of String Found
	Point to Duration Length within Channel Data Block
	Store Entry in Command Data Block's Channel Duration Length Pointer Table
	PLAY Command Jump Table
	Envelope Waveform Lookup Table
	Identify Command Character
	Semitones Table
	Find Note Duration Length
	Note Duration Table
	Is Numeric Digit?
	Play a Note On a Sound Chip Channel
	Set Sound Generator Register
	Read Sound Generator Register
	Turn Off All Sound
	Get Previous Character from Play String
	Get Current Character from Play String
	Produce Play Error Reports
	Play Note on Each Channel
	Wait Note Duration
	Find Smallest Duration Length
	Play a Note on Each Channel and Update Channel Duration Lengths
	Note Lookup Table
	Play Note on MIDI Channel
	Turn MIDI Channel Off
	Send Byte to MIDI Device

	CASSETTE / RAM DISK COMMAND ROUTINES — PART 1
	SAVE Routine
	LOAD Routine
	VERIFY Routine
	MERGE Routine
	RAM Disk Command Handling
	RAM Disk VERIFY! Routine
	RAM Disk MERGE! Routine
	RAM Disk LOAD! Routine
	RAM Disk Load Bytes
	Get Expression from BASIC Line
	Check Filename and Copy
	Cassette / RAM Disk Command Handling

	EDITOR ROUTINES — PART 1
	Relist the BASIC Program from the Current Line
	Print All Screen Line Edit Buffer Rows to the Display File
	Clear Editing Display
	Shift All Edit Buffer Rows Up and Update Display File if Required
	Shift All Edit Buffer Rows Down and Update Display File if Required
	Insert Character into Edit Buffer Row, Shifting Row Right
	Insert Character into Edit Buffer Row, Shifting Row Left

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 1
	The Syntax Offset Table
	The Syntax Parameter Table
	The 'Main Parser' Of the BASIC Interpreter
	The Statement Loop
	The 'Separator' Subroutine
	The 'Statement Return' Subroutine
	The 'Line Run' Entry Point
	The 'Line New' Subroutine
	REM Routine
	The 'Line End' Routine
	The 'Line Use' Routine
	The 'Next Line' Routine
	The 'CHECK-END' Subroutine
	The 'STMT-NEXT' Routine
	The 'Command Class' Table
	The 'Command Classes — 0C, 0D & 0E'
	The 'Command Classes — 00, 03 & 05'
	The 'Command Class — 01'
	The 'Command Class — 02'
	The 'Command Class — 04'
	The 'Command Class — 08'
	The 'Command Class — 06'
	Report C — Nonsense in BASIC
	The 'Command Class — 0A'
	The 'Command Class — 07'
	The 'Command Class — 09'
	The 'Command Class — 0B'
	IF Routine
	FOR Routine
	READ Routine
	DATA Routine
	RUN Routine
	CLEAR Routine
	GO SUB Routine
	RETURN Routine
	DEF FN Routine
	MOVE Routine

	MENU ROUTINES — PART 1
	Run Tape Loader
	List Program to Printer

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 2
	SPECTRUM Routine

	MENU ROUTINES — PART 2
	Main Menu — 48 BASIC Option
	Set 'P' Channel Data
	LOAD "" Command Bytes

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 3
	LLIST Routine
	LIST Routine
	RAM Disk SAVE! Routine
	CAT! Routine
	ERASE! Routine

	RAM DISK COMMAND ROUTINES — PART 2
	Load Header from RAM Disk
	Load from RAM Disk

	PAGING ROUTINES — PART 1
	Page Logical RAM Bank
	Physical RAM Bank Mapping Table

	RAM DISK COMMAND ROUTINES — PART 3
	Compare Filenames
	Create New Catalogue Entry
	Adjust RAM Disk Free Space
	Find Catalogue Entry for Filename
	Find RAM Disk File
	Update Catalogue Entry
	Save Bytes to RAM Disk
	Load Bytes from RAM Disk
	Transfer Bytes to RAM Bank 4 — Vector Table Entry
	Transfer Bytes from RAM Bank 4 — Vector Table Entry

	PAGING ROUTINES — PART 2
	Use Normal RAM Configuration
	Select RAM Bank
	Use Workspace RAM Configuration

	RAM DISK COMMAND ROUTINES — PART 4
	Erase a RAM Disk File
	Print RAM Disk Catalogue
	Print Catalogue Filename Data
	Print Single Catalogue Entry

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 4
	LPRINT Routine
	PRINT Routine
	INPUT Routine
	COPY Routine
	NEW Routine
	CIRCLE Routine
	DRAW Routine
	DIM Routine
	Error Report C — Nonsense in BASIC
	Clear Screen Routine
	Evaluate Numeric Expression
	Process Key Press
	Find Start of BASIC Command
	Is LET Command?
	Is Operator Character?
	Operator Tokens Table
	Is Function Character?
	Is Numeric or Function Expression?
	Is Numeric Character?
	PLAY Routine

	UNUSED ROUTINES — PART 1
	Return to Editor
	BC=HL-DE, Swap HL and DE
	Create Room for 1 Byte
	Room for BC Bytes?
	HL = A*32
	HL = A*8
	Find Amount of Free Space
	Print Screen Buffer Row
	Blank Screen Buffer Content
	Print Screen Buffer to Display File
	Print Screen Buffer Characters to Display File
	Copy A Character « RAM Routine »
	Toggle ROMs 1 « RAM Routine »
	Toggle ROMs 2 « RAM Routine »
	Construct 'Copy Character' Routine in RAM
	Set Attributes File from Screen Buffer
	Set Attributes for a Screen Buffer Row
	Swap Ink and Paper Attribute Bits
	Character Data

	KEY ACTION TABLES
	Editing Keys Action Table
	Menu Keys Action Table

	MENU ROUTINES — PART 3
	Initialise Mode Settings
	Show Main Menu

	EDITOR ROUTINES — PART 2
	Return to Editor / Calculator / Menu from Error
	Return to the Editor
	Main Waiting Loop
	Process Key Press
	TOGGLE Key Handler Routine
	Select Lower Screen
	Select Upper Screen
	Produce Error Beep
	Produce Success Beep

	MENU ROUTINES — PART 4
	Menu Key Press Handler Routines
	Menu Key Press Handler — MENU
	Menu Key Press Handler — SELECT
	Menu Key Press Handler — CURSOR UP
	Menu Key Press Handler — CURSOR DOWN

	Menu Tables
	Main Menu
	Edit Menu
	Calculator Menu
	Tape Loader Text

	Menu Handler Routines
	Edit Menu — Screen Option
	Edit Menu / Calculator Menu — Exit Option
	Main Menu — Tape Loader Option
	Edit Menu — Renumber Option
	Edit Menu — Print Option
	Main Menu — Calculator Option

	EDITOR ROUTINES — PART 3
	Reset Cursor Position
	Return to Main Menu
	Main Screen Error Cursor Settings
	Lower Screen Good Cursor Settings
	Initialise Lower Screen Editing Settings
	Initialise Main Screen Editing Settings
	Handle Key Press Character Code
	DELETE-RIGHT Key Handler Routine
	DELETE Key Handler Routine
	ENTER Key Handler Routine
	TOP-OF-PROGRAM Key Handler Routine
	END-OF-PROGRAM Key Handler Routine
	WORD-LEFT Key Handler Routine
	WORD-RIGHT Key Handler Routine
	Remove Cursor
	Show Cursor
	Display Cursor
	Fetch Cursor Position
	Store Cursor Position
	Get Current Character from Screen Line Edit Buffer
	TEN-ROWS-DOWN Key Handler Routine
	TEN-ROWS-UP Key Handler Routine
	END-OF-LINE Key Handler Routine
	START-OF-LINE Key Handler Routine
	CURSOR-UP Key Handler Routine
	CURSOR-DOWN Key Handler Routine
	CURSOR-LEFT Key Handler Routine
	CURSOR-RIGHT Key Handler Routine

	Edit Buffer Routines — Part 1
	Find Closest Screen Line Edit Buffer Editable Position to the Right else Left
	Find Closest Screen Line Edit Buffer Editable Position to the Left else Right
	Insert BASIC Line, Shift Edit Buffer Rows Down If Required and Update Display File If Required
	Insert BASIC Line, Shift Edit Buffer Rows Up If Required and Update Display File If Required
	Find Next Screen Line Edit Buffer Editable Position to Left, Wrapping Above if Required
	Find Next Screen Line Edit Buffer Editable Position to Right, Wrapping Below if Required
	Find Screen Line Edit Buffer Editable Position from Previous Column to the Right
	Find Screen Line Edit Buffer Editable Position to the Left
	Find Start of Word to Left in Screen Line Edit Buffer
	Find Start of Word to Right in Screen Line Edit Buffer
	Find Start of Current BASIC Line in Screen Line Edit Buffer
	Find End of Current BASIC Line in Screen Line Edit Buffer
	Insert BASIC Line into Program if Altered
	Insert Line into BASIC Program If Altered and the First Row of the Line
	Insert Line into BASIC Program
	Fetch Next Character from BASIC Line to Insert
	Fetch Next Character Jump Table
	Fetch Character from the Current Row of the BASIC Line in the Screen Line Edit Buffer
	Fetch Character from Edit Buffer Row
	Upper Screen Rows Table
	Lower Screen Rows Table
	Reset to Main Screen
	Reset to Lower Screen
	Find Edit Buffer Editable Position from Previous Column to the Right
	Find Edit Buffer Editable Position to the Left
	Fetch Edit Buffer Row Character
	Insert Character into Screen Line Edit Buffer
	Insert Blank Row into Screen Edit Buffer, Shifting Rows Down
	Empty Edit Buffer Row Data
	Delete a Character from a BASIC Line in the Screen Line Edit Buffer
	Shift Rows Up to Close Blank Row in Screen Line Edit Buffer
	DELETE-WORD-LEFT Key Handler Routine
	DELETE-WORD-RIGHT Key Handler Routine
	DELETE-TO-START-OF-LINE Key Handler Routine
	DELETE-TO-END-OF-LINE Key Handler Routine
	Remove Cursor Attribute and Disable Updating Display File
	Previous Character Exists in Screen Line Edit Buffer?
	Find Row Address in Screen Line Edit Buffer
	Find Position within Screen Line Edit Buffer
	Below-Screen Line Edit Buffer Settings
	Set Below-Screen Line Edit Buffer Settings
	Shift Up Rows in Below-Screen Line Edit Buffer
	Shift Down Rows in Below-Screen Line Edit Buffer
	Insert Character into Below-Screen Line Edit Buffer
	Find Row Address in Below-Screen Line Edit Buffer
	Delete a Character from a BASIC Line in the Below-Screen Line Edit Buffer
	Above-Screen Line Edit Buffer Settings
	Set Above-Screen Line Edit Buffer Settings
	Shift Rows Down in the Above-Screen Line Edit Buffer
	Shift Row Up into the Above-Screen Line Edit Buffer if Required
	Find Row Address in Above-Screen Line Edit Buffer
	BASIC Line Character Action Handler Jump Table
	Copy a BASIC Line into the Above-Screen or Below-Screen Line Edit Buffer
	Set 'Continuation' Row in Line Edit Buffer

	BASIC Line Handling Routines
	Find Address of BASIC Line with Specified Line Number
	Create Next Line Number Representation in Keyword Construction Buffer
	Fetch Next De-tokenized Character from Selected BASIC Line in Program Area
	Copy 'Insert Keyword Representation into Keyword Construction Buffer' Routine into RAM
	Insert Keyword Representation into Keyword Construction Buffer « RAM Routine »
	Copy Keyword Characters « RAM Routine »
	Identify Token from Table
	Create Next Line Number Representation in Keyword Construction Buffer
	Insert ASCII Line Number Digit
	Find Address of BASIC Line with Specified Line Number
	Move to Next BASIC Line
	Check if at End of BASIC Program
	Compare Line Numbers
	Clear BASIC Line Construction Pointers
	Find Address of BASIC Line
	Fetch Next De-tokenized Character from BASIC Line in Program Area

	Edit Buffer Routines — Part 2
	Keywords String Table
	Indentation Settings
	Set Indentation Settings
	Store Character in Column of Edit Buffer Row
	'Enter' Action Handler Routine
	'Null Columns' Action Handler Routine
	Null Column Positions
	Indent Edit Buffer Row
	Print Edit Buffer Row to Display File if Required
	Shift Up Edit Rows in Display File if Required
	Shift Down Edit Rows in Display File if Required
	Set Cursor Attribute Colour
	Restore Cursor Position Previous Attribute
	Reset 'L' Mode
	Wait for a Key Press

	MENU ROUTINES — PART 5
	Display Menu
	Plot a Line
	Print "AT B,C" Characters
	Print String
	Store Menu Screen Area
	Restore Menu Screen Area
	Store / Restore Menu Screen Row
	Move Up Menu
	Move Down Menu
	Toggle Menu Option Selection Highlight
	Menu Title Colours Table
	Menu Title Space Table
	Menu Sinclair Stripes Bitmaps
	Sinclair Strip 'Text'
	Print the Sinclair stripes on the menu
	Print '128 BASIC' Banner
	Print 'Calculator' Banner
	Print 'Tape Loader' Banner
	Print Banner
	Clear Lower Editing Display

	RENUMBER ROUTINE
	Tokens Using Line Numbers
	Parse a Line Renumbering Line Number References
	Count the Number of BASIC Lines
	Skip Spaces
	Create ASCII Line Number Representation
	Insert Line Number Digit

	EDITOR ROUTINES — PART 4
	Initial Lower Screen Cursor Settings
	Initial Main Screen Cursor Settings
	Set Main Screen Editing Cursor Details
	Set Lower Screen Editing Cursor Details

	UNUSED ROUTINES — PART 2
	Print 'AD'

	EDITOR ROUTINES — PART 5
	Store Cursor Colour
	Set Cursor Position Attribute
	Restore Cursor Position Attribute
	Shift Up Edit Rows in Display File
	Shift Down Edit Rows in Display File
	Print a Row of the Edit Buffer to the Screen
	Clear Display Rows
	Find Rows and Columns to End of Screen
	Find Rows to End of Screen
	Get Attribute Address
	Exchange Colour Items

	EDITOR ROUTINES — PART 5
	Tokenize BASIC Line
	Fetch Next Character and Character Status from BASIC Line to Insert
	Is Lowercase Letter?
	Copy Keyword Conversion Buffer Contents into BASIC Line Workspace
	Insert Character into Keyword Conversion Buffer
	Insert Character into BASIC Line Workspace, Handling '>' and '<'
	Insert Character into BASIC Line Workspace, Handling 'REM' and Quotes
	Insert Character into BASIC Line Workspace With Space Suppression
	Insert a Character into BASIC Line Workspace
	Room for BC Bytes?
	Identify Keyword
	Copy Data Block
	Get Numeric Value for ASCII Character
	Call Action Handler Routine

	PROGRAMMERS' INITIALS
	UNUSED SPACE
	END OF ROM MARKER
	REFERENCE INFORMATION — PART 2
	Routines Copied/Constructed in RAM
	Construct Keyword Representation
	Copy Keyword Characters
	Identify Token
	Insert Character into Display File

	Standard Error Report Codes
	Standard System Variables
	Memory Map
	I Register
	Screen File Formats
	Display File
	Attributes File
	Address Conversion Between Display File and Attributes File

	Standard I/O Ports
	Port $FE

	Cassette Header Format
	AY-3-8912 Programmable Sound Generator Registers
	Registers 0 and 1 (Channel A Tone Generator)
	Registers 2 and 3 (Channel B Tone Generator)
	Registers 4 and 5 (Channel C Tone Generator)
	Register 6 (Noise Generator)
	Register 7 (Mixer — I/O Enable)
	Register 8 (Channel A Volume)
	Register 9 (Channel B Volume)
	Register 10 (Channel C Volume)
	Register 11 and 12 (Envelope Period)
	Register 13 (Envelope Shape)
	Register 14 (I/O Port)

	Socket Pin Outs
	RS232/MIDI Socket
	Keypad Socket
	Monitor Socket
	Edge Connector
	Sound Socket

	ROM 0 Differences Between Models

