SPECTRUM 128 ROM
o DISASSEMBLY

The Spectrum ROMs are copyright Amstrad, who have kindly given permission to reverse engineer
and publish Spectrum ROM disassemblies.

Image © Bill Bertram 2006

SPECTRUM 128 ROM o DISASSEMBLY

CONTENTS
NOTES .ttt ettt h et h et b o2t b e st E e e st ekt e e bkt eae bt he bt bbb e b abe e 14
Release Datec.c...... .14
Disassembly Contributors . .14
MaArkerscooooieiiiieeie e .14
REFERENCE INFORMATION — PART 1 .. . 14
128 BASIC MOde LIMITALIONS ...couveiieiiiieiiiiie ittt e e e e e snnee e e enanas 14
TIMING INFOMMELION ..ottt et et 15
11O DEIAIIS ...ttt 15
MEMOTY PAGING ...ttt ettt ettt sttt sb ettt 15

MEMOTY MEP ... s 16
Shadow Display File 16
[T 41 (=1 a o (=T 1Y =T o t o] oY PRSP PUROTRROY 16
LOgiCal RAM BANKSooiiiiiiiiiiiieiiee ettt 16
AY-3-8912 Sound Generator 16
1/O Port A (AY-3-8912 REQISIEr 14) ...viiiiiiiiieiiieit ettt 17
SEANAAIT 1/0 POIS ...ttt ettt e et e e st bt e e sabb e e e sabe e e e sbbeaeanbeeeeanbeeeanes 17
ErrOr REPOI COUES ..ottt ettt ettt e et nbe e 17
Standard Error REPOI COUESc.uiiiiiiiiiiiiie ettt ettt be e e sbe e e snaeeeens 17
New Error Report Codes e 17
SYSIEM VANADIES ...ttt 18
NeW System Vari@blesooociiiiiiii e 18
Standard SyStemM Variablesoiiiiiiiiiii e 21
RAM DiSK CAAIOGUEcccviiiiiiiitiiiiiei ettt ettt ettt 21
Editor WOrkspace Variablesooo ittt ettt e e e e 22
Called ROM 1 SUDFOULINESvviiiiiiiee ittt ettt et e e et e e st e e snabe e e enneeeaanbeaeans 28
RESTART ROUTINES — PART 1 30
RST $00 — RESEt MACKINEoiiiiiiiiieiie ittt sttt e e sbeesaee e s 30
RST $10 — Print A CRArACLETc.viiiuiiiiieiiie ettt et et sbee et e e e saeeaneas 31
RST $18 — Collect A Character31
RST $20 — Collect Next Character31
RST $28 — Call Routine in ROM 131

MASKABLE INTERRUPT ROUTINE 32
ERROR HANDLER ROUTINES — PART 1 ...ooiiiii e 32

128K EFTOr ROULINE ..ottt ettt ettt 32
RESTART ROUTINES — PART 2 ittt et e e e et e e e s 33
Call ROM 1 Routine (RST $28 CONtINUALION)ecuviitiriiiiieiieie et 33

RAM ROUTINES ...ttt b et s b ae bbbttt nn 33
Swap to Other ROM (copied t0 $5B00)c.eeruerieriiriieitiriieieniee ettt nee e 33
Return to Other ROM Routine (copied t0 $5B14)ccevieieiiiiieiieeieie e 34

Error Handler Routine (COpied t0 $5B1D)ccouiieeeririeiieiieieieie st sieseees st see e see e sne e 34
'P' Channel Input Routine (copied to $5B2F)
'P' Channel Output Routine (copied to $5B34) . .
'P' Channel Exit Routine (COpIied t0 $5BAA)ccuoiiiiiiieieie ettt 35

SPECTRUM 128 ROM o DISASSEMBLY

ERROR HANDLER ROUTINES — PART 2 ittt e et a e e e e e e e e s e 36
Call Subroutine ... 36
INITIALISATION ROUTINES — PART 1 oottt ettt etete et ee e e e s e e e e e e s nnnnneees 36
Reset Routine (RST $00 Continuation, Part 1)ccooueiiieiiiinieiieeniee e 36
ROUTINE VECTOR TABLEoovviiiiiiiiiieeee e . 37
INITIALISATION ROUTINES — PART 2. ... 38
Fatal RAM EITOTooovviiieeiiie e ... 38
Reset Routine (RST $00 Continuation, Part 2)ccooueiiieiieinieiie e 38
COMMAND EXECUTION ROUTINES — PART L ..ottt e e e stnneeee e e e e 43
Execute Command Line e 43
Return from BASIC Line SyntaX ChECKcccvieiiiiiiiiiee e see e see e e sene e 44
Parse a BASIC Line with NO Line NUMDETccoiiiieiiiii e e s 44
ERROR HANDLER ROUTINES — PART 3 45
Error Handler ROULINEc.coovcvvveiiiieecciee e ... 45
Error Handler Routine When Parsing BASIC Line ... 48
COMMAND EXECUTION ROUTINES — PART 2 ..oiiiiiiiiieieiiiee ettt e e einnee e e e e e e 49
Parse a BASIC Line with @ LiNe NUMDETccciieiiiiie e 49
ERROR HANDLER ROUTINES — PART 4 51
New Error Message Vector Table51
New Error Message Table b1
L 1L YT Y= Vo USSR 52
INITIALISATION ROUTINES — PART 3 oottt ettt ettt e et e e e e s et e e e e e s snnneeees 53
The 'Initial Channel Information'
The 'INitial STre@m Data’ccveeiiiieeiiee e e e se e s e e e e e e stae e s ste e e e snteeesneeeeanreeesnnreeesnnees
ERROR HANDLER ROUTINES — PART 5 ittt e e et e e e 54
Produce Error Reportccceevevveennnn. ... 54
Check for BREAK into Program54
RS232 PRINTER ROUTINES 55
RS232 Channel Handler ROULINEScooviviieiiiiie et eeriieeeeteeeesieeessteeessneeeesnaaessaeeesnnsaeesnnes 55
FORMAT ROULINE ..iiitieeiiiieeesiiee e st e e sttt e e ttee e ssteaesstaaeesnsaeeessseeeasseeessseaesnsseessnsanessssenennsnnnennes 57
Baud Rate Table ... 59
RS232 INPUL ROULINE ..ueiiiiiiie ittt et e e e st e e e st e e st e e e s s e e eanteeesnnteaesnnaeeenssaeeensneneane 59
Read Byte from RS232 POIToiiiiiieeiiiieeceie e cee s e st e e et e e et e e s ste e e snaeeesnnaaeennaaeenns 59
RS232 Output Routine 64
Write Byte to RS232 Port .. 69
COPY Command Routine 70
(O 10010 F= 1 = Lo 1 SR 71
(O 10010 1 A N[o] o1 L= o) o D=L SRS 72
Output Characters from Table .. e 12
Test Whether PiXel (B,C) IS S ..uuiiiiiieeiiie e cie e esiie et ee sttt e s sieee e s e et eesnte e e snaeeesnneeeennneas 73
EPSON Printer Control Code TabIeScccuiviiiieiiiie e s e se e see e e e seae e nes 73
PLAY COMMAND ROUTINES
Command Data Block Format
Channel Data Block Formatc.cccceeeviveeenvneennnns .
Calculate Timing Loop Counter « RAM ROULINE »ccciviiieiiiiieiiieeesieeesieeesieeeeseeeesninee e 78
TESE BREAK KBY .eiitiiiiee ittt ettt e e e ettt e e e e e sttt e e e e e s s naate e e e e e e s snntnneeeeeeeannnnnees 79
Select Channel Data Block Duration Pointers ... 79
Select Channel Data Block Pointers 79

Get Channel Data Block Address for CUrrent StrNgc.ceecveeeviieeeiiieeeseeeesieeeseeeeseeee e 80

SPECTRUM 128 ROM o DISASSEMBLY

Next Channel Data POINTETccccvieiiiieeiiiee e ssee e ste e sae e e sree e e e ssae e e ssaeeesnnreeesnneeesssnaneanes 80
PLAY Command (CONtINUALION)ccccviieiiiieeiiiieesieeeessieeessteeessteeesnaeeessneeessnseeesnnaeeessseeesnnns 80
PLAY Command Character TabIEccicuieeiiiie e e ctie et e seee e e e e et e e snaee e snnaeeennaes 82
Get Play Charactercccccveeueeenn. e 82
Get Next NOtE iN SEMILONESc.veiiiiiiee et e e et e e st e e e s e e e ssaeeeetaeeesneeeennseeas 82
Get Numeric Value from Play StHNGccveeeiiieeeiiieesie e ssiee s see e svee e seaee e snaee s snneeeanneees 83

MUILIPIY DE DY 10 oiiiiiiie ettt ettt et e e st e st e e st a e e st e e e nteeesnnaeeesnnaaeennnneeenneneane 84
Find Next Note from Channel StriNGccceoooiieeiiie e e e ee e snaee e e 85
Play Command "I (COMMENL)cciiiieeiiiieeiitiee sttt e e sttt e et e e et e e st e e s sneeeessneaeeaseeeesnsaeeennseeess 85

Play Command 'O’ (Octave) 86
Play Command ‘N' (Separator) 86
Play Command '(" (Start 0f REPEAL)veeieiieiiiie e eiie et see et e e e e e e e e e s naeeennnes 86

Play Command)" (ENd Of REPEAL)ccvvveeiiiieeiiiieeiiie e eiiee sttt e e stee e s sieee e e et eesnnaaeesnneee s 87

Get Address of Bracket POINTEr STOTEcccoiiiiiiiiiiiiiieeiie sttt 89
Play Command 'T' (Tempo)ccceeenee .. 89
Tempo ComMMANA RELUIMiiiiiiee ittt e e e st e e s e e e st e e essb e e e ssaeeesnnaeeessseeeensneeennes 90
Play CommMaNnd ' (IMIXEI) ...cueeieiieieeeiee e et e s stteeesteeeesteeessaeeesnnteessnsaeeassaeeessaeessnseeesssnneennes 91
Play Command V' (VOIUME)uiiiiiiie it see st e et e e et e e et e e e st e e e snnaee e snneeeenneenes 92

Play Command 'U' (Use VOoIUME EffECL) ...cciciieiiiiie it 92
Play command ‘W' (Volume EffeCt SPECIfIEI) ...vcivuieiiiie e 93
Play Command 'X' (Volume Effect DUration)ccceeviieeeriuieeeiiiiessieeessieeeesieeesseneessneneennns 93
Play Command "Y' (MIDI ChannEl)ccueeiiiiieiiiiee s e siee e e ee et e e ae e e eae e e nnveaennaaee e 94

Play Command 'Z' (MIDI Programming Code) 94
Play Command 'H' (StOp) ...cccvvveveveeeviireesiiee e .. 95
Play Commands 'a’..'g’, 'A"..'G', '1'.."12", '&" and ' oo 95
ENd Of SEHNG FOUNG ...oiiiiiiie et e e s e e st e e e e e et e e e sntaeeesnneeeansaneennnes 98
Point to Duration Length within Channel Data BIOCKccccveiiiiiiiiir e se e 99
Store Entry in Command Data Block's Channel Duration Length Pointer Table 99
PLAY Command JUMP TabIEccociieeiiiie e se e e ... 100
Envelope Waveform Lookup Table 100
Identify Command Character 101
Semitones Table 101
Find Note Duration Length 101
Note Duration Table 101
IS Numeric Digit?ccooeeviieeeriireeiiieeens . 102
Play a Note On a Sound Chip Channel 102
Set Sound Generator Register 104
Read Sound Generator Register 104
Turn Off All SOUNdoooviiiiiiieicce .. 104
Get Previous Character from Play String 105
Get Current Character from Play String 106
Produce Play Error Reportsccccee... .. 107
Play Note on Each Channel 107
Wait Note Durationccce.... ... 108
Find Smallest Duration Lengthccccooiiviiiie e ... 109
Play a Note on Each Channel and Update Channel Duration Lengths 110
Note LOOKUP Tablec.oeeiiiiie et ..o 114
Play Note on MIDI Channel . 119

Turn MIDI Channel Offeie et e e e et e e e e e et e e e et e e e nnreaean 120

SPECTRUM 128 ROM o DISASSEMBLY

Send Byte t0 MIDI DEVICEcocvieiiiiieeiiie ettt e esieeestte e e sstaeesssaee e e saaeeesnteeesnaeeeannaeeeanneeeensenas 120
CASSETTE / RAM DISK COMMAND ROUTINES — PART 1 ..ooiiiiiiie e e eiiee e eee s 122
SAVE ROULINE .eiiiiiiiieeitiie et ee sttt e sttt e e st e e e st e e e ssaeeeessseeesseeaesnteeeesnseeeesnneeensanennnnen 122
LOAD Routine 122
VERIFY Routine 122
MERGE Routineccccccceveenne . 122
RAM Disk Command Handling ... 123

RAM Disk VERIFY! Routine 125
RAM Disk MERGE! Routine
RAM Disk LOAD! Routine
RAM Disk Load Bytescceene.
Get Expression from BASIC Line ..
Check Filename and Copyccccevvverennnn .. 129
Cassette / RAM Disk Command Handling 130
EDITOR ROUTINES — PART 1 ..cooiiiiieeeeeeeeiieieeenn ... 136
Relist the BASIC Program from the Current Line 136
Print All Screen Line Edit Buffer Rows to the Display File
Clear Editing DiSPlaycccicueeeiiiieesiireesieeeeeiee e se e seneeesnee e e
Shift All Edit Buffer Rows Up and Update Display File if Required
Shift All Edit Buffer Rows Down and Update Display File if Required ...
Insert Character into Edit Buffer Row, Shifting Row Right
Insert Character into Edit Buffer Row, Shifting Row Leftcccceveinenne ... 149
BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 1 ...
The Syntax OffSet TabIEccceveiiiie e .. 149
The Syntax Parameter Tablecccccccveeenne
The 'Main Parser' Of the BASIC Interpreter ...
The Statement LOOPcccceevvveeeivieeeiiereenns ... 154

The 'Separator' Subroutine 156
The 'Statement Return' Subroutine 156
The 'Line Run' Entry Point 156
The ‘Line New' Subroutine ... 157

REM Routinecccceeueeee.. .. 157
The 'Line End' Routine ..
The 'Line Use' Routine ..
The 'Next Line' Routine 159
The 'CHECK-END' Subroutine
The 'STMT-NEXT' Routine
The ‘Command Class' Table 160
The '‘Command Classes — 0C, 0D & OE'
The '‘Command Classes — 00, 03 & 05'
The ‘Command Class — 01'ccccc...e. .. 162
The ‘Command Class — 02' ...

The ‘Command Class — 04' 163
The ‘Command Class — 08' 163
The ‘Command Class — 06' 163

Report C — Nonsense in BASIC
The ‘Command Class — 0A' 163
The ‘Command Class — 07" ...
The 'Command Class — 09"ciiiiiieiiiee e se e e e e e sre e e s e e e s raeeearaeeesneeeesnneeas 164

SPECTRUM 128 ROM o DISASSEMBLY

The 'Command Class — OB’ooiiiiieieiiee st ree e e e e e e e sae e e st e e e ssaeeeenbeeesnreeesnnns 165
IF Routine .
[0 2 B = L0111 = SRR
LR N I I = Lo U] - USRS
DATA Routine ..
RUN Routine ...
CLEAR Routine .. .
GO SUB ROULINE ...uuviiiiiiieiciie e st e e see e e st e e s ete e e ssteeessateeessaeeeasaeeesnsaeeesnsseesssneneessseneasseeennes

RETURN ROULINE ...ttt ettt bttt ettt et neenane et s
DEF FN Routine
MOVE ROULINE ...tttk ettt et b et nbe e ettt e e b e enaees
MENU ROUTINES — PART L oottt ettt sttt e e e s st e e e e e e st e eeeeessnnnnteeeeeeesnnnnnneen 173
Run Tape Loader 173
List Program 10 PriNTErcccveviiiiee i e cieeesee e ssivee e stee e seee e nenee e .. 173
BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 2. .. 174
SPECTRUM ROULINE ...ttt ettt sttt b e beenane et en 174
MENU ROUTINES — PART 2 oottt ettt ettt e e st e e e e e e st e e e e e s ennnntaeeeeeessnnnnneen 175
Main Menu — 48 BASIC Option 175
Set 'P' Channel Datacc....... .. 175
LOAD "™ Command BYLEScccceveiiiiieiiiieeeiiie e see e se e see e .. 175
BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 3 ...ooviiieiiiiiiieeeee e 176
LLIST ROULINE .ttt ettt sttt be et s e et et e e b e st e ennees 176
LIST Routine
RAM DiSK SAVE! ROULINEcutiiiiiiiiiie ittt ettt 177
CAT! ROULINE ..ttt ettt b et b ettt et e et nae et e e e nbeesene s 177
ERASE! ROULINEc.evviieiiieiicicciceein . 178
RAM DISK COMMAND ROUTINES — PART 2 178
Load Header from RAM Disk 178
Load fromM RAM DiSK ...c.ueiiiiiiiiiii ettt ettt 179
PAGING ROUTINES — PART L ittt e e ettt e e st e e e e s e st e e e e e e s snnnneeeeaeessnnnnenees 179
Page Logical RAM Bank .
Physical RAM Bank Mapping Tableccccoeiiiiieiiiie e 180
RAM DISK COMMAND ROUTINES — PART 3 oottt esiieee e e e s e ee e e nnnenees 180
Compare Filenamesccccccvevcveesviiieesinnnnn. .. 180
Create New CatalogUe ENMTYcccuiieiiiieiiie et e st e ste e s stvee e st ee e s e e e sneaeeeneeeeeteeeennneeens 181
Adjust RAM DiSK FIrEE SPACEeeeiiiieeiiiieeiiiie st e seitee e stee e saaee e staeeestaeeeeteeeesnseeessnneeeannns 182

Find Catalogue Entry for FIlENAMEoiiiiiiiiiie sttt see et e et e e s 183
FINA RAM DISK Fl ...ttt bbbt 183
Update Catalogue Entry .. .

SaVe BYES 10 RAM DISKuvvieiiiiiiiiiie ettt e st sttt e e et e e st e e st e e s snaeeesnaeeannaaeesneeeesnnes 185
Load Bytes from RAM DiSKccccuiieiiuiieiiiieesiieeesiteeesieeeeesiaeeesteeessnsaeessssneessanessnsesssnssenesns 187

Transfer Bytes to RAM Bank 4 — Vector Table Entry ..
Transfer Bytes from RAM Bank 4 — Vector Table Entry ..

PAGING ROUTINES — PART 2 ..o .. 192
Use Normal RAM CoNfigUIatiONoeoiuiieiiiieeeieieseieeesstee e s iee e e st e e stee e snte e e snae e e snnneeensneas 192
SEIECE RAM BANK ...ttt 192
Use Workspace RAM Configuration 193

RAM DISK COMMAND ROUTINES — PART 4
Erase @ RAM DiISK Fil@uueiiiiiieeiiii ettt e s e e snaae e e nnaae e snaeaennneeas 193

SPECTRUM 128 ROM o DISASSEMBLY

Print RAM DiSK CatalOQUEcciiuuieeiiiieeiiieeeiieeesiieeestteessteeeessteeeessteeesnnteeessnaeesnsaeeensseeenns 198
Print Catalogue Filename Data 199
Print Single Catalogue ENtrYcccceeiiieeiiiie e ... 199

BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 4
LPRINT ROULINE ..eiiiutiieiitiieeiiiee sttt e e siteeessteeeesteeeasstaeesneeeesssaaeassseeeansseeesnssaeesnneneesssnnesnsnnesanen 200

PRINT ROULINE ..uuiiiiiiiie et sciiie st e sttt e e sttt e e e st e e s steeessaeeesssaeeeasaeeesnsteaeansseeesnnnaeensnenennes 201
INPUT Routine 201
COPY Routine ... 202

NEW Routine 202
CIRCLE Routine ...
DRAW Routine
DIM ROULINE ...ovvieiiieeeiiee e ... 203
Error Report C — Nonsense in BASIC
Clear Screen Routingcccceevevveeeiineenne .. 204
Evaluate Numeric Expression ..
Process Key Presscccceeenn.
Find Start of BASIC Command ..
Is LET Command?cccceeeuvenn.
Is Operator Character?
Operator TOKENS TaBIEooioiiiei i s e e st e e s e e e snneeeenneeeas 208
Is Function Character?ccc.........

Is Numeric or Function Expression? 208
LS AT 1= o O = 1 Tox 1= SOOI 209
PLAY Routinecccccccvveeneee. ... 209
UNUSED ROUTINES — PART 1 .. 210

Return to Editorcccocueeneee. ... 210
BC=HL-DE, Swap HL and DE .
Create Room for 1 Byte

Room for BC Bytes? 211
HL = A*32 ..o 212
HL = A*8 e 212

Find Amount of Free Space

Print Screen Buffer Row 212
Blank Screen Buffer Content 213
Print Screen Buffer to Display File 214
Print Screen Buffer Characters to Display File 214
Copy A Character « RAM Routing » 216

Toggle ROMs 1 « RAM Routine » 217
Toggle ROMs 2 « RAM Routing »cccceene. ... 218
Construct ‘Copy Character' Routine in RAM 218
Set Attributes File from Screen Buffer 219
Set Attributes for a Screen Buffer Row 219
Swap Ink and Paper Attribute Bits 221

Character Datacccevvveevieereeiinnne .. 222
KEY ACTION TABLES 223
Editing Keys Action Table
Menu Keys Action Table
MENU ROUTINES — PART 3
INItIAlISE MOAE SELINGS ..veiiieeiieiiiiiesie e s e s s e e et e e st e e e st e e e sneeeeaseeeennreeesnneen 224

SPECTRUM 128 ROM o DISASSEMBLY

SNOW MAIN MEINU ...ttt e e e e e e et e e et e e e et e e s naeeeassaeeeansaeeannseeenneeeeans 225
EDITOR ROUTINES — PART 2 ..ooovvreevveeveevveevveevvnnnens ... 225
Return to Editor / Calculator / Menu from Error 225
Return to the Editorccccccvevvieevcien e ... 226

Main Waiting Loop 227
Process Key Presscccceeenn.
TOGGLE Key Handler Routine
Select Lower Screen 229
Select Upper Screen ..
Produce Error Beep
Produce Success Beep 231
MENU ROUTINES — PART 4 231
Menu Key Press Handler Routines

Menu Key Press Handler — MENU 231
Menu Key Press Handler — SELECT 232
Menu Key Press Handler — CURSOR UP 232
Menu Key Press Handler — CURSOR DOWN 232
MeNU TabIESeoiiiiiiiiie e ... 233
Main Menu 233
Edit Menu 233
Calculator Menu ... 234

Tape Loader Text
Menu Handler Routines 235
Edit Menu — Screen Option 235
Main Menu — Tape Tester Option

Edit Menu / Calculator Menu — Exit Option 235
Main Menu — Tape Loader Option 236
Edit Menu — Renumber Option 236

Edit Menu — Print Option
Main Menu — Calculator Option
EDITOR ROUTINES — PART 3 238

R A O UL =Yoo 1= o o SRR 238
Return to Main Menuccccoeceee. 238
Main Screen Error Cursor Settings 238

Lower Screen Good Cursor Settings
Initialise Lower Screen Editing Settings ..
Initialise Main Screen Editing Settings

Handle Key Press Character Code 239
DELETE-RIGHT Key Handler Routine 240
DELETE Key Handler Routine 240

ENTER Key Handler Routine
TOP-OF-PROGRAM Key Handler Routine .
END-OF-PROGRAM Key Handler Routine

WORD-LEFT Key Handler Routine 244
WORD-RIGHT Key Handler Routine .. 245
Remove CUrsorcccccvceveriveeennnen. ... 245
Show Cursor 245
Display Cursor 246

FEtCh CUISOr POSITIONvviiiiiieeiiiie s e e sttt se e s e e e st e e et e e e eaesnneeeesnnaeeesnneneensneeennes 246

SPECTRUM 128 ROM o DISASSEMBLY

SEOrE CUISOT POSITION ...ttt nb e be e et e
Get Current Character from Screen Line Edit Buffer .. .
TEN-ROWS-DOWN Key Handler ROULINEccccuvieiierieiiieeeciee e siee e sie e see e snivae e snvee e e
TEN-ROWS-UP Key Handler ROULINEcccuireiiieieiiiiieeiiieeeseee st esstee e sntee e snae e ennneeeeneneas
END-OF-LINE Key Handler Routine
START-OF-LINE Key Handler Routine .
CURSOR-UP Key Handler Routine
CURSOR-DOWN Key Handler ROULINEcccviuiieeiiiieeiiiieesiieeeesiiee e sieee s seeeessneeeesnnneesnnneee s
CURSOR-LEFT Key Handler ROULINEcccuieiiiiieiiiieeciiie e ciiee e e e e e s e e
CURSOR-RIGHT Key Handler Routine ...

Edit Buffer ROULINES — PAIt 1ooiiiiiiiiiii ettt
Find Closest Screen Line Edit Buffer Editable Position to the Right else Leftccccvee..e. 253
Find Closest Screen Line Edit Buffer Editable Position to the Left else Rightcc........ 254
Insert BASIC Line, Shift Edit Buffer Rows Down If Required and Update Display File If
[=0 01T =o SRS 254
Insert BASIC Line, Shift Edit Buffer Rows Up If Required and Update Display File If Required
.. 255
Find Next Screen Line Edit Buffer Editable Position to Left, Wrapping Above if Required
.. 257
Find Next Screen Line Edit Buffer Editable Position to Right, Wrapping Below if Required
.. 258
Find Screen Line Edit Buffer Editable Position from Previous Column to the Right............... 261
Find Screen Line Edit Buffer Editable Position to the Left
Find Start of Word to Left in Screen Line Edit BUffercccoiiiiiiiiniecieee
Find Start of Word to Right in Screen Line Edit BUfercccccoeiviiii i
Find Start of Current BASIC Line in Screen Line Edit Buffercccooeiiiiiiiiniiieen 264
Find End of Current BASIC Line in Screen Line Edit BUffercccooeviiniiiiiniiecnes 265
Insert BASIC Line into Program if AREIedccceeeiiieiiiiee e se e snee e 266
Insert Line into BASIC Program If Altered and the First Row of the Lineccccccccvvveiieenne 266
Insert Line into BASIC PrOgramcoiiuieeiiiieesiieeesieeeesieeeseteeessaeeesnnaeesssnneesnssaeessseeesnsneas
Fetch Next Character from BASIC Line to Insert . .
Fetch Next Character JUMP Tableocoiiiiiiiiie e sreee e e nrnee e
Fetch Character from the Current Row of the BASIC Line in the Screen Line Edit Buffer
.. 273
Fetch Character from Edit Buffer Row . . 276
Upper Screen Rows Table 277
Lower Screen ROWS TabIEoc.oiiiiiiiiiiiieiiee e 277
RESEL 10 MAIN SCIEEN ...ttt ettt sttt
Reset to Lower Screen
Find Edit Buffer Editable Position from Previous Column to the Rightcccccccveeviineenen. 278
Find Edit Buffer Editable Position to the Left ...t 279
Fetch Edit Buffer ROW CRaracCtercooiuiiiiiiiieiiieiee ettt 279
Insert Character into Screen Line Edit BUfer ..o 280
Insert Blank Row into Screen Edit Buffer, Shifting Rows Down . .. 282
Empty Edit BUfEr ROW Datacccveviiiiieiiiiee et see s e e stae e snaee e e nnaeeesntaeeesnnneeennns 283
Delete a Character from a BASIC Line in the Screen Line Edit Buffercccccceviniiennn. 284
Shift Rows Up to Close Blank Row in Screen Line Edit Buffer 288
DELETE-WORD-LEFT Key Handler Routingcccccccuvvenes .. 289

DELETE-WORD-RIGHT Key Handler ROULINEcoiiuiriiiiiec e cee e sie e seee e eneee e snee e 291

SPECTRUM 128 ROM o DISASSEMBLY

DELETE-TO-START-OF-LINE Key Handler ROULINEcoocveeiiiiiiee e csiee e enieee e 292
DELETE-TO-END-OF-LINE Key Handler Routine .
Remove Cursor Attribute and Disable Updating Display Fileccccccocvveviiieiviieeevieeeceeenn 294
Previous Character Exists in Screen Line Edit BUffer?cccccovviievii e 295
Find Row Address in Screen Line Edit Buffer
Find Position within Screen Line Edit Buffer
Below-Screen Line Edit Buffer Settings
Set Below-Screen Line Edit BUffer SEttiNgScc.veeveireiiiiie e see e sveee e
Shift Up Rows in Below-Screen Line Edit BUfercccoocviiiiii e
Shift Down Rows in Below-Screen Line Edit Buffer
Insert Character into Below-Screen Line Edit BUfercccco e
Find Row Address in Below-Screen Line Edit BUFfercocovveviiie e
Delete a Character from a BASIC Line in the Below-Screen Line Edit Buffer 303
Above-Screen Line Edit Buffer Settings 305
Set Above-Screen Line Edit Buffer Settingsc...... .. 306
Shift Rows Down in the Above-Screen Line Edit BUFferccccevviiviiiiie e 306
Shift Row Up into the Above-Screen Line Edit Buffer if Requiredccccoeeeviiiieesiiieenns 308
Find Row Address in Above-Screen Line Edit Buffer 310
BASIC Line Character Action Handler Jump Tablecocciveiiiiie i cee e 311
Copy a BASIC Line into the Above-Screen or Below-Screen Line Edit Buffer
Set 'Continuation’ Row in Line Edit BUfErcccciviiiiie e
BASIC Line HandliNng ROULINEScuieiiiiieiiiie et se ettt e s e sntae e s snsa e e e snaaeeensaeeannneeen
Find Address of BASIC Line with Specified Line Number
Create Next Line Number Representation in Keyword Construction Buffercccc......... 315
Fetch Next De-tokenized Character from Selected BASIC Line in Program Area................. 315

Copy 'Insert Keyword Representation into Keyword Construction Buffer' Routine into RAM

Insert Keyword Representation into Keyword Construction Buffer « RAM Routine »............
Copy Keyword Characters « RAM ROULINE »cccuiiiiiieeiiiieeciiee s sieeessieeeeseeeessiee e sneee e
Identify TOKEN from Tableccoouiiiiiiii et e e et e e e snaeeeeanes
Create Next Line Number Representation in Keyword Construction Buffer .. .
Insert ASCI Lin@ NUMDBET DGt ...eecivvieeeieieeeieieeeiee e s ser e e ee s be e e sne e snaee e snnaeeenneeeesnnaeas
Find Address of BASIC Line with Specified Line NUMbBErccccveviiii i
Move to Next BASIC LiN€cocceveeiieeniieiiesieeec e
Check if at End of BASIC Program ...
Compare Line NUMbErScccceevvvveennenn. .
Clear BASIC Line CONSrUCtON POINTETSccoiiiiiiiiiieiiieieesiee st
Find Address 0f BASIC LINEcouiiiiiiiieiiieiiee ettt
Fetch Next De-tokenized Character from BASIC Line in Program Area .
Edit Buffer ROULINES — PAt 2ooiiiiiiiiiie et
LN AT (o] (o FSRS] 1] o T I U= SRR
Indentation Settings
Set Indentation Settingscccccoeveeviireiiieeennns
Store Character in Column of Edit Buffer Row .
'Enter’ Action Handler ROULINEoiiiiiiiiiii it
‘Null Columns' Action Handler ROULINEcocuiiiiiiiiiiiie e
Null Column Positionsc.cccccueenee.
Indent Edit Buffer Row . .
Print Edit Buffer Row to Display File if REQUIrEdcccceeviereeiiiee e se e see e ree e

SPECTRUM 128 ROM o DISASSEMBLY

Shift Up Edit Rows in Display File if ReQUIredcccuviiiiiriiiie et eee e
Shift Down Edit Rows in Display File if Required . .
Set CUrsor ALHDULE COIOUTco.eiiiiiiie ittt
Restore Cursor Position Previous AtribULEccociiiiiiiii e
Reset 'L' MOdecccoovveiiiiiienicciec e
Wait for a Key Press
MENU ROUTINES — PART 5.
[0S o] = 1A 1Y =Y oL OSSR
PIOt @ LINE .ttt
Print "AT B,C" Characters .. .
L 11 S 1 o OSSPSR
SEOre MENU SCIEEN ATICA ...cuviiiiiiiie et e ettt et e e s e e e st e e e st e e e sanr e e e sanneeennneeeanes
Restore Menu Screen Area
Store / Restore Menu Screen Row ...
Move Up Menuccooevveeeieeeneeennn. .
MOVE DOWN IMENU ...ttt e s e e e e s e e e e e e
Toggle Menu Option Selection HIighlightcccveeiiiie e
Menu Title Colours Table
Menu Title Space Table
Menu Sinclair Stripes Bitmaps . .
S 1w UL] 1] o B =Y S E
Print the Sinclair stripes 0N the MENUccciiiiiiii e
Print '128 BASIC' Banner .
Print "CalCulator BANNEToiiiiiiiiiie ittt ettt
Print 'Tape LoAder' BANNETccuuiiiiiieeiiiee et e e sttt e e steee st e e steeessaeeesstaeessnsaaesnseeesnaeeeans
Print ‘'Tape Tester' Banner
Print Bannerc.cccceveene
Clear Lower Editing Display .. .
RENUMBER ROUTINEiiiiiiite ettt e e e e st ee e e e s sttt ee e e e e snnsbe e e e e e s saansnteeeeeeesnnsneeeeeas
Tokens Using LiNe NUMDEISciiiiiiiiiee e ce e ee e e e s e saae e e snaae e e nnae e e esaeaesnneees
Parse a Line Renumbering Line Number References .
Count the Number of BASIC LINESooiuiiiiiiiiiiiieiieee et
] TS o - 1o SRS
Create ASCII Line Number Representation ...
Insert Line Number Digit
EDITOR ROUTINES — PART 4
Initial Lower SCreen CUrsOr SEHINGS ..viiioiieiiiieeeiiieeeiiieeeeee e siee et e s sree e e s aae e e saeeesnaeeesnnnes
Initial Main SCreen CUrSOr SETNGS ...vvveeiurieeiiereeiieeesiieeesereeeseeeeestreeesreeeeseeeessneeeeansneeesnnes
Set Main Screen Editing Cursor Details ..
Set Lower Screen Editing Cursor Details
UNUSED ROUTINES — PART 2 .ooiiiiiiiieiiiiit ettt ettt e e e e s et e e e e e e s nntnaeeeeeeeannnsneeeaeeenns
Print 'AD"ooiiiee
EDITOR ROUTINES — PART 5 ..
Store Cursor Colour
Set Cursor POSItion ALIDULEoiiiiiiiiie e
Restore Cursor POSItIoN AMHDULEc.ooiiiiiiiiiiii e
Shift Up Edit Rows in Display File
Shift Down Edit Rows in Display File ...
Print a Row of the Edit Buffer to the SCreen ..ot

SPECTRUM 128 ROM o DISASSEMBLY

Clear DISPIAY ROWSccveiiiiiieeiiee e sttt e e site e e stee e sttt e e staeeessaaaeasseaeeantseeesstaeessnseeessnseeeansnneennnes 364
Find Rows and Columns to End of Screen 365
Find Rows to End of Screenccceeuue. ... 365

Get Attribute Address
Exchange Colour ltems ..
TAPE TESTER ROUTINE 367
EDITOR ROUTINES — PART 5
TOKENIZE BASIC LINE ...eiiiiiiiiiiiiieiiie et ... 370
Fetch Next Character and Character Status from BASIC Line to Insert ...
IS LOWEICASE LELIEI? ..ot
Copy Keyword Conversion Buffer Contents into BASIC Line Workspace ...
Insert Character into Keyword Conversion Buffercccccocccvevceeennnn.
Insert Character into BASIC Line Workspace, Handling >' and '<' 382
Insert Character into BASIC Line Workspace, Handling 'REM' and Quotes
Insert Character into BASIC Line Workspace With Space Suppression 387
Insert a Character into BASIC Line Workspacecccocccveevvveeesnveesnnnnn. ... 389
RoOM for BC BYLES? ..ccvvveeiieeeeiieeecieeesnieee e
Identify Keyword
Copy Data BIoCKccceevvvveeiiieeiiiee e, .. 395
Get Numeric Value for ASCII Character 395
Call Action Handler Routine 396
PROGRAMMERS' INITIALS 397

END OF ROM MARKERcoccvvvvveeeninns ... 397
REFERENCE INFORMATION — PART 2 .. 397
Routines Copied/Constructed in RAM 397

Construct Keyword Representation ... 397

Copy Keyword Characters 399
Identify Tokencccccvevvveeennnnen.
Insert Character into Display File ...
Standard Error Report Codes 403
Standard System Variables 404
Memory Mapcccoeevveeeeennn. .. 407
| Registercccvvennee ... 408
Screen File Formats .
Display File 408
ALIDULES File ..o ... 409
Address Conversion Between Display File and Attributes File
Standard /O POMSoocuiiiiiiiieiei e .. 409
Port $FEcccvveneee ... 409
Cassette Header Formatc.ccoocveeiiiniienieiic e ... 410
AY-3-8912 Programmable Sound Generator Registers 410
Registers 0 and 1 (Channel A Tone Generator)
Registers 2 and 3 (Channel B Tone Generator) ...
Registers 4 and 5 (Channel C Tone Generator) ..
Register 6 (Noise Generator)ccceevvveeireeernnnns . 411
Register 7 (Mixer — 1/0O Enable) ...
Register 8 (Channel A Volume)
Register 9 (Channel B Volume)
Register 10 (Channel C VOIUME)cccuiieiiiie e eciieeeeee e see e e e e e s e e s snaaeesnreeesnaeee e 412

SPECTRUM 128 ROM o DISASSEMBLY

Register 11 and 12 (ENVEIOPe PEriOd)ccicuieeiiiieeiiieesiie e esiee e see e stvee s saeeeesnneeeeneneeennes 412
Register 13 (Envelope Shape) 412
Register 14 (I/O Port)c.cceee... .. 413
Socket Pin Outs 414
RS232/MIDI Socket 414
Keypad Socket 414
Monitor Socket 415

[[0 T @0 o g T=T 1 (o] SRR 415

SPECTRUM 128 ROM o DISASSEMBLY

NOTES

Release Date
4th August 2017

Disassembly Contributors

Matthew Wilson (www.matthew-wilson.net/spectrum/rom/)
Andrew Owen (cheveron-AT-gmail.com)

Geoff Wearmouth (gwearmouth-AT-hotmail.com)

Rui Tunes

Paul Farrow (www.fruitcake.plus.com)

Markers

The following markers appear throughout the disassembly:

[...] = Indicates a comment about the code.

???? = Information to be determined.

For bugs, the following marker format is used:

[BUG - xxxx. Credit: yyyy] = Indicates a confirmed bug, with a description 'xxxx' of it and the discoverer
Yyyy'

[BUG? - xxxx. Credit: yyyy] = Indicates a suspected bug, with a description 'xxxx' of it and the
discoverer 'yyyy'.

Since many of the Spectrum 128 ROM routines were re-used in the Spectrum +2 and +3, where a
bug was originally identified in the Spectrum +2 or +3 the discoverer is acknowledged along with who
located the corresponding bug in the Spectrum 128.

For every bug identified, an example fix is provided and the author acknowledged. Some of these
fixes can be made directly within the routines affected since they do not increase the length of those
routines. Others require the insertion of extra instructions and hence these cannot be completely fitted
within the routines affected. Instead a jump must be made to a patch routine located within a spare
area of the ROM.

Fortunately there is 0.5K of unused routines located at $2336-$2536 (ROM 0) which are remnants
of the original Spanish 128, and another unused routine located at $3FC3-$3FCE (ROM 0). This is
sufficient space to implement all of the bug fixes suggested.

REFERENCE INFORMATION — PART 1

128 BASIC Mode Limitations

There are a number of limitations when using 128 BASIC mode, some of which are not present when
using the equivalent 48 BASIC mode operations.
These are more design decisions than bugs.

SPECTRUM 128 ROM o DISASSEMBLY

. The RAM disk VERIFY command does not verify but simply performs a LOAD.

. The renumber facility will not renumber line numbers that are defined as an expression,
e.g. GO TO VAL "10".

. The printer output routine cannot handle binary data and hence EPSON printer ESC
codes cannot be sent.

. The Editor has the following limitations:

. Variables cannot have the same name as a keyword. This only applies when entering a
program and not when one is loaded in.

. Line number 0 is not supported and will not list properly. It is not possible to directly
insert such a line, not even in 48 BASIC mode, and so line number 0 is not officially
supported.

. There is a practical limitation on the size of lines that can be entered. It is limited to 20

indented rows, which is the size of the editing buffers. Typed lines greater than 20 rows
get inserted into the BASIC program, but only the first 20 rows are shown on screen.
Editing such a line causes it to be truncated to 20 rows. There is no warning when the
20 row limit is exceeded.

. It is not possible to directly enter embedded control codes, or to correctly edit loaded
in programs that contain them. Loaded programs that contain them will run correctly so
long as the lines are not edited.

. It is not possible to embed the string of characters ">=", "<=" or "<>" into a string or
REM statement without them being tokenized (this is perhaps more an oversight than a
design decision).

. In 48 BASIC mode if the line '10 REM abc: PRINT xyz' is typed then the word PRINT is
stored as a new keyword since the colon (arguably incorrectly) reverts to 'K' mode. In
128 BASIC mode, typing the same line stores each letter as a separate character.

Timing Information

Clock Speed = 3.54690 MHz (48K Spectrum clock speed was 3.50000 MHz) Scan line = 228 T-states
(48K Spectrum was 224 T-states).
TV scan lines = 311 total, 63 above picture (48K Spectrum had 312 total, 64 above picture).

I/O Details

Memory Paging

Memory paging is controlled by I/O port:

$7FFD (Out) - Bits 0-2: RAM bank (0-7) to page into memory map at $C000.

Bit 3 : 0=SCREEN 0 (normal display file in bank 5), 1=SCREEN 1 (shadow display file in bank 7).
Bit 4 : 0=ROM 0 (128K Editor), 1=ROM 1 (48K BASIC).

Bit 5 : 1=Disable further output to this port until a hard reset occurs.

Bit 6-7 : Not used (always write 0).

The Editor ROM (ROM 0) always places a copy of the last value written to port $7FFD into new system
variable BANK_M ($5B5C).

SPECTRUM 128 ROM o DISASSEMBLY

Memory Map

ROM 0 or 1 resides at $0000-$3FFF.

RAM bank 5 resides at $4000-$7FFF always.
RAM bank 2 resides at $8000-$BFFF always.
Any RAM bank may reside at $C000-$FFFF.

Shadow Display File

The shadow screen may be active even when not paged into the memory map.

Contended Memory
Physical RAM banks 1, 3, 5 and 7 are contended with the ULA.

Logical RAM Banks

Throughout ROM 0, memory banks are accessed using a logical numbering scheme, which maps to
physical RAM banks as follows:

Logical Bank Physical Bank
$00 $01
$01 $03
$02 $04
$03 $06
$04 $07
$05 $00

This scheme makes the RAM disk code simpler than having to deal directly with physical RAM bank
numbers.

AY-3-8912 Sound Generator

The AY-3-8912 sound generator is controlled by two I/O ports: $FFFD (Out) - Select a register 0-14.
$FFFD (In) - Read from the selected register.

$BFFD (In/Out) - Write to the selected register. The status of the register can also be read back.
The AY-3-8912 I/O port A is used to drive the RS232 and Keypad sockets.

Register Function Range

0 Channel A fine pitch 8-bit (0-255)

1 Channel A course pitch 4-bit (0-15)

2 Channel B fine pitch 8-bit (0-255)

3 Channel B course pitch 4-bit (0-15)

4 Channel C fine pitch 8-bit (0-255)

5 Channel C course pitch 4-bit (0-15)

6 Noise pitch 5-bit (0-31)

7 Mixer 8-bit (see end of file for description)

8 Channel A volume 4-bit (0-15, see end of file for description)

SPECTRUM 128 ROM o DISASSEMBLY

9 Channel B volume 4-bit (0-15, see end of file for description)
10 Channel C volume 4-bit (0-15, see end of file for description)
11 Envelope fine duration 8-bit (0-255)

12 Envelope course duration 8-bit (0-255)

13 Envelope shape 4-bit (0-15)

14 I/O port A 8-bit (0-255)

See the end of this document for description on the sound generator registers.

I/O Port A (AY-3-8912 Register 14)

This controls the RS232 and Keypad sockets.

Select the port via a write to port $FFFD with 14, then read via port $FFFD and write via port $BFFD.
The state of port $BFFD can also be read back.

Bit 0: KEYPAD CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 1: KEYPAD RXD (out) - 0=Transmit high bit, 1=Transmit low bit

Bit 2: RS232 CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 3: RS232 RXD (out) - 0=Transmit high bit, 1=Transmit low bit

Bit 4: KEYPAD DTR (in) - 0=Keypad ready for data, 1=Busy

Bit 5: KEYPAD TXD (in) - 0=Receive high bit, 1=Receive low bit

Bit 6: RS232 DTR (in) - 0=Device ready for data, 1=Busy

Bit 7: RS232 TXD (in) - 0=Receive high bit, 1=Receive low bit

See the end of this document for the pinouts for the RS232 and KEYPAD sockets.

Standard /O Ports

See the end of this document for descriptions of the standard Spectrum I/O ports.
Error Report Codes

Standard Error Report Codes

See the end of this document for descriptions of the standard error report codes.

New Error Report Codes

a — MERGE error MERGE! would not execute for some reason - either
size or file type wrong.

b — Wrong file type A file of an inappropriate type was specified during
RAM disk operation, for instance a CODE file in
LOAD!"name".

¢ — CODE error The size of the file would lead to an overrun of the top
of memory.

d — Too many brackets Too many brackets around a repeated phrase in one of

the arguments.
e — File already exists The file name specified has already been used.

SPECTRUM 128 ROM o DISASSEMBLY

f — Invalid name

g — File does not exist
h — File does not exist
i — Invalid device

j— Invalid baud rate
k — Invalid note name

| — Number too big

m — Note out of range

n — Out of range

0 — Too many tied notes

p — © 1986 Sinclair Research Ltd

System Variables

New System Variables

The file name specified is empty or above 10
characters in length.

[Never used by the ROM].

The specified file could not be found.

The device name following the FORMAT command
does not exist or correspond to a physical device.
The baud rate for the RS232 was set to 0.

PLAY came across a note or command it didn't
recognise, or a command which was in lower case.
A parameter for a command is an order of magnitude
too big.

A series of sharps or flats has taken a note beyond the
range of the sound chip.

A parameter for a command is too big or too small. If
the error is very large, error L results.

An attempt was made to tie too many notes together.
This error is given when too many PLAY channel
strings are specified. Up to 8 PLAY channel strings
are supported by MIDI devices such as synthesisers,
drum machines or sequencers. Note that a PLAY
command with more than 8 strings cannot be entered
directly from the Editor. The Spanish 128 produces
"p Bad parameter"” for this error. It could be that the
intention was to save memory by using the existing

error message of "Q Parameter error" but the change of

report code byte was overlooked.

These are held in the old ZX Printer buffer at $5B00-$5BFF.
Note that some of these names conflict with the system variables used by the ZX Interface 1.

SWAP
YOUNGER
ONERR
PIN

POUT

POUT2
TARGET
RETADDR
BANK_M
RAMRST

EQU $5B00
EQU $5B14
EQU $5B1D
EQU $5B2F
EQU $5B34

EQU $5B4A
EQU $5B58
EQU $5B5A
EQU $5B5C
EQU $5B5D

20
9
18
5
22

P P NN

Swap paging subroutine.

Return paging subroutine.

Error handler paging subroutine.
RS232 input pre-routine.

RS232 token output pre-routine. This can be patched to
bypass the control code filter.

RS232 character output pre-routine.
Address of subroutine to call in ROM 1.
Return address in ROM 0.

Copy of last byte output to I/O port $7FFD.

Stores instruction RST $08 and used to produce a
standard ROM error.

RAMERR
BAUD

SERFL

CoL
WIDTH

TVPARS

FLAGS3

N_STR1

HD_00

HD_0B

HD_OD

SPECTRUM 128 ROM o DISASSEMBLY

EQU $5B5E
EQU $5B5F

EQU $5B61

$5B62
EQU $5B63
EQU $5B64

EQU $5B65

EQU $5B66

EQU $5B67

EQU $5B71

EQU $5B72

EQU $5B74

10

Error number for use by RST $08 held in RAMRST.

Baud rate timing constant for RS232 socket. Default value
of 11. [Name clash with ZX Interface 1 system variable at
$5CC3]

Second character received flag:

Bit O : 1=Character in buffer.

Bits 1-7: Not used (always hold 0).

Received Character.

Current column from 1 to WIDTH.

Paper column width. Default value of 80. [Name clash with
ZX Interface 1 Edition 2 system variable at $5CB1]
Number of inline parameters expected by RS232 (e.g. 2 for
AT).

Flags: [Name clashes with the ZX Interface 1 system
variable at $5CB6]

Bit 0: 1=BASIC/Calculator mode, 0=Editor/Menu mode.

Bit 1: 1=Auto-run loaded BASIC program. [Set but never
tested by the ROM]

Bit 2: 1=Editing RAM disk catalogue.

Bit 3: 1=Using RAM disk commands, 0=Using cassette
commands.

Bit 4: 1=Indicate LOAD.
Bit 5: 1=Indicate SAVE.
Bit 6; 1=Indicate MERGE.
Bit 7: 1=Indicate VERIFY.

Used by RAM disk to store a filename. [Name clash with
ZX Interface 1 system variable at $5CDA]

Used by the renumber routine to store the address of the
BASIC line being examined.

Used by RAM disk to store file header information (see
RAM disk Catalogue section below for details). [Name
clash with ZX Interface 1 system variable at $5CE6]

Used as column pixel counter in COPY routine.

Used by FORMAT command to store specified baud rate.
Used by renumber routine to store the number of digits in a
pre-renumbered line number reference. [Name clash with
ZX Interface 1 system variable at $5CE7]

Used by RAM disk to store header info - length of block.
Used as half row counter in COPY routine.

Used by renumber routine to generate ASCII
representation of a new line number.

Used by RAM disk to store file header information (see
RAM disk Catalogue section below for details). [Name
clash with ZX Interface 1 system variable at $5CE9]

HD_OF

HD_11

SC_00
SC_0B
SC_0D
SC_OF

OLDSP
SFNEXT

SFSPACE

ROWO01

ROW23

ROW45

SPECTRUM 128 ROM o DISASSEMBLY

EQU $5B76 2
EQU $5B78 2
EQU $5B7A 1
EQU $5B7B 2
EQU $5B7D 2
EQU $5B7F 2
EQU $5B81 2
EQU $5B83 2
EQU $5B85 3
EQU $5B88 1
EQU $5B89 1
EQU $5B8A 1

Used by RAM disk to store file header information (see
RAM disk Catalogue section below for details). [Name
clash with ZX Interface 1 system variable at $5CEB]

Used by renumber routine to store the address of a
referenced BASIC line.

Used by RAM disk to store file header information (see
RAM disk Catalogue section below for details). [Name
clash with ZX Interface 1 system variable at $5CED]

Used by renumber routine to store existing VARS address/
current address within a line.

Used by RAM disk to store alternate file header information
(see RAM disk Catalogue section below for details).

Used by RAM disk to store alternate file header information
(see RAM disk Catalogue section below for details).

Used by RAM disk to store alternate file header information
(see RAM disk Catalogue section below for details).

Used by RAM disk to store alternate file header information
(see RAM disk Catalogue section below for details).

Stores old stack pointer when TSTACK in use.

End of RAM disk catalogue marker. Pointer to first empty
catalogue entry.

Number of bytes free in RAM disk (3 bytes, 17 bit, LSB
first).

Stores keypad data for row 3, and flags:

Bit 0 : 1=Key '+ pressed.

Bit 1 : 1=Key '6' pressed.

Bit 2 : 1=Key '5' pressed.

Bit 3 : 1=Key '4' pressed.

Bits 4-5: Always 0.

Bit 6 : 1=Indicates successful communications to the
keypad.

Bit 7 : 1=If communications to the keypad established.
Stores keypad key press data for rows 1 and 2:
Bit 0: 1=Key ')’ pressed.

Bit 1: 1=Key '(' pressed.

Bit 2: 1=Key "*' pressed.

Bit 3: 1=Key /' pressed.

Bit 4: 1=Key -' pressed.

Bit 5: 1=Key '9' pressed.

Bit 6: 1=Key '8' pressed.

Bit 7: 1=Key '7' pressed.

Stores keypad key press data for rows 4 and 5:
Bit 0: Always 0.

Bit 1: 1=Key "." pressed.

Bit 2: Always 0.

SPECTRUM 128 ROM o DISASSEMBLY

Bit 3: 1=Key '0' pressed.
Bit 4: 1=Key 'ENTER' pressed.
Bit 5: 1=Key '3' pressed.
Bit 6: 1=Key '2' pressed.
Bit 7: 1=Key '1' pressed.

SYNRET EQU $5B8B 2 Return address for ONERR routine.

LASTV EQU $5B8D 5 Last value printed by calculator.

RNLINE EQU $5B92 2 Address of the length bytes in the line currently being
renumbered.

RNFIRST EQU $5B94 2 Starting line number when renumbering. Default value of
10.

RNSTEP EQU $5B9%6 2 Step size when renumbering. Default value of 10.

STRIP1 EQU $5B98 32 Used as RAM disk transfer buffer (32 bytes to $5BB7).
Used to hold Sinclair stripe character patterns (16 bytes to
$5BA7).

TSTACK EQU $5BFF n Temporary stack (grows downwards). The byte at $5BFF is

not actually used.

Standard System Variables

These occupy addresses $5C00-$5CB5.
See the end of this document for descriptions of the standard system variables.

RAM Disk Catalogue

The catalogue can occupy addresses $C000-$EBFF in physical RAM bank 7, starting at $EBFF and
growing downwards.

Each entry contains 20 bytes:

Bytes $00-$09: Filename.

Bytes $0A-$0C: Start address of file in RAM disk area.

Bytes $0D-$0F: Length of file in RAM disk area.

Bytes $10-$12: End address of file in RAM disk area (used as current position indicator when loading/
saving).

Byte $13 : Flags:

Bit O : 1=Entry requires updating.

Bits 1-7: Not used (always hold 0).

The catalogue can store up to 562 entries, and hence the RAM disk can never hold more than 562
files no matter how small the files themselves are. Note that filenames are case sensitive.

The shadow screen (SCREEN 1) also resides in physical RAM bank 7 and so if more than 217
catalogue entries are created then SCREEN 1 will become corrupted [Credit: Toni Baker, ZX
Computing Monthly].

However, since screen 1 cannot be used from BASIC, it may have been a design decision to allow
the RAM disk to overwrite it.

The actual files are stored in physical RAM banks 1, 3, 4 and 6 (logical banks 0, 1, 2, 3), starting from
$CO000 in physical RAM bank 1 and growing upwards.

SPECTRUM 128 ROM o DISASSEMBLY

A file consists of a 9 byte header followed by the data for the file. The header bytes have the following
meaning:

Byte $00 : File type - $00=Program, $01=Numeric array, $02=Character array, $03=Code/Screen$.
Bytes $01-$02: Length of program/code block/screen$/array ($1B00 for screen$).

Bytes $03-$04: Start of code block/screen$ ($4000 for screen$).

Bytes $05-$06: Offset to the variables (i.e. length of program) if a program. For an array, $05 holds
the variable name.

Bytes $07-$08: Auto-run line number for a program ($80 in high byte if no auto-run).

Editor Workspace Variables

These occupy addresses $EC00-$FFFF in physical RAM bank 7, and form a workspace used by 128
BASIC Editor.
$ECO00 3 Byte 0: Flags used when inserting a line into the BASIC program

(first 4 bits are mutually exclusive).

Bit 0: 1=First row of the BASIC line off top of screen.
Bit 1: 1=0n first row of the BASIC line.

Bit 2: 1=Using lower screen and only first row of the BASIC line
visible.

Bit 3: 1=At the end of the last row of the BASIC line.
Bit 4: Not used (always 0).

Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: 1=Column with cursor not yet found.

Byte 1: Column number of current position within the BASIC line
being inserted. Used when fetching characters.

Byte 2: Row number of current position within the BASIC line is being
inserted. Used when fetching characters.

$ECO3 3 Byte 0: Flags used upon an error when inserting a line into the
BASIC program (first 4 bits are mutually exclusive).

Bit 0: 1=First row of the BASIC line off top of screen.
Bit 1: 1=0n first row of the BASIC line.

Bit 2: 1=Using lower screen and only first row of the BASIC line
visible.

Bit 3: 1=At the end of the last row of the BASIC line.
Bit 4: Not used (always 0).

Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: 1=Column with cursor not yet found.

Byte 1: Start column number where BASIC line is being entered.
Always holds 0.

Byte 2: Start row number where BASIC line is being entered.

$ECO06 2 Count of the number of editable characters in the BASIC line up to
the cursor within the Screen Line Edit Buffer.
$ECO8 2 Version of E_PPC used by BASIC Editor to hold last line number

entered.

$ECOC
$ECOD

$ECOE

$ECOF

$EC10

$EC11

$EC12

$EC13

$EC14
$EC15

$EC16

735

SPECTRUM 128 ROM o DISASSEMBLY

Current menu index.
Flags used by 128 BASIC Editor:

Bit 0: 1=Screen Line Edit Buffer (including Below-Screen Line Edit
Buffer) is full.

Bit 1: 1=Menu is displayed.

Bit 2: 1=Using RAM disk.

Bit 3: 1=Current line has been altered.

Bit 4: 1=Return to calculator, 0=Return to main menu.

Bit 5: 1=Do not process the BASIC line (used by the Calculator).

Bit 6: 1=Editing area is the lower screen, 0=Editing area is the main
screen.

Bit 7: 1=Waiting for key press, 0=Got key press.
Mode:

$00 = Edit Menu mode.

$04 = Calculator mode.

$07 = Tape Loader mode. [Effectively not used as overwritten by
$FF]

$FF = Tape Loader mode.

Main screen colours used by the 128 BASIC Editor - alternate
ATTR_P.

Main screen colours used by the 128 BASIC Editor - alternate
MASK_P.

Temporary screen colours used by the 128 BASIC Editor - alternate
ATTR_T.

Temporary screen colours used by the 128 BASIC Editor - alternate
MASK_T.

Temporary store for P_FLAG:

Bit 0: 1=OVER 1, 0=OVER 0.

Bit 1: Not used (always 0).

Bit 2: 1=INVERSE 1, INVERSE 0.
Bit 3: Not used (always 0).

Bit 4: 1=Using INK 9.

Bit 5: Not used (always 0).

Bit 6: 1=Using PAPER 9.

Bit 7: Not used (always 0).

Not used.

Holds the number of editing lines: 20 for the main screen, 1 for the
lower screen.

Screen Line Edit Buffer. This represents the text on screen that can
be edited. It holds 21 rows,

with each row consisting of 32 characters followed by 3 data bytes.
Areas of white

space that do not contain any editable characters (e.g. the indent that
starts subsequent

rows of a BASIC line) contain the value $00.

SPECTRUM 128 ROM o DISASSEMBLY

Data Byte 0:

Bit 0: 1=The first row of the BASIC line.
Bit 1: 1=Spans onto next row.

Bit 2: Not used (always 0).

Bit 3: 1=The last row of the BASIC line.
Bit 4: 1=Associated line number stored.
Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: Not used (always 0).

Data Bytes 1-2: Line number of corresponding BASIC line (stored for
the first row of the BASIC line only, holds $0000).

$EEF5 1 Flags used when listing the BASIC program:
Bit 0 : 0=Not on the current line, 1=0On the current line.

Bit 1 : 0=Previously found the current line, 1=Not yet found the
current line.

Bit 2 : 0=Enable display file updates, 1=Disable display file updates.
Bits 3-7: Not used (always 0).

$EEF6 1 Store for temporarily saving the value of TVFLAG.

$EEF7 1 Store for temporarily saving the value of COORDS.

$EEF9 1 Store for temporarily saving the value of P_POSN.

$EEFA 2 Store for temporarily saving the value of PR_CC.

$EEFC 2 Store for temporarily saving the value of ECHO_E.

$EEFE 2 Store for temporarily saving the value of DF_CC.

$EF00 2 Store for temporarily saving the value of DF_CCL.

$EFO1 1 Store for temporarily saving the value of S_POSN.

$EFO03 2 Store for temporarily saving the value of SPOSNL.

$EFO5 1 Store for temporarily saving the value of SCR_CT.

$EF06 1 Store for temporarily saving the value of ATTR_P.

$EFO07 1 Store for temporarily saving the value of MASK_P.

$EF08 1 Store for temporarily saving the value of ATTR_T.

$EF09 1512 Used to store screen area (12 rows of 14 columns) where menu will
be shown.
The rows are stored one after the other, with each row consisting of
the following:

- 8 lines of 14 display file bytes.
- 14 attribute file bytes.
$F4F1-$F6E9 Not used. 505 bytes.

$FEEA 2 The jump table address for the current menu.

$F6EC 2 The text table address for the current menu.

$F6EE 1 Cursor position info - Current row number.

$F6EF 1 Cursor position info - Current column number.

$F6FO0 1 Cursor position info - Preferred column number. Holds the last user

selected column position. The Editor will attempt to

SPECTRUM 128 ROM o DISASSEMBLY

place the cursor on this column when the user moves up or down to
a new line.

$F6F1 1 Edit area info - Top row threshold for scrolling up.

$F6F2 1 Edit area info - Bottom row threshold for scrolling down.

$F6F3 1 Edit area info - Number of rows in the editing area.

$F6F4 1 Flags used when deleting:
Bit 0 : 1=Deleting on last row of the BASIC line, 0=Deleting on row
other than the last row of the BASIC line.
Bits 1-7: Not used (always 0).

$F6F5 1 Number of rows held in the Below-Screen Line Edit Buffer.

$F6F6 2 Intended to point to the next location to access within the Below-

Screen Line Edit Buffer, but incorrectly initialised to $0000 by the
routine at $30D6 (ROM 0) and then never used.

$F6F8 735 Below-Screen Line Edit Buffer. Holds the remainder of a BASIC line
that has overflowed off the bottom of the Screen Line Edit Buffer. It
can hold 21 rows, with each row

consisting of 32 characters followed by 3 data bytes. Areas of white
space that do not contain any editable characters (e.g. the indent that
starts subsequent rows of a BASIC line)

contain the value $00.

Data Byte 0:

Bit 0: 1=The first row of the BASIC line.
Bit 1: 1=Spans onto next row.

Bit 2: Not used (always 0).

Bit 3: 1=The last row of the BASIC line.
Bit 4: 1=Associated line number stored.
Bit 5: Not used (always 0).

Bit 6: Not used (always 0).

Bit 7: Not used (always 0).

Data Bytes 1-2: Line number of corresponding BASIC line (stored for
the first row of the BASIC line only, holds $0000).

$FOD7 2 Line number of the BASIC line in the program area being edited (or
$0000 for no line).

$FODB 1 Number of rows held in the Above-Screen Line Edit Buffer.

$FIDC 2 Points to the next location to access within the Above-Screen Line
Edit Buffer.

$FODE 700 Above-Screen Line Edit Buffer. Holds the rows of a BASIC line that

has overflowed off the top of the Screen Line Edit Buffer.

It can hold 20 rows, with each row consisting of 32 characters
followed by 3 data bytes. Areas of white space that do not

contain any editable characters (e.g. the indent that starts
subsequent rows of a BASIC line) contain the value $00.

Data Byte 0:
Bit 0: 1=The first row of the BASIC line.
Bit 1: 1=Spans onto next row.

SPECTRUM 128 ROM o DISASSEMBLY

Bit 2: Not used (always 0).
Bit 3: 1=The last row of the BASIC line.
Bit 4: 1=Associated line number stored.
Bit 5: Not used (always 0).
Bit 6: Not used (always 0).
Bit 7: Not used (always 0).

Data Bytes 1-2: Line number of corresponding BASIC line (stored for
the first row of the BASIC line only, holds $0000).

$FCOA 2 The line number at the top of the screen, or $0000 for the first line.

$FCOE 1 $00=Print a leading space when constructing keyword.

$FCIF 2 Address of the next character to fetch within the BASIC line in the
program area, or $0000 for no next character.

$FCAL 2 Address of the next character to fetch from the Keyword Construction
Buffer, or $0000 for no next character.

$FCA3 11 Keyword Construction Buffer. Holds either a line number or keyword
string representation.

$FCAE-$FCFC Construct a BASIC Line routine. « RAM routine - See end of file for
description »

$FCFD-$FD2D Copy String Into Keyword Construction Buffer routine. « RAM routine
- See end of file for description »

$FD2E-$FD69 Identify Character Code of Token String routine. « RAM routine - See
end of file for description »

$FD6A 1 Flags used when shifting BASIC lines within edit buffer rows
[Redundant]:

Bit 0 : 1=Set to 1 but never reset or tested. Possibly intended to
indicate the start of a new BASIC line and hence whether indentation
required.
Bit 1-7: Not used (always 0).

$FD6B 1 The number of characters to indent subsequent rows of a BASIC line
by.

$FD6C 1 Cursor settings (indexed by IX+$00) - initialised to $00, but never
used.

$FD6D 1 Cursor settings (indexed by IX+$01) - number of rows above the
editing area.

$FD6E 1 Cursor settings (indexed by IX+$02) - initialised to $00 (when
using lower screen) or $14 (when using main screen), but never
subsequently used.

$FD6F 1 Cursor settings (indexed by IX+$03) - initialised to $00, but never
subsequently used.

$FD70 1 Cursor settings (indexed by IX+$04) - initialised to $00, but never
subsequently used.

$FD71 1 Cursor settings (indexed by IX+$05) - initialised to $00, but never
subsequently used.

$FD72 1 Cursor settings (indexed by IX+$06) - attribute colour.

$FD73 1 Cursor settings (indexed by IX+$07) - screen attribute where cursor

is displayed.

$FD74

$FD7D

$FD7F

$FD81

$FD82

$FD84

$FD85

$FD87

$FD89

$FD8A

$FD8B

$FD8C-$FF23
$FF24

$FF26
$FF28-$FF60

$FF61-$FFFF

SPECTRUM 128 ROM o DISASSEMBLY

The Keyword Conversion Buffer holding text to examine to see if it is
a keyword.

Address of next available location within the Keyword Conversion
Buffer.

Address of the space character between words in the Keyword
Conversion Buffer.

Keyword Conversion Buffer flags, used when tokenizing a BASIC
line:

Bit 0 : 1=Buffer contains characters.

Bit 1 : 1=Indicates within quotes.

Bit 2 : 1=Indicates within a REM.

Bits 3-7: Not used (always reset to 0).

Address of the position to insert the next character within the BASIC
line workspace. The BASIC line

is created at the spare space pointed to by E_LINE.

BASIC line insertion flags, used when inserting a characters into the
BASIC line workspace:

Bit 0 : 1=The last character was a token.

Bit 1 : 1=The last character was a space.

Bits 2-7: Not used (always 0).

Count of the number of characters in the typed BASIC line being
inserted.

Count of the number of characters in the tokenized version of the
BASIC line being inserted.

Holds '<' or "> if this was the previously examined character during
tokenization of a BASIC line, else $00.

Locate Error Marker flag, holding $01 is a syntax error was detected
on the BASIC line being inserted and the equivalent position within
the typed BASIC line needs to be found with, else it holds $00 when
tokenizing a BASIC line.

Stores the stack pointer for restoration upon an insertion error into
the BASIC line workspace.

Not used. 408 bytes.

Never used. An attempt is made to set it to $EC00. This is a remnant
from the Spanish 128, which stored the address of the Screen Buffer
here.

The value is written to RAM bank 0 instead of RAM bank 7, and the
value never subsequently accessed.

Not used.

Not used. On the Spanish 128 this memory holds a routine that
copies a character into the display file. The code to copy to routine
into RAM,

and the routine itself are present in ROM 0 but are never executed. «
RAM routine - See end of file for description »

Not used. 159 bytes.

SPECTRUM 128 ROM o DISASSEMBLY

Called ROM 1 Subroutines

ERROR_1 EQU $0008
PRINT_A_1 EQU $0010
GET_CHAR EQU $0018
NEXT_CHAR EQU $0020
BC_SPACES EQU $0030
TOKENS EQU $0095
BEEPER EQU $03B5
BEEP EQU $03F8
SA_ALL EQU $075A

ME_CONTRL EQU $08B6
SA_CONTROL EQU $0970

PRINT_OUT EQU $09F4
PO_T_UDG EQU $0B52
PO_MSG EQU $0CO0A
TEMPS EQU $0D4D
cLS EQU $0D6B
CLS_LOWER EQU $0D6E
CL_ALL EQU $0DAF
CL_ATTR EQU $0E88
CL_ADDR EQU $0E9B
CLEAR_PRB EQU $0EDF
ADD_CHAR EQU $0F81
ED_ERROR EQU $107F
CLEAR_SP EQU $1097
KEY_INPUT EQU $10A8
KEY_M_CL EQU $10DB
MAIN_4 EQU $1303
ERROR_MSGS EQU $1391
MESSAGES EQU $1537
REPORT _J EQU $15C4
OUT_CODE EQU $15EF
CHAN_OPEN EQU $1601
CHAN_FLAG EQU $1615
POINTERS EQU $1664
CLOSE EQU $16E5
MAKE_ROOM EQU $1655
LINE_NO EQU $1695
SET_MIN EQU $16B0
SET_WORK EQU $16BF
SET_STK EQU $16C5
OPEN EQU $1736

LIST 5 EQU $1822

NUMBER
LINE_ADDR
EACH_STMT
NEXT_ONE
RECLAIM
RECLAIM_2
E_LINE_NO
OUT_NUM_1
CLASS 01
VAL_FET 1
CLASS_04
EXPT_2NUM
EXPT_INUM
EXPT_EXP
CLASS 09
FETCH_NUM
USE_ZERO
STOP
F_REORDER
LOOK_PROG
NEXT
PASS_BY
RESTORE
REST_RUN
RANDOMIZE
CONTINUE
GO_TO
couT

POKE
FIND_INT2
TEST_ROOM
PAUSE
PRINT_2
PR_ST_END
STR_ALTER
INPUT_1
IN_ITEM_1
CO_TEMP_4
BORDER
PIXEL_ADDR
PLOT
PLOT_SUB
CIRCLE
DR_3_PRMS
LINE_DRAW
SCANNING

SPECTRUM 128 ROM o DISASSEMBLY

EQU $18B6
EQU $196E
EQU $198B
EQU $19B8
EQU $19E5
EQU $19E8
EQU $19FB
EQU $1A1B
EQU $1C1F
EQU $1C56
EQU $1C6C
EQU $1C7A
EQU $1C82
EQU $1C8C
EQU $1CBE
EQU $1CDE
EQU $1CE6
EQU $1CEE
EQU $1D16
EQU $1D86
EQU $1DAB
EQU $1E39
EQU $1E42
EQU $1E45
EQU $1E4F
EQU $1E5F
EQU $1E67
EQU $1E7A

EQU $1E80
EQU $1E99
EQU $1F05
EQU $1F3A
EQU $1FDF
EQU $2048
EQU $2070
EQU $2096
EQU $20C1
EQU $21FC
EQU $2294
EQU $22AA
EQU $22DC
EQU $22E5
EQU $2320
EQU $238D
EQU $2477
EQU $24FB

Should be OUT but renamed since some
assemblers detect this as an instruction.

SPECTRUM 128 ROM o DISASSEMBLY

SYNTAX_Z EQU $2530
LOOK_VARS EQU $28B2
STK_VAR EQU $2996
STK_FETCH EQU $2BF1
D_RUN EQU $2C15
ALPHA EQU $2C8D
NUMERIC EQU $2D1B
STACK_BC EQU $2D2B
FP_TO_BC EQU $2DA2
PRINT_FP EQU $2DE3

HL_MULT DE EQU $30A9
STACK_NUM EQU $33B4

TEST_ZERO EQU $34E9
KP_SCAN EQU $3C01
TEST_SCREEN EQU $3C04
CHAR_SET EQU $3D00

RESTART ROUTINES — PART 1

RST $10, $18 and $20 call the equivalent subroutines in ROM 1, via RST $28.
RST $00 - Reset the machine.

RST $08 - Not used. Would have invoked the ZX Interface 1 if fitted.

RST $10 - Print a character (equivalent to RST $10 ROM 1).

RST $18 - Collect a character (equivalent to RST $18 ROM 1).

RST $20 - Collect next character (equivalent to RST $20 ROM 1).

RST $28 - Call routine in ROM 1.

RST $30 - Not used.

RST $38 - Not used.

RST $00 — Reset Machine

ORG $0000
L0O00O0: DI Ensure interrupts are disabled.
LD BC,$692B
L0004: DEC BC Delay about 0.2s to allow screen switching
mechanism to settle.
LD AB
ORC
JR NZ,L0004 [There is no RST $08. No instruction fetch at
$0008 hence ZX Interface 1 will not be paged in
from this ROM. Credit: Paul Farrow].
JP LOOC7 to the main reset routine.
L00O0C: DEFB $00, $00 [Spare bytes]

DEFB $00, $00

SPECTRUM 128 ROM o DISASSEMBLY

RST $10 — Print A Character

LO010: RST 28H Call corresponding routine in ROM 1.
DEFW PRINT_A_1 $0010.
RET

L0014: DEFB $00, $00 [Spare bytes]

DEFB $00, $00

RST $18 — Collect A Character

L0018: RST 28H Call corresponding routine in ROM 1.
DEFW GET_CHAR $0018.
RET

LO01C: DEFB $00, $00 [Spare bytes]

DEFB $00, $00

RST $20 — Collect Next Character

L0020: RST 28H Call corresponding routine in ROM 1.
DEFW NEXT_CHAR $0020.
RET

L0024: DEFB $00, $00 [Spare bytes]

DEFB $00, $00

RST $28 — Call Routine in ROM 1

RST 28 calls a routine in ROM 1 (or alternatively a routine in RAM while ROM 1 is paged in). Call
as follows: RST 28 / DEFW address.

L0028: EX (SP),HL Get the address after the RST $28 into HL,
saving HL on the stack.
PUSH AF Save the AF registers.
LD A,(HL) Fetch the first address byte.
INC HL Point HL to the byte after
INC HL the required address.
LD (RETADDR),HL $5B5A. Store this in RETADDR.
DEC HL (There is no RST $30)
LD H,(HL) Fetch the second address byte.

LDLA HL=Subroutine to call.

SPECTRUM 128 ROM o DISASSEMBLY

POP AF
JP LOOSC
L0037 DEFB $00

Restore AF.
Jump ahead to continue.
[Spare byte]

MASKABLE INTERRUPT ROUTINE

This routine preserves the HL register pair. It then performs the following: - Execute the ROM switching

code held in RAM to switch to ROM 1.

- Execute the maskable interrupt routine in ROM 1.
- Execute the ROM switching code held in RAM to return to ROM 0.

- Return to address $0048 (ROM 0).

L0038: PUSH HL
LD HL,L0048
PUSH HL
LD HL,SWAP

PUSH HL
LD HL,LO038

PUSH HL
JP SWAP

L0048: POP HL
RET

Save HL register pair.
Return address of $0048 (ROM 0).

$5B00. Address of swap ROM routine held in
RAM at $5B00.

Maskable interrupt routine address $0038 (ROM
0).

$5B00. Switch to other ROM (ROM 1) via routine
held in RAM at $5B00.

Restore the HL register pair.

End of interrupt routine.

ERROR HANDLER ROUTINES — PART 1

128K Error Routine

LOO4A: LD BC,$7FFD
XOR A
DI
OUT (C),A
LD (BANK_M),A
El
DEC A
LD (IY+$00),A
JP L0321

ROM 0, Bank 0, Screen 0, 128K mode.
Ensure interrupts are disabled whilst paging.

$5B5C. Note the new paging status.
Re-enable interrupts.

A=$FF.

Set ERR_NR to no error ($FF).
Jump ahead to continue.

SPECTRUM 128 ROM o DISASSEMBLY

RESTART ROUTINES — PART 2

Call ROM 1 Routine (RST $28 Continuation)

Continuation from routine at $0028 (ROM 0).

LOO5C: LD (TARGET),HL $5B58. Save the address in ROM 0 to call.

LD HL,YOUNGER $5B14. HL='"Return to ROM 0' routine held in
RAM.

EX (SP),HL Stack HL.

PUSH HL Save previous stack address.

LD HL,(TARGET) $5B58. HL=Retrieve address to call. [There is no
NMI code. Credit: Andrew Owen].

EX (SP),HL Stack HL.

JP SWAP $5B00. Switch to other ROM (ROM 1) and return

to address to call.

RAM ROUTINES

The following code will be copied to locations $5B00 to $5B57, within the old ZX Printer buffer.

Swap to Other ROM (copied to $5B00)

Switch to the other ROM from that currently paged in.

[The switching between the two ROMs invariably enables interrupts, which may not always be desired
(see the bug at $09CD (ROM 0) in the PLAY command). To overcome this issue would require a
rewrite of the SWAP routine as follows, but this is larger than the existing routine and so cannot simply
be used in direct replacement of it. A work-around solution is to poke a JP instruction at the start of the
SWAP routine in the ZX Printer buffer and direct control to the replacement routine held somewhere
else in RAM. Credit: Toni Baker, ZX Computing Monthly] [However, the PLAY commnad bug may be
fixed in another manner within the PLAY command itself, in which case there is no need to modify
the SWAP routine.]

SWAP:
PUSH AF Stack AF.
PUSH BC Stack BC.
LD AR P/V flag=Interrupt status.
PUSH AF Stack interrupt status.
LD BC,$7FFD BC=Port number required for paging.
LD A,(BANK_M) A=Current paging configuration.
XOR $10 Complement 'ROM' bit.
DI Disable interrupts (in case an interrupt occurs

between the next two instructions).

SWAP_EXIT:

LO06B:

SPECTRUM 128 ROM o DISASSEMBLY

LD (BANK_M),A
OUT (C),A
POP AF

JP PO,SWAP_EXIT

El

POP BC
POP AF
RET

PUSH AF
PUSH BC

LD BC,$7FFD
LD A,(BANK_M)
XOR $10

DI

LD (BANK_M),A
OUT (C),A

El

POP BC

POP AF

RET

Store revised paging configuration.

Page ROM.

P/V flag=Former interrupt status.

Jump if interrupts were previously disabled.
Re-enable interrupts.

Restore BC.
Restore AF.

Save AF and BC.

$5B5C.

Select other ROM.

Disable interrupts whilst switching ROMs.
$5B5C.

Switch to the other ROM.

Restore BC and AF.

Return to Other ROM Routine (copied to $5B14)

Switch to the other ROM from that currently paged in

and then return to the address held in RETADDR.

YOUNGER

LOO7F:

CALL SWAP
PUSH HL

LD HL,(RETADDR)

EX (SP),HL
RET

$5B00. Toggle to the other ROM.
$5B5A.

Return to the address held in RETADDR.

Error Handler Routine (copied to $5B1D)

This error handler routine switches back to ROM 0 and then
executes the routine pointed to by system variable TARGET.

ONERR

L0088:

DI
LD A,(BANK_M)

Ensure interrupts are disabled whilst paging.
$5B5C. Fetch current paging configuration.

SPECTRUM 128 ROM o DISASSEMBLY

AND $EF Select ROM 0.

LD (BANK_M),A $5B5C. Save the new configuration
LD BC,$7FFD

OUT (C),A Switch to ROM 0.

El

JP LOOC3 Jump to $00C3 (ROM 0) to continue.

'P' Channel Input Routine (copied to $5B2F)

Called when data is read from channel 'P".
It causes ROM 0 to be paged in so that the new RS232 routines can be accessed.
PIN

LOO9A: LD HL,L06D8 RS232 input routine within ROM 0.
JR LOOA2

'P' Channel Output Routine (copied to $5B34)

Called when data is written to channel 'P".
It causes ROM 0 to be paged in so that the new RS232 routines can be accessed.
Entry: A=Byte to send.

POUT

LOO9F: LD HL,LO7CA RS232 output routine within ROM 0.

LOOA2: EX AF,AF' Save AF registers.
LD BC,$7FFD
LD A,(BANK_M) $5B5C. Fetch the current paging configuration
PUSH AF and save it.
AND $EF Select ROM 0.
DI Ensure interrupts are disabled whilst paging.
LD (BANK_M),A $5B5C. Store the new paging configuration.
OUT (C),A Switch to ROM 0.
JP LOSE6 Jump to the RS232 channel input/output handler

routine.

'P' Channel Exit Routine (copied to $5B4A)

Used when returning from a channel 'P' read or write operation.
It causes the original ROM to be paged back in and returns back to the calling routine.
POUT2

LOOBS5: EX AF,AF' Save AF registers. For a read, A holds the byte
read and the flags the success status.

SPECTRUM 128 ROM o DISASSEMBLY

POP AF Retrieve original paging configuration.

LD BC,$7FFD

DI Ensure interrupts are disabled whilst paging.

LD (BANK_M),A $5B5C. Store original paging configuration.

OUT (C),A Switch back to original paging configuration.

El

EX AF,AF' Restore AF registers. For a read, A holds the byte
read and the flags the success status.

RET « End of RAM Routines »

ERROR HANDLER ROUTINES — PART 2

Call Subroutine

Called from ONERR ($5B1D) to execute the routine pointed
to by system variable SYNRET.

LOOC3: LD HL,(SYNRET) $5B8B. Fetch the address to call.
JP (HL) and execute it.

INITIALISATION ROUTINES — PART 1

Reset Routine (RST $00 Continuation, Part 1)

Continuation from routine at $0000 (ROM 0). It performs a test on all RAM banks.
This test is crude and can fail to detect a variety of RAM errors.

LOOCT7: LD B,$08 Loop through all RAM banks.
LOOC9: LD AB

EXX Save B register.

DEC A RAM bank number 0 to 7. 128K mode, ROM 0,

Screen 0.

LD BC,$7FFD

OUT (C),A Switch RAM bank.

LD HL,$C000 Start of the current RAM bank.

LD DE,$C001

LD BC,$3FFF All 16K of RAM bank.

LD A,$FF

LD (HL),A Store $FF into RAM location.

CP (HL) Check RAM integrity.

JR NZ,L0131 Jump if RAM error found.

XOR A

SPECTRUM 128 ROM o DISASSEMBLY

LD (HL),A Store $00 into RAM location.
CP (HL) Check RAM integrity.
JR NZ,L0131 Jump if difference found.
LDIR Clear the whole page
EXX Restore B registers.
DJNZ LO0C9 Repeat for other RAM banks.
LD (ROWO01),A $5B88. Signal no communications in progress to
the keypad.
LD C,$FD
LD D,$FF
LD E,$BF
LD B,D BC=$FFFD, DE=$FFBF.
LD A,$0E
OUT (C),A Select AY register 14.
LD B,E BC=$BFFD.
LD A,$FF
OUT (C),A Set AY register 14 to $FF. This will force a
communications reset to the keypad if present.
JR L0137 Jump ahead to continue.
LOOFF: DEFB $00 [Spare byte]

ROUTINE VECTOR TABLE

L0100: JP L17AF BASIC interpreter parser.

L0103: JP L1838 ‘Line Run' entry point.

L0106: JP L1ECF Transfer bytes to logical RAM bank 4.

L0109: JP L1F04 Transfer bytes from logical RAM bank 4.

LO10C: JP LOO4A 128K error routine.

LO10F: JP LO3A2 Error routine. Called from patch at $3B3B in ROM
1.

LO112: JP L182A 'Statement Return' routine. Called from patch at
$3B4D in ROM 1.

L0115: JP L18A8 'Statement Next' routine. Called from patch at
$3B5D in ROM 1.

L0118: JP L012D Scan the keypad.

LO11B: JP LOAOS Play music strings.

LO11E: JP L11A3 MIDI byte output routine.

L0121: JP LO6D8 RS232 byte input routine.

L0124: JP LO7CA RS232 text output routine.

L0127: JP LO8A3 RS232 byte output routine.

LO12A: JP LO8FO COPY (screen dump) routine.

L012D: RST 28H Call keypad scan routine in ROM 1.

DEFW KP_SCAN-$0100 $3B01. [BUG - The address jumps into the middle
of the keypad decode routine in ROM 1. It

SPECTRUM 128 ROM o DISASSEMBLY

RET

looks like it is supposed to deal with the keypad
and so the most likely addresses are $3A42 (read
keypad) or $39A0 (scan keypad). At $3C01 in
ROM 1 is a vector jump command to $39A0 to
scan the keypad and this is similar enough to the
$3B01 to imply a simple error in one of the bytes.
Credit: Paul Farrow]

INITIALISATION ROUTINES — PART 2

Fatal RAM Error

Set the border colour to indicate which RAM bank was found faulty: RAM bank 7 - Black.
RAM bank 6 - White.
RAM bank 5 - Yellow.
RAM bank 4 - Cyan.
RAM bank 3 - Green.
RAM bank 2 - Magenta.

RAM bank 1 - Red.
RAM bank O - Blue.

L0131:

L0135:

EXX
LDA,B

OUT ($FE),A
JR L0135

Retrieve RAM bank number + 1 in B.
Indicate which RAM bank failed by
setting the border colour.

Infinite loop.

Reset Routine (RST $00 Continuation, Part 2)

Continuation from routine at $00C7 (ROM 0).

L0137:

LD B,D
LD A,$07
OUT (C),A
LD B,E

LD A $FF
OUT (C),A
LD DE,SWAP

LD HL,LO06B
LD BC,$0058
LDIR

LD A $CF

Complete setting up the sound chip registers.
Select AY register 7.
Disable AY-3-8912 sound channels.

$5B00. Copy the various paging routines to the
old printer buffer.

The source is in this ROM.

There are eighty eight bytes to copy.

Copy the block of bytes.

Load A with the code for the Z80 instruction 'RST
$08'.

SPECTRUM 128 ROM o DISASSEMBLY

LD (RAMRST),A
LD SP,TSTACK

LD A,$04
CALL L1C64

LD IX,$EBEC

LD (SFNEXT),IX
LD (IX+$0A),$00
LD (IX+$0B),$C0
LD (IX+$0C),$00
LD HL,$2BEC

LD A,$01

LD (SFSPACE),HL

LD (SFSPACE+2),A

LD A,$05
CALL L1C64

LD HL,$FFFF
LD ($5CB4),HL

LD DE,CHAR_SET+$01AF

LD BC,$00A8
EX DE,HL
RST 28H

$5B5D. Insert into new System Variable
RAMRST.

$5BFF. Set the stack pointer to last location of old
buffer.

Page in logical RAM bank 4 (physical RAM bank
7).

First free entry in RAM disk.

$5B83.

AHL=Free space in RAM disk.
$5B85. Current address.
$5B87. Current RAM bank.

Page in logical RAM bank 5 (physical RAM bank
0).

Load HL with known last working byte - 65535.
P_RAMT. Set physical RAM top to 65535.
$3EAF. Set DE to address of the last bitmap of 'U’
in ROM 1.

There are 21 User Defined Graphics to copy.
Swap so destination is $FFFF.

DEFW MAKE_ROOM+$000CCalling this address (LDDR/RET) in the main

EX DE,HL
INC HL

LD ($5C7B),HL
DEC HL

LD BC,$0040
LD ($5C38),BC

LD ($5CB2),HL

ROM cleverly copies the 21 characters to the end
of RAM.

Transfer DE to HL.

Increment to address first byte of UDG 'A'.

UDG. Update standard System Variable UDG.

Set values 0 for PIP and 64 for RASP.

RASP. Update standard System Variables RASP
and PIP.

RAMTOP. Update standard System Variable
RAMTORP - the last byte of the BASIC system
area. Any machine code and graphics above this
address are protected from NEW.

Entry point for NEW with interrupts disabled and physical RAM bank 0 occupying the upper RAM
region $C000 - $FFFF, i.e. the normal BASIC memory configuration.

L019D: LD HL,CHAR_SET-$0100 $3CO00. Set HL to where, in theory character zero
would be.

SPECTRUM 128 ROM o DISASSEMBLY

LD ($5C36),HL
LD HL,($5CB2)
INC HL

LD SP,HL

IM 1
LD IY,$5C3A

SET 4,(1Y+$01)
El

LD HL,$000B
LD (BAUD),HL

XOR A
LD (SERFL),A

LD (COL),A
LD (TVPARS),A

LD HL,$ECO00

LD ($FF24),HL

LD A,$50
LD (WIDTH),A
LD HL,$000A

CHARS. Update standard System Variable
CHARS.

RAMTOP. Load HL with value of System Variable
RAMTOP.

Address next location.

Set the Stack Pointer.

Select Interrupt Mode 1.

Set the IY register to address the standard
System Variables and many of the new System
Variables and even those of ZX Interface 1 in
some cases.

FLAGS. Signal 128K mode. [This bit was unused
and therefore never set by 48K BASIC]

With a stack and the Y register set, interrupts can
be enabled.

Set HL to eleven, timing constant for 9600 baud.
$5B5F. Select default RS232 baud rate of 9600
baud.

Clear accumulator.

$5B61. Indicate no byte waiting in RS232 receive
buffer.

$5B63. Set RS232 output column position to 0.
$5B65. Indicate no control code parameters
expected.

[BUG - Should write to RAM bank 7. Main RAM
has now been corrupted. The value stored

is subsequently never used. Credit: Geoff
Wearmouth]

This is a remnant from the Spanish 128, which
used this workspace variable to hold the location
of the Screen Buffer, but it also suffered from
this bug. In fact there was never a need to write
to the value at this point since it is written again
later during the initialisation process. [The 1985
Sinclair Research ESPAGNOL source code says
that this instruction will write to the (previously
cleared) main BASIC RAM during initialization
but that a different page of RAM will be present
during NEW. Stuff and Nonsense! Assemblers
and other utilities present above RAMTOP will

be corrupted by the BASIC NEW command since
$FF24, and later $EC13, will be written to even if
they are above RAMTOP.]

Default to a printer width of 80 columns.

$5B64. Set RS232 printer output width.

Use 10 as the initial renumber line and increment.

SPECTRUM 128 ROM o DISASSEMBLY

LD (RNFIRST),HL

LD (RNSTEP),HL
LD HL,$5CB6
LD ($5C4F),HL

LD DE,L0589

LD BC,$0015
EX DE,HL
LDIR

EX DE,HL
DEC HL

LD ($5C57),HL

INC HL
LD ($5C53),HL

LD ($5C4B),HL

LD (HL),$80
INC HL
LD ($5C59),HL

LD (HL),$0D
INC HL

LD (HL),$80
INC HL

LD ($5C61),HL
LD ($5C63),HL

LD ($5C65),HL

LD A,$38

LD ($5C8D),A
LD ($5C8F),A
LD ($5C48),A
XOR A

LD ($EC13),A

$5B94. Store the initial line number when
renumbering.

$5B96. Store the renumber line increment.
Address after the System Variables.

CHANS. Set the default location for the channel
area.

Point to Initial Channel Information in this ROM.
This is similar to that in main ROM but channel 'P'
has input and output addresses in the new $5Bxx
region.

There are 21 bytes to copy.

Switch pointer so destination is CHANS.

Copy the block of bytes.

Decrement to point to channel information end-
marker.

DATADD. Set the default address of the
terminator for the last DATA item.

PROG. Set the default address of the BASIC
program area.

VARS. Set the default address of the BASIC
variables area.

Insert the Variables end-marker.

E_LINE. Set the default address of the editing line
area.
Insert a carriage return.

Insert the editing line end-marker.

WORKSP. Set the address of the workspace.
STKBOT. Set the address of the start of the
calculator stack.

STKEND. Set the address of the end of the
calculator stack.

Attribute colour of black ink on white paper.
ATTR_P. Set the permanent attribute colour.
MASK_P. Set the permanent attribute mask.
BORDCR. Set the default border colour.

Temporary P_FLAG. Clear the temporary store
for P-FLAG. [BUG - Should write this to RAM
bank 7. Main RAM has now been corrupted
again. The effect of the bug can be seen by
typing INVERSE 1: PRINT "Hello", followed by
NEW, followed by PRINT "World", and will cause

SPECTRUM 128 ROM o DISASSEMBLY

LD A $07

OUT ($FE),A
LD HL,$0523
LD ($5C09),HL

DEC (IY-$3A)
DEC (IY-$36)
LD HL,LOS9E

LD DE,$5C10

LD BC,$000E
LDIR

RES 1,(IY+$01)
LD (IY+$00),$FF
LD (IY+$31),$02
RST 28H

DEFW CLS

RST 28H

DEFW TEST_SCREEN

LD DE,L0561
CALL LO57D

LD (IY+$31),$02
SET 5,(1Y+$02)

LD HL,TSTACK
LD (OLDSP),HL

CALL L1F45

LD A,$38
LD ($EC11),A

LD ($ECOF),A

CALL L2584
CALL L1F20

JP L259F

the second word to also be printed in inverse.
Credit: Geoff Wearmouth]

Set the border white.

The values five and thirty five.

REPDEL. Set the default values for key delay and
key repeat.

Set KSTATE+O to $FF.

Set KSTATE+4 to $FF.

Address of the Initial Stream Data within this
ROM (which is identical to that in main ROM).
STRMS. Address of the system variable holding
the channels attached to streams data.

Initialise the streams system variables.
FLAGS. Signal printer not is use.

ERR_NR. Signal no error.

DF_SZ. Set the lower screen size to two rows.

$0D6B. Clear the screen.

Attempt to display TV tuning test screen.
$3C04. Will return if BREAK is not being pressed.
Address of the Sinclair copyright message.
Display the copyright message.

DF_SZ. Set the lower screen size to two rows.
TV_FLAG. Signal lower screen will require
clearing.

$5BFF.

$5B81. Use the temporary stack as the previous
stack.

Use Workspace RAM configuration (physical
RAM bank 7).

Set colours to black ink on white paper.
Temporary ATTR_T used by the 128 BASIC
Editor.

Temporary ATTR_P used by the 128 BASIC
Editor.

[Note this is where $EC13 (temporary P_FLAG) and $FF24 should be set]

Initialise mode and cursor settings. IX will point at
editing settings information.

Use Normal RAM Configuration (physical RAM
bank 0).

Jump to show the Main menu.

SPECTRUM 128 ROM o DISASSEMBLY

COMMAND EXECUTION ROUTINES — PART 1

Execute Command Line

A typed in command resides in the editing workspace. Execute it.
The command could either be a new line to insert, or a line number to delete, or a numerical expression
to evaluate.

L026B: LD HL,FLAGS3 $5B66.
SET 0,(HL) Select BASIC/Calculator mode.
LD (IY+$00),$FF ERR_NR. Set to '0 OK' status.
LD (1Y+%$31),$02 DF_SZ. Reset the number of rows in the lower

Calculator mode

screen.

LD HL,ONERR $5B1D. Return address should an error occur.
PUSH HL Stack it.

LD ($5C3D),SP Save the stack pointer in ERR_SP.

LD HL,LO2BA Return address in ROM 0 after syntax checking.

LD (SYNRET),HL

$5B8B. Store it in SYNRET.

CALL L228E Point to start of typed in BASIC command.

CALL L22CB Is the first character a function token, i.e. the start
of a numerical expression?

JP Z,L21F8 Jump if so to evaluate it.

CP'($28. Is the first character the start of an
expression?

JP Z,L21F8 Jump if so to evaluate it.

Cp - $2D. Is the first character the start of an
expression?

JP Z,L21F8 Jump if so to evaluate it.

CP '+ $2B. Is the first character the start of an
expression?

JP Z,L21F8 Jump if so to evaluate it.

CALL L22EO Is text just a number or a numerical expression?

JP Z,L21F8 Jump if a numerical expression to evaluate it.

CALL L1F45 Use Workspace RAM configuration (physical
RAM bank 7).

LD A,($ECOE) Fetch mode.

CALL L1F20 Use Normal RAM Configuration (physical RAM
bank 0).

CP $04 Calculator mode?

JP NZ,L17AF Jump if not to parse and execute the BASIC

command line, returning to $02BA (ROM 0).

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2297

JP Z,L17AF

Otherwise ignore the command

POP HL
RET

Is it a single LET command?
Jump if so to parse and execute the BASIC
command line, returning to $02BA (ROM 0).

Drop ONERR return address.

Return from BASIC Line Syntax Check

This routine is returned to when a BASIC line has been syntax checked.

LO2BA:

BIT 7,(Y+$00)
JR NZ,L02C1
RET

Test ERR_NR.
Jump ahead if no error.
Simply return if an error.

The syntax check was successful, so now proceed to parse the line for insertion or execution

LO2C1:

LD HL,($5C59)

LD ($5C5D),HL
RST 28H

DEFW E_LINE_NO

LDAB
ORC
JP NZ,LO3F7

ELINE. Point to start of editing area.
Store in CH_ADD.

$19FB. Call E_LINE_NO in ROM 1 to read the
line number into editing area.

Jump ahead if there was a line number.

Parse a BASIC Line with No Line Number

LO2DF:

RST 18H

CP $0D

RET Z

CALL L21EF

BIT 6,(1Y+$02)

JR NZ,LO2DF

RST 28H

DEFW CLS_LOWER
RES 6,(1Y+$02)
CALL L1F45

LD HL,$ECOD
BIT 6,(HL)

Get character.

End of the line reached, i.e. no BASIC statement?
Return if so.

Clear screen if it requires it.

TVFLAG. Clear lower screen?

Jump ahead if no need to clear lower screen.

$ODGE. Clear the lower screen.

TVFLAG. Signal to clear lower screen.

Use Workspace RAM configuration (physical
RAM bank 7).

Editor flags.

Using lower screen area for editing?

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,LO2F4 Jump ahead if so.

INC HL

LD A,(HL) Fetch the mode.

CP $00 In Edit Menu mode?

CALL Z,0.3881 If so then clear lower editing area display.

LO2F4: CALL L1F20 Use Normal RAM Configuration (physical RAM

bank 0).

LD HL,$5C3C TVFLAG.

RES 3,(HL) Signal mode has not changed.

LD A$19 25.

SUB (IY+$4F) S_POSN+1. Subtract the current print row
position.

LD ($5C8C),A SCR_CT. Set the number of scrolls.

SET 7,(1Y+$01) FLAGS. Not syntax checking.

LD (IY+$0A),$01 NSPPC. Set line to be jumped to as line 1.

[BUG - Whenever a typed in command is executed directly from the editing workspace, a new GO
SUB marker is set up on the stack. Any existing GO SUB calls that were on the stack are lost and as
a result attempting to continue the program (without the use of CLEAR or RUN) will likely lead to a
"7 RETURN without GOSUB" error report message being displayed. However, the stack marker will
already have been lost due to the error handler routine at $0321. The first action it does is to reset
the stack pointer to point to the location of RAMTOP, i.e. after the GO SUB marker. This is why it is
necessary for a new GO SUB marker needs to be set up. Credit: Michal Skrzypek]

LD HL,$3E00 The end of GO SUB stack marker.

PUSH HL Place it on the stack.

LD HL,ONERR $5B1D. The return address should an error occur.

PUSH HL Place it on the stack.

LD ($5C3D),SP ERR_SP. Store error routine address.

LD HL,L0321 Address of error handler routine in ROM 0.

LD (SYNRET),HL $5B8B. Store it in SYNRET.

JP L1838 Jump ahead to the main parser routine to execute
the line.

ERROR HANDLER ROUTINES — PART 3

Error Handler Routine

[BUG - Upon terminating a BASIC program, either via reaching the end of the program or due to
an error occurring, execution is passed to this routine. The first action it does is to reset the stack
pointer to point to the location of RAMTOP, i.e. after the GO SUB marker. However, this means that
any existing GO SUB calls that were on the stack are lost and so attempting to continue the program
(without the use of CLEAR or RUN) will likely lead to a "7 RETURN without GOSUB" error report

SPECTRUM 128 ROM o DISASSEMBLY

message being displayed. When a new typed in command is executed, the code at $030C sets up a
new GO SUB marker on the stack. Credit: Michal Skrzypek]

L0321:

LD SP,($5CB2)
INC SP

LD HL,TSTACK
LD (OLDSP),HL

HALT

RES 5,(1Y+$01)
LD HL,FLAGS3
BIT 2,(HL)

JR Z,L034A
CALL L1F45

LD IX,(SFNEXT)
LD BC,$0014
ADD IX,BC
CALL L1D56

CALL L1F20

Display error code held in ERR_NR

LO34A:

LO34E:

LD A,($35C3A)
INC A

PUSH AF

LD HL,$0000
LD (IY+$37),H
LD (IY+$26),H
LD ($5COB),HL

LD HL,$0001
LD ($5C16),HL

RST 28H
DEFW SET_MIN
RES 5,(1Y+$37)

RST 28H

DEFW CLS_LOWER

SET 5,(1Y+$02)
POP AF
LD B,A

RAMTOP.

Reset SP to top of memory map.

$5BFF.

$5B81. Use the temporary stack as the previous
stack.

Trap error conditions where interrupts are
disabled.

FLAGS. Signal no new key.

$5B66.

Editing RAM disk catalogue?

Jump if not.

Use Workspace RAM configuration (physical
RAM bank 7).

$5B83.

Catalogue entry size.

Remove last entry.

Update catalogue entry (leaves logical RAM bank
4 paged in).

Use Normal RAM Configuration (physical RAM
bank 0).

Fetch error number from ERR_NR.
Increment to give true error code.
Save the error code.

FLAGX. Ensure not INPUT mode.

X_PTR_hi. Clear to suppress error '?' marker.
DEFADD. Clear to signal no defined function is
currently being evaluated.

[Could have saved 2 bytes by using INC L].
STRMS+$0006. Ensure STRMS-00 specifies the
keyboard.

$16B0. Clears editing area and areas after it.
FLAGX. Signal not INPUT mode. [Redundant
since all flags were reset earlier]

$ODGE. Clear lower editing screen.

TVFLAG. Signal lower screen requires clearing.
Retrieve error code.

Store error code in B.

SPECTRUM 128 ROM o DISASSEMBLY

CP $0A

JR C,LO37F
CP $1D
JR C,LO37D

ADD A,$14
JR LO37F

LO37D:
LO37F:

ADD A,$07

RST 28H
DEFW OUT_CODE

LD A,$20
RST 10H
LDAB

CP $1D
JR C,LO39C

Display a new error

message

Is it a numeric error code (1-9), i.e. suitable for
immediate display?

If so jump ahead to display it.

Is it one of the standard errors (A-R)?

If so jump ahead to convert it into an upper case
letter.

Otherwise convert it into a lower case letter.
Jump ahead to display it. [Could have saved 2
bytes by using ADD A,$0C instead of these two
instructions]

Increase code to point to upper case letters.

$15EF. Display the character held in the A
register.
Display a space.

Retrieve the error code.
Is it one of the standard errors (A-R)?
Jump if an standard error message (A-R).

[Note that there is no test to range check the error code value and therefore whether a message exists
for it. Poking directly to system variable ERR_NR with an invalid code (43 or above) will more than

likely cause a crash]

SUB $1D

LD B,$00
LDCA
LD HL,LO46C

ADD HL,BC
ADD HL,BC

LD E,(HL)
INC HL

LD D,(HL)
CALL LO57D

JR LO3A2

Display a standard error message.

L039C:

LD DE,ERROR_MSGS
RST 28H
DEFW PO_MSG

A=Code $00 - $0E.

Pass code to BC.
Error message vector table.

Find address in error message vector table.

DE=Address of message to print.
Print error message.
Jump ahead.

$1391. Position of the error messages in ROM 1.
A holds the error code.
$OCOA. Call message printing routine.

Continue to display the line and statement number

LO3A2:

LO3CC:
LO3CF:

LO3DD:

LO3DF:

SPECTRUM 128 ROM o DISASSEMBLY

XOR A

LD DE,MESSAGES-1
RST 28H

DEFW PO_MSG

LD BC,($5C45)

RST 28H

DEFW OUT_NUM_1
LD A,$3A

RST 10H

LD C,(IY+$0D)

LD B,$00

RST 28H

DEFW OUT_NUM_1
RST 28H

DEFW CLEAR_SP
LD A,($5C3A)

INC A

JR Z,LO3DF

CP $09

JR Z,L03CC

CP $15

JR NZ,LO3CF
INC (IY+$0D)
LD BC,$0003
LD DE,$5C70
LD HL,$5C44
BIT 7,(HL)
JR Z,L03DD
ADD HL,BC
LDDR

LD (IY+$0A),$FF
RES 3,(1Y+$01)
LD HL,FLAGS3
RES 0,(HL)

JP L25CB

Select the first message ", " (a ‘comma’ and a
'space’).
$1536. Message base address in ROM 1.

Print a comma followed by a space.
PPC. Fetch current line number.

$1A1B. Print the line number.
Print "'

SUBPPC. Fetch current statement number.

$1A1B. Print the statement number.

$1097. Clear editing and workspace areas.
ERR_NR. Fetch the error code.

Jump ahead for "0 OK".

Jump for "A Invalid argument", thereby advancing

to the next statement.

Jump unless "M Ramtop no good".
SUBPPC. Advance to the next statement.

OSPPC. Continue statement number.
NSPPC. Next statement number.

Is there a statement number?

Jump if so.

HL=SUBPPC. The current statement number.
Copy SUBPPC and PPC to OSPPC and
OLDPPC, for use by CONTINUE.

NSPPC. Signal no current statement number.
FLAGS. Select K-Mode.

$5B66.

Select 128 Editor mode.

Jump ahead to return control to the Editor.

Error Handler Routine When Parsing BASIC Line

LO3EF:

LD A, $10
LD BC,$0000
JP LO34E

Error code 'G - No room for line'.

Jump to print the error code.

SPECTRUM 128 ROM o DISASSEMBLY

COMMAND EXECUTION ROUTINES — PART 2

Parse a BASIC Line with a Line Number

This routine handles insertion of a BASIC line specified with a line number, or just a line number
specified on its own, i.e. delete the line.

LO3F7: LD ($5C49),BC E_PPC. Store the line as the current line number
with the program cursor.
CALL L1F45 Use Workspace RAM configuration (physical
RAM bank 7).
LD AB [This test could have been performed before

paging in bank 7 and hence could have benefited
from a slight speed improvement.

ORC The test is redundant since BC holds a non-zero
line number]

JR Z,LO40A Jump if no line number.

LD ($5C49),BC E_PPC. Current edit line number. [Redundant
instruction - Line number has already been
stored]

LD ($EC08),BC Temporary E_PPC used by BASIC Editor.

LO40A: CALL L1F20 Use Normal RAM Configuration (physical RAM
bank 0).

LD HL,($5C5D) CH_ADD. Point to the next character in the
BASIC line.

EX DE,HL

LD HL,LO3EF Address of error handler routine should there be
no room for the line.

PUSH HL Stack it.

LD HL,($5C61) WORKSP.

SCF

SBC HL,DE HL=Length of BASIC line.

PUSH HL Stack it.

LDH,B

LDL,C Transfer edit line number to HL.

RST 28H

DEFW LINE_ADDR $196E. Returns address of the line in HL.

JR NZ,L0429 Jump if the line does not exist.

The line already exists so delete it

RST 28H
DEFW NEXT_ONE $19B8. Find the address of the next line.
RST 28H

L0429:

SPECTRUM 128 ROM o DISASSEMBLY

DEFW RECLAIM_2

POP BC
LDAC
DEC A

ORB
JR NZ,L0442

$19E8. Delete the line.
BC=Length of the BASIC line.

Isit 1, i.e. just an 'Enter' character, and hence
only

a line number was entered?

Jump if there is a BASIC statement.

Just a line number entered. The requested line has already been deleted so move the program cursor

to the next line

L0442:

CALL L1F45

PUSH HL

LD HL,($5C49)
CALL L334A
LD ($5C49),HL

POP HL
CALL L1F20

JR LO46A
PUSH BC
INC BC
INC BC
INC BC
INC BC

DEC HL
LD DE,($5C53)

PUSH DE
RST 28H

DEFW MAKE_ROOM

POP HL
LD ($5C53),HL
POP BC
PUSH BC

INC DE

LD HL,($5C61)
DEC HL

DEC HL

LDDR

LD HL,($5C49)

Use Workspace RAM configuration (physical
RAM bank 7).

Save the address of the line.

E_PPC. Fetch current edit line number.

Find closest line number (or $0000 if no line).
E_PPC. Store current edit line number. Effectively
refresh E_PPC.

HL=Address of the line.

Use Normal RAM Configuration (physical RAM
bank 0).

Jump ahead to exit.

BC=Length of the BASIC line. Stack it.

BC=BC+4. Allow for line number and length
bytes.

Point to before the current line, i.e. the location to
insert bytes at.

PROG. Get start address of the BASIC program.
Stack it.

$1655. Insert BC spaces at address HL.
HL=Start address of BASIC program.

PROG. Save start address of BASIC program.
BC=Length of the BASIC line.

Point to the first location of the newly created
space.

WORKSP. Address of end of the BASIC line in
the workspace.

Skip over the newline and terminator bytes.
Copy the BASIC line from the workspace into the
program area.

E_PPC. Current edit line number.

SPECTRUM 128 ROM o DISASSEMBLY

EX DE,HL
POP BC
LD (HL),B
DEC HL
LD (HL),C
DEC HL
LD (HL),E
DEC HL
LD (HL),D

LO46A: POP AF
RET

BC=Length of BASIC line.
Store the line length.

DE=line number.

Store the line number.
Drop item (address of error handler routine).
Exit with HL=Address of the line.

ERROR HANDLER ROUTINES — PART 4

New Error Message Vector Table

Pointers into the new error message table.

LO46C: DEFW L048C
DEFW L0497
DEFW LO4A6
DEFW L0O4B0O
DEFW LO4C1
DEFW L04D4
DEFW LO4EO
DEFW LO4EO
DEFW LO4F3
DEFW L0501
DEFW L0512
DEFW L0523
DEFW L0531
DEFW L0542
DEFW LO54E
DEFW L0561

New Error Message Table

LO48C: DEFM "MERGE erro"
DEFB 'r'+$80

L0497: DEFM "Wrong file typ"
DEFB 'e'+$80

LO4A6: DEFM "CODE erro"

Error report 'a’.
Error report 'b'.
Error report 'c'.
Error report 'd'.
Error report 'e'.
Error report 'f'.
Error report 'g'.
Error report 'h'.
Error report .
Error report j'.
Error report 'k'.
Error report "I
Error report 'm'.
Error report 'n'.
Error report 'o'.
Error report 'p'.

Report 'a'.
Report 'b'".

Report 'c'.

LO4BO:

LO4C1:

L04DA4:

LO4EOQ:

LO4F3:

LO501:

LO512:

L0523:

LO531:

L0542:

LO54E:

LO561:

SPECTRUM 128 ROM o DISASSEMBLY

DEFB 'r'+$80

DEFM "Too many bracket"
DEFB 's'+$80

DEFM "File already exist"
DEFB 's'+$80

DEFM "“Invalid nam"
DEFB 'e'+$80

DEFM "File does not exis"
DEFB 't'+$80

DEFM "Invalid devic"
DEFB 'e'+$80

DEFM "“Invalid baud rat"
DEFB 'e'+$80

DEFM "Invalid note nam"
DEFB 'e'+$80

DEFM "Number too bi"
DEFB 'g'+$80

DEFM "Note out of rang"
DEFB 'e'+$80

DEFM "Out of rang"
DEFB 'e'+$80

DEFM "Too many tied note"
DEFB 's'+$80

DEFB $7F

DEFM " 1986 Sinclair
Research Lt"

DEFB 'd'+$80

Print Message

Print a message which is terminated by having bit 7 set, pointed at by DE.

LO57D:

LD A,(DE)
AND $7F
PUSH DE
RST 10H
POP DE

LD A,(DE)
INC DE

ADD AA

JR NC,LO57D
RET

Report 'd".

Report 'e'.

Report 'f'.

Report 'g' & 'h'.

Report 'i".

Report J'.

Report 'K'.

Report 'I'.

Report 'm'".

Report 'n'.

Report '0'.

(©)-

Copyright. [There should have been an error
report "p Bad parameterr" here as there was in
the Spanish 128,

or the error code byte at $232F (ROM 0) should
have been $19 for "Q Parameter error"]

Fetch next byte.

Mask off top bit.

Save address of current message byte.
Print character.

Restore message byte pointer.

Carry flag will be set if byte is $FF.
Else print next character.

SPECTRUM 128 ROM o DISASSEMBLY

INITIALISATION ROUTINES — PART 3

The 'Initial Channel Information'

Initially there are four channels ('K', 'S', 'R', & 'P") for communicating with the 'keyboard', 'screen’, ‘work
space' and 'printer'.

For each channel the output routine address comes before the input routine address and the channel's
code.

This table is almost identical to that in ROM 1 at $15AF but with changes to the channel P routines
to use the RS232 port instead of the ZX Printer.

Used at $01DD (ROM 0).

L0589: DEFW PRINT_OUT $09F4 - K channel output routine.
DEFW KEY_INPUT $10A8 - K channel input routine.
DEFB 'K' $4B - Channel identifier 'K'".
DEFW PRINT_OUT $09F4 - S channel output routine.
DEFW REPORT_J $15C4 - S channel input routine.
DEFB'S' $53 - Channel identifier 'S".
DEFW ADD_CHAR $0F81 - R channel output routine.
DEFW REPORT_J $15C4 - R channel input routine.
DEFB 'R $52 - Channel identifier 'R'.
DEFW POUT $5B34 - P Channel output routine.
DEFW PIN $5B2F - P Channel input routine.
DEFB 'P' $50 - Channel identifier 'P".

DEFB $80 End marker.

The 'Initial Stream Data’

Initially there are seven streams - $FD to $03.
This table is identical to that in ROM 1 at $15C6.
Used at $0226 (ROM 0).

LO59E: DEFB $01, $00 Stream $FD leads to channel 'K'.
DEFB $06, $00 Stream $FE leads to channel 'S'.
DEFB $0B, $00 Stream $FF leads to channel 'R'.
DEFB $01, $00 Stream $00 leads to channel 'K'.
DEFB $01, $00 Stream $01 leads to channel 'K'.
DEFB $06, $00 Stream $02 leads to channel 'S'.

DEFB $10, $00 Stream $03 leads to channel 'P'.

SPECTRUM 128 ROM o DISASSEMBLY

ERROR HANDLER ROUTINES — PART 5

Produce Error Report

LO5AC:

POP HL

LD BC,$7FFD
XOR A

DI

LD (BANK_M),A
OUT (C),A

El

LD SP,($5C3D)
LD A,(HL)

LD (RAMERR),A
INC A

CP $1E

JR NC,L0O5C8

Handle a standard error code

RST 28H
DEFW RAMRST

Handle a new error code

LO5CS:

DEC A
LD (IY+$00),A

LD HL,($5C5D)
LD ($5C5F),HL

RST 28H
DEFW SET_STK
RET

Point to the error byte.

ROM 0, Screen 0, Bank 0, 128 mode.
Ensure interrupts disable whilst paging.
$5B5C. Store new state in BANK_M.
Switch to ROM 0.

Restore SP from ERR_SP.
Fetch the error number.
$5B5E. Store the error number.

[BUG - This should be $1D. As such, error code
‘a’ will be diverted to ROM 1 for handling. Credit:
Paul Farrow]

Jump if not a standard error code.

$5B5D. Call the error handler routine in ROM 1.

Store in ERR_NR.

CH_ADD.

X_PTR. Set up the address of the character after
the '?' marker.

$16C5. Set the calculator stack.
Return to the error routine.

Check for BREAK into Program

LOS5D6:

LD A$7F
IN A,($FE)

Read keyboard row B - SPACE.

SPECTRUM 128 ROM o DISASSEMBLY

RRA
RET C

LD A $FE

IN A,($FE)
RRA

RET C

CALL LO5AC
DEFB $14

Extract the SPACE key.
Return if SPACE not pressed.
Read keyboard row CAPS SHIFT - V.

Extract the CAPS SHIFT key.
Return if CAPS SHIFT not pressed.
Produce an error.

"L Break into program"

RS232 PRINTER ROUTINES

RS232 Channel Handler Routines

This routine handles input and output RS232 requested. It is similar to the routine in the ZX Interface
1 ROM at $0D5A, but in that ROM the routine is only used for input.

LOSEG:

Handle INPUT#

LO60A:

El
EX AF,AF'
LD DE,POUT2

PUSH DE
RES 3,(1Y+$02)
PUSH HL

LD HL,($5C3D)

LD E,(HL)

INC HL

LD D,(HL)

AND A

LD HL,ED_ERROR
SBC HL,DE

JR NZ,L0637

POP HL
LD SP,($5C3D)
POP DE
POP DE

LD ($5C3D),DE
PUSH HL

Enabled interrupts.

Save AF registers.

$5B4A. Address of the RS232 exit routine held in
RAM.

Stack it.

TVFLAG. Indicate not automatic listing.

Save the input/output routine address.

Fetch location of error handler routine from
ERR_SP.

DE=Address of error handler routine.
$107F in ROM 1.

Jump if error handler address is different, i.e. due
to INKEY$# or PRINT#.

Retrieve the input/output routine address.
ERR_SP.

Discard the error handler routine address.

Fetch the original address of ERR_SP (this was
stacked at the beginning of the INPUT routine in
ROM 1).

ERR_SP.

Save the input/output routine address.

SPECTRUM 128 ROM o DISASSEMBLY

LD DE,L0610
PUSH DE
JP (HL)

Return here from the input/output routine

L0610: JR C,L061B
JR Z,L0618

L0614: CALL LO5AC
DEFB $07

A character was not received

L0618: POP HL

JR LO60A
A character was received

LO61B: CP $0D

JR Z,L062D

LD HL,(RETADDR)
PUSH HL

RST 28H

DEFW ADD_CHAR+4
POP HL

LD (RETADDR),HL
POP HL

JR LO60A

Enter was received so end reading the stream
L062D: POP HL
LD A,(BANK_M)
OR $10

PUSH AF
JP POUT2

Handle INKEY$# and PRINT#
L0637: POP HL
LD DE,L063D

PUSH DE
JP (HL)

Address to return to.
Stack the address.
Jump to the RS232 input/output routine.

Jump if a character was received.
Jump if a character was not received.
Produce an error "8 End of file".

Retrieve the input routine address.
Jump back to await another character.

Is it a carriage return?
Jump ahead if so.
$5B5A. Fetch the return address.

$0F85. Insert the character into the INPUT line.

$5B5A. Restore the return address.
Retrieve the input routine address.
Jump back to await another character.

Discard the input routine address.

$5B5C. Fetch current paging configuration.
Select ROM 1.

Stack the required paging configuration.
$5B4A. Exit.

Retrieve the input/output routine address.

Stack the return address.
Jump to input or output routine.

SPECTRUM 128 ROM o DISASSEMBLY

Return here from the input/output routine. When returning from the output routine, either the carry or
zero flags should always be set to avoid the false generation of error report "8 End of file" [though this
is not always the case - see bugs starting at $086C (ROM 0)].

LO63D:

RET C
RET Z

JR L0614

FORMAT Routine

The format command sets the RS232 baud rate, e.g. FORMAT "P"; 9600.

It attempts to match against one of the supported baud rates, or uses the next higher baud rate if a
non-standard value is requested. The maximum baud rate supported is 9600, and this is used for any
rates specified that are higher than this.

L0641:

L0659:

L0661:

RST 28H

DEFW GET_CHAR
RST 28H

DEFW EXPT_EXP
BIT 7,(1Y+$01)

JR Z,L0661

RST 28H

DEFW STK_FETCH
LDAC

DEC A

ORB

JR Z,L0659

CALL LOSAC
DEFB $24

LD A,(DE)

AND $DF

CP'P'

JP NZ,L1912

LD HL,($5C5D)
LD A,(HL)

CP $3B

JP NZ,L1912

RST 28H

DEFW NEXT_CHAR
RST 28H

DEFW EXPT_1NUM
BIT 7,(1Y+$01)

Return if a character was received.

Return if a character was not received or was
written.

Produce error report "8 End of file".

[Could just do RST $18]

$0018.

Get an expression.

$1C8C.

FLAGS.

Jump ahead if syntax checking.

$2BF1. Fetch the expression.

Jump ahead if string is 1 character long.
Produce error report.

"i Invalid device".

Get character.

Convert to upper case.

$50. Is it channel 'P'?

Jump if not to produce error report "C Nonsense
in BASIC".

CH_ADD. Next character to be interpreted.

Next character must be ';'.

Jump if not to produce error report "C Nonsense
in BASIC".

Skip past the ';' character.

$0020. [Could just do RST $20]

Get a numeric expression from the line.

$1C82.

FLAGS. Checking syntax mode?

SPECTRUM 128 ROM o DISASSEMBLY

JR Z,L067D Jump ahead if so.

RST 28H Get the result as an integer.

DEFW FIND_INT2 $1E99.

LD (HD_00),BC $5B71. Store the result temporarily for use later.
LO67D: RST 28H [Could just do RST $18]

DEFW GET_CHAR $0018. Get the next character in the BASIC line.

CP $0D It should be ENTER.

JR Z,L0689 Jump ahead if it is.

CP" $3A. Or the character is allowed to be ":".

JP Nz,L1912 Jump if not to produce error report "C Nonsense

in BASIC".

L0689: CALL L18A1 Check for end of line.

LD BC,(HD_00) $5B71. Get the baud rate saved earlier.

LD AB Is it zero?

ORC

JR NZ,L0698 Jump if not, i.e. a numeric value was specified.

CALL LO5AC Produce error report.

DEFB $25 " invalid baud rate"

Lookup the timing constant to use for the specified baud rate

L0698: LD HL,LO6B8 Table of supported baud rates.
LO69B: LD E,(HL)
INC HL
LD D,(HL)
INC HL
EX DE,HL HL=Supported baud rate value.
LD AH
CP $25 Reached the last baud rate value in the table?
JR NC,LO6AF Jump is so to use a default baud rate of 9600.
AND A
SBC HL,BC Table entry matches or is higher than requested
baud rate?
JR NC,LO6AF Jump ahead if so to use this baud rate.
EX DE,HL
INC HL Skip past the timing constant value
INC HL for this baud rate entry.
JR LO69B

The baud rate has been matched

LOBAF: EX DE,HL HL points to timing value for the baud rate.
LD E,(HL)
INC HL
LD D,(HL) DE=Timing value for the baud rate.

SPECTRUM 128 ROM o DISASSEMBLY

LD (BAUD),DE $5B71. Store new value in system variable
BAUD.
RET

Baud Rate Table

Consists of entries of baud rate value followed by timing constant to use in the RS232 routines.

LO6B8: DEFW $0032, $0AA5 Baud=50.
DEFW $006E, $04D4 Baud=110.
DEFW $012C, $01C3 Baud=300.
DEFW $0258, $00E0 Baud=600.
DEFW $04B0, $006E Baud=1200.
DEFW $0960, $0036 Baud=2400.
DEFW $12C0, $0019 Baud=4800.
DEFW $2580, $000B Baud=9600.

RS232 Input Routine

Exit: Carry flag set if a byte was read with the byte in A. Carry flag reset upon error.

LO6DS: LD HL,SERFL $5B61. SERFL holds second char that can be
received
LD A,(HL) Is the second-character received flag set?
AND A i.e. have we already received data?
JR Z,LO6E5 Jump ahead if not.
LD (HL),$00 Otherwise clear the flag
INC HL
LD A,(HL) and return the data which we received earlier.
SCF Set carry flag to indicate success
RET

Read Byte from RS232 Port

The timing of the routine is achieved using the timing constant held in system variable BAUD.
Exit: Carry flag set if a byte was read, or reset upon error.
A=Byte read in.

LO6ES: CALL LO5D6 Check the BREAK key, and produce error
message if it is being pressed.
DI Ensure interrupts are disabled to achieve

accurate timing.
EXX

SPECTRUM 128 ROM o DISASSEMBLY

LD DE,(BAUD) $5B71. Fetch the baud rate timing constant.

LD HL,(BAUD) $5B71.

SRL H

RR L HL=BAUD/2. So that will sync to half way point in
each bit.

ORA [Redundant byte]

LD B,$FA Waiting time for start bit.

EXX Save B.

LD C,$FD

LD D,$FF

LD E,$BF

LD B,D

LD A$0E

OUT (C),A Selects register 14, port I/O of AY-3-8912.

IN A,(C) Read the current state of the I/O lines.

OR $FO %11110000. Default all input lines to 1.

AND $FB %11111011. Force CTS line to 0.

LD B,E B=$BF.

OUT (C),A Make CTS (Clear To Send) low to indicate ready
to receive.

LD H,A Store status of other 1/O lines.

Look for the start bit

LO70E: LD B,D
IN A,(C) Read the input line.
AND $80 910000000. Test TXD (input) line.
JR Z,LO71E Jump if START BIT found.
LO715: EXX Fetch timeout counter
DECB and decrement it.
EXX Store it.
JR NZ,LO70E Continue to wait for start bit if not timed out.
XOR A Reset carry flag to indicate no byte read.
PUSH AF Save the failure flag.
JR L0757 Timed out waiting for START BIT.
LO71E: IN A,(C) Second test of START BIT - it should still be 0.
AND $80 Test TXD (input) line.
JR NZ,L0715 Jump back if it is no longer 0.
IN A,(C) Third test of START BIT - it should still be 0.
AND $80 Test TXD (input) line.
JR NZ,L0715 Jump back if it is no longer 0.

A start bit has been found, so the 8 data bits are now read in.
As each bit is read in, it is shifted into the msb of A. Bit 7 of A is preloaded with a 1 to represent the
start bit and when this is shifted into the carry flag it signifies that 8 data bits have been read in.

SPECTRUM 128 ROM o DISASSEMBLY

EXX
LD BC,$FFFD
LD A,$80 Preload A with the START BIT. It forms a shift
counter used to count
EX AF,AF' the number of bits to read in.
L0731: ADD HL,DE HL=1.5*(BAUD).
NOP (4) Fine tune the following delay.
NOP
NOP
NOP
BD-DELAY
LO736: DEC HL (6) Delay for 26*BAUD.
LD AH 4
ORL 4
JR NZ,L0736 (12) Jump back to until delay completed.
IN A,(C) Read a bit.
AND $80 Test TXD (input) line.
JP Z,L074B Jump if a O received.
Received one 1
EX AF,AF' Fetch the bit counter.
SCF Set carry flag to indicate received a 1.
RRA Shift received bit into the byte (C->76543210->C).
JR C,LO754 Jump if START BIT has been shifted out
indicating all data bits have been received.
EX AF,AF' Save the bit counter.
JP L0731 Jump back to read the next bit.
Received one 0
LO74B: EX AF,AF' Fetch the bit counter.
ORA Clear carry flag to indicate received a 0.
RRA Shift received bit into the byte (C->76543210->C).
JR C,L0O754 Jump if START BIT has been shifted out
indicating all data bits have been received.
EX AF,AF' Save the bit counter.
JP L0731 Jump back to read next bit.

After looping 8 times to read the 8 data bits, the start bit in the bit counter will be shifted out and hence
A will contain a received byte.

LO754: SCF Signal success.

The success and failure paths converge here

LO757:

LO766:

SPECTRUM 128 ROM o DISASSEMBLY

PUSH AF
EXX

LD AH
OR $04
LD B,E
OUT (C),A

EXX

LD H,D

LD L,E

LD BC,$0007
ORA

SBC HL,BC
DEC HL

LD AH

ORL

JR NZ,L0766
LD BC,$FFFD
ADD HL,DE
ADD HL,DE
ADD HL,DE

Push success flag.

A=%1111x1xx. Force CTS line to 1.

B=$BF.

Make CTS (Clear To Send) high to indicate not
ready to receive.

HL=(BAUD).

HL=(BAUD)-7.
Delay for the stop bit.

Jump back until delay completed.
HL will be $0000.
DE=(BAUD).

HL=3*(BAUD). This is how long to wait for the
next start bit.

The device at the other end of the cable may send a second byte even though CTS is low. So repeat

the procedure to read another byte.

LO771:

IN A,(C)
AND $80

JR Z,LO77F
DEC HL

LD AH

ORL

JR NZ,L0771

Read the input line.

%10000000. Test TXD (input) line.
Jump if START BIT found.
Decrement timeout counter.

Jump back looping for a start bit until a timeout
occurs.

No second byte incoming so return status of the first byte read attempt

LO77F:

POP AF

El
RET
INA(C)
AND $80

Return status of first byte read attempt - carry flag
reset for no byte received or
carry flag set and A holds the received byte.

Second test of START BIT - it should still be 0.
Test TXD (input) line.

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,L0771
INA,(C)
AND $80

JR NZ,L0771

Jump back if it is no longer 0.

Third test of START BIT - it should still be 0.
Test TXD (input) line.

Jump back if it is no longer 0.

A second byte is on its way and is received exactly as before

LO79D:

LO7A2:

Received one 1

Received one 0

LO7B7:

LD H,D

LD L,E

LD BC,$0002
SRLH

RR L

ORA

SBC HL,BC
LD BC,$FFFD
LD A,$80

EX AF,AF'
NOP

NOP

NOP

NOP

ADD HL,DE
DEC HL

LD AH

ORL

JR NZ,LO7A2
INA,(C)
AND $80

JP Z,L07B7

EX AF,AF'
SCF

RRA

JR C,LO7CO

EX AF,AF'
JP LO79D

EX AF,AF'
ORA
RRA

HL=(BAUD).

HL=(BAUD)/2.
HL=(BAUD)/2 - 2.

Preload A with the START BIT. It forms a shift
counter used to count

the number of bits to read in.

Fine tune the following delay.

HL=1.5*(BAUD).
Delay for 26*(BAUD).

Jump back to until delay completed.
Read a bit.

Test TXD (input) line.

Jump if a O received.

Fetch the bit counter.

Set carry flag to indicate received a 1.

Shift received bit into the byte (C->76543210->C).
Jump if START BIT has been shifted out
indicating all data bits have been received.

Save the bit counter.

Jump back to read the next bit.

Fetch the bit counter.
Clear carry flag to indicate received a 0.
Shift received bit into the byte (C->76543210->C).

SPECTRUM 128 ROM o DISASSEMBLY

JR C,LO7CO

EX AF,AF'
JP LO79D

Exit with the byte that was read in

LO7CO: LD HL,SERFL
LD (HL),$01

INC HL
LD (HL),A
POP AF
El

RET

RS232 Output Routine

This routine handles control codes, token expansion, graphics and UDGs. It therefore cannot send

Jump if START BIT has been shifted out
indicating all data bits have been received.
Save the bit counter.

Jump back to read next bit.

$5B61.
Set the flag indicating a second byte is in the
buffer.

Store the second byte read in the buffer.
Return the first byte.
Re-enable interrupts.

binary data and hence cannot support EPSON format ESC control codes [Credit: Andrew Owen].

The routine suffers from a number of bugs as described in the comments below. It also suffers from
a minor flaw in the design, which prevents interlacing screen and printer control codes and their

parameters. For example, the following will not work correctly: 10 LPRINT CHR$ 16

20 PRINT AT 0,0
30 LPRINT CHR$ 0;"ABC"

The control byte 16 gets stored in TVDATA so that the system knows how to interpret its parameter
byte. However, the AT control code 22 in line 20 will overwrite it. When line 30 is executed, TVDATA
still holds the control code for 'AT' and so this line is interpreted as PRINT AT instead of PRINT INK.

[Credit: lan Collier (+3)]
Entry: A=character to output.
Exit: Carry flag reset indicates success.

LO7CA: PUSH AF
LD A,(TVPARS)
ORA
JR Z,LO7EO
DEC A
LD (TVPARS),A
JR NZ,LO7DB

All parameters processed

POP AF

Save the character to print.
$5B65. Number of parameters expected.

Jump if no parameters.

Ignore the parameter.

$5B65.

Jump ahead if we have not processed all
parameters.

Retrieve character to print.

LO7DB:

LO7EOQ:

Process tokens

LO7F2:

LO7FD:

L0803:

Printable character

L0807:

LO81A:

SPECTRUM 128 ROM o DISASSEMBLY

JP L0872
POP AF

LD ($5COF),A
RET

POP AF

CP $A3

JR C,LO7F2

LD HL,(RETADDR)
PUSH HL
RST 28H
DEFW PO_T_UDG

POP HL
LD (RETADDR),HL

SCF
RET

LD HL,$5C3B
RES 0,(HL)
cp"

JR NZ,LO7FD
SET 0,(HL)
CP $7F

JR C,L0803
LD A,

CP $20
JR C,LO81E

PUSH AF
LD HL,COL
INC (HL)

LD A,(WIDTH)
CP (HL)

JR NC,LO81A
CALL L0822
LD A,$01

LD (COL),A
POP AF

JP LOSA3

Jump ahead to continue.
Retrieve character to print.
TVDATA+1. Store it for use later.

Retrieve character to print.

Test against code for 'SPECTRUM'.
Jump ahead if not a token.

$5B5A. Save RETADDR temporarily.

$0B52. Print tokens via call to ROM 1 routine PO-

T&UDG.

$5B5A. Restore the original contents of
RETADDR.

FLAGS.

Suppress printing a leading space.
$20. Is character to output a space?
Jump ahead if not a space.

Signal leading space required.
Compare against copyright symbol.
Jump ahead if not a graphic or UDG character.
$3F. Print a '?' for all graphic and UDG
characters.

Is it a control character?

Jump ahead if so.

Save the character to print.

$5B63. Point to the column number.
Increment the column number.
$5B64. Fetch the number of columns.

Jump if end of row not reached.
Print a carriage return and line feed.

$5B63. Set the print position to column 1.
Retrieve character to print.
Jump ahead to print the character.

SPECTRUM 128 ROM o DISASSEMBLY

Process control codes

LO81E: CP $0D Is it a carriage return?
JR NZ,L0830 Jump ahead if not.

Handle a carriage return

L0822: XOR A
LD (COL),A $5B63. Set the print position back to column 0.
LD A,$0D
CALL LO8A3 Print a carriage return.
LD A,$0A
JP LO8A3 Print a line feed.
L0830: CP $06 Is it a comma?
JR NZ,L0853 Jump ahead if not.

Handle a comma

LD BC,(COL) $5B63. Fetch the column position.
LD E,$00 Will count number of columns to move across to
reach next comma position.
LO83A: INCE Increment column counter.
INCC Increment column position.
LD A,C
CPB End of row reached?
JR Z,L0848 Jump if so.
L0840: SUB $08
JR Z,L0848 Jump if column 8, 16 or 32 reached.
JR NC,L0840 Column position greater so subtract another 8.
JR LO83A Jump back and increment column position again.

Column 8, 16 or 32 reached. Output multiple spaces until the desired column position is reached.

L0848: PUSH DE Save column counter in E.
LD A,$20
CALL LO7CA Output a space via a recursive call.
POP DE Retrieve column counter to E.
DECE More spaces to output?
RET Z Return if no more to output.
JR L0848 Repeat for the next space to output.
L0853: CP $16 Is it AT?
JR Z,L0860 Jump ahead to handle AT.
CP $17 Is it TAB?
JR Z,L0860 Jump ahead to handle TAB.
CP $10 Check for INK, PAPER, FLASH, BRIGHT,

INVERSE, OVER.

SPECTRUM 128 ROM o DISASSEMBLY

RET C
JR L0869

Handle AT and TAB

L0860: LD ($5COE),A

LD A,$02
LD (TVPARS),A
RET

Ignore if not one of these.
Jump ahead to handle INK, PAPER, FLASH,
BRIGHT, INVERSE, OVER.

TV_DATA. Store the control code for use later,
$16 (AT) or $17 (TAB).

Two parameters expected (even for TAB).
$5B65.

Return with zero flag set.

Handle INK, PAPER, FLASH, BRIGHT, INVERSE, OVER

L0869: LD ($5COE),A
LD A,$02

LD (TVPARS),A
RET

All parameters processed

L0872: LD D,A
LD A,($5COE)
CP $16
JR Z,L0882
CP $17
CCF

TV_DATA. Store the control code for use later.
Two parameters expected. [BUG - Should be

1 parameter. 'LPRINT INK 4" will produce error
report 'C Nonsense in BASIC'. Credit: Toni Baker,
ZX Computing Monthly].

$5B65.

[BUG - Should return with the carry flag reset and
the zero flag set. It causes a statement such as
'LPRINT INK 1;' to produce error report '8 End

of file'. It is due to the main RS232 processing
loop using the state of the flags to determine the
success/failure response of the RS232 output
routine. Credit: lan Collier (+3), Andrew Owen
(128)] [The bug can be fixed by inserting a XOR
Ainstruction before the RET instruction. Credit:
Paul Farrow]

D=Character to print.

TV_DATA. Fetch the control code.

Isit AT?

Jump ahead to handle AT parameter.

Is it TAB?

[BUG - Should return with the carry flag reset and
the zero flag set. It causes a statement such as
'LPRINT INK 1;' to produce error report '8 End

of file'. It is due to the main RS232 processing
loop using the state of the flags to determine

the success/failure response of the RS232
output routine. Credit: Toni Baker, ZX Computing
Monthly]

SPECTRUM 128 ROM o DISASSEMBLY

RET Nz Ignore if not TAB.

[The bug can be fixed by replacing the instructions CCF and RET NZ with the following. Credit: Paul
Farrow.

JR ZNOT_TAB
XOR A
RET

NOT_TAB

Handle TAB parameter

LD A,($5COF) TV_DATA+1. Fetch the saved parameter.
LDD,A Fetch parameter to D.

Process AT and TAB

L0882: LD A,(WIDTH) $5B64.
CPD Reached end of row?
JR Z,LO88A Jump ahead if so.
JR NC,L0890 Jump ahead if before end of row.

Column position equal or greater than length of row requested

LO88A: LD B,A (WIDTH).
LD AD TAB/AT column position.
SUB B TAB/AT position - WIDTH.
LDD,A The new required column position.
JR L0882 Handle the new TAB/AT position.
L0890: LD A,D Fetch the desired column number.
ORA
JP Z,L0822 Jump to output a carriage return if column 0
required.
L0895: LD A,(COL) $5B63. Fetch the current column position.
CPD Compare against desired column position.
RET Z Done if reached requested column.
PUSH DE Save the number of spaces to output.
LD A,$20
CALL LO7CA Output a space via a recursive call.
POP DE Retrieve number of spaces to output.
JR L0895 Keep outputting spaces until desired column

reached.

Write Byte to RS232 Port

SPECTRUM 128 ROM o DISASSEMBLY

The timing of the routine is achieved using the timing constant held in system variable BAUD.
Entry: A holds character to send.
Exit: Carry and zero flags reset.

LO8AS:

LOBAF:

Transmit each bit

LO8CS:

Transmita 0

PUSH AF
LD C,$FD
LD D,$FF
LD E,$BF
LD B,D

LD A,$OE
OUT (C),A
CALL LO5D6

IN A(C)

AND $40

JR NZ,LOBAF
LD HL,(BAUD)
LD DE,$0002
OR A

SBC HL,DE
EX DE,HL
POP AF

CPL

SCF
LD B,$0B

DI

PUSH BC
PUSH AF

LD A S$FE

LD H,D

LD L,E

LD BC,$BFFD
JP NC,LO8DA

AND $F7

Save the byte to send.

Select AY register 14 to control the RS232 port.
Check the BREAK key, and produce error
message if it is being pressed.

Read status of data register.

%01000000. Test the DTR line.

Jump back until device is ready for data.
$5B5F. HL=Baud rate timing constant.

DE=(BAUD)-2.

Retrieve the byte to send.

Invert the bits of the byte (RS232 logic is
inverted).

Carry is used to send START BIT.

B=Number of bits to send (1 start + 8 data + 2
stop).

Disable interrupts to ensure accurate timing.

Save the number of bits to send.
Save the data bits.

HL=(BAUD)-2.

AY-3-8912 data register.
Branch to transmit a 1 or a O (initially sending a 0
for the start bit).

Clear the RXD (out) line.

SPECTRUM 128 ROM o DISASSEMBLY

OUT (C),A Send out a 0 (high level).

JR LO8EO Jump ahead to continue with next bit.
Transmita 1
LO8DA: OR $08 Set the RXD (out) line.

OUT (C),A Send out a 1 (low level).

JR LO8EO Jump ahead to continue with next bit.

Delay the length of a bit

LO8EO: DEC HL (6) Delay 26*BAUD cycles.
LD AH 4
ORL 4
JR NZ,LO8EO (12) Jump back until delay is completed.
NOP (4) Fine tune the timing.
NOP 4
NOP 4
POP AF Retrieve the data bits to send.
POP BC Retrieve the number of bits left to send.
ORA Clear carry flag.
RRA Shift the next bit to send into the carry flag.
DJNZ L0O8C8 Jump back to send next bit until all bits sent.
El Re-enable interrupts.
RET Return with carry and zero flags reset.

COPY Command Routine

This routine copies 22 rows of the screen, outputting them to the printer a half row at a time. It is
designed for EPSON compatible printers supporting double density bit graphics and 7/72 inch line
spacing.

Only the pixel information is processed; the attributes are ignored.

LO8FO: LD HL,HD_0OB Half row counter.
LD (HL),$2B Set the half row counter to 43 half rows (will
output 44 half rows in total).
LO8F5: LD HL,L0979 Point to printer configuration data (7/72 inch line
spacing, double density bit graphics).
CALL LO95F Send the configuration data to printer.
CALL L0915 Output a half row, at double height.
LD HL,L0980 Table holds a line feed only.
CALL LO95F Send a line feed to printer.
LD HL,HD_0B $5B72. The half row counter is tested to see if it is
zero

XOR A and if so then the line spacing is reset to its

SPECTRUM 128 ROM o DISASSEMBLY

CP (HL)

JR Z,LO90E
DEC (HL)
JR LOBF5

original value.

Jump if done, resetting printer line spacing.
Decrement half row counter.

Repeat for the next half row.

Copy done so reset printer line spacing before exiting

LO9OE: LD HL,L0982

CALL LO95F
RET

Output Half Row

L0915: LD HL,HD_00
LD (HL),$FF
LO91A: CALL L0926
LD HL,HD_00
XOR A
CP (HL)
RET Z
DEC (HL)
JR LO91A

Output a column of pixels (at double height)

L0926: LD DE,$C000
LD BC,(HD_00)

SCF
RL B
SCF
RL B
LDAC
CPL
LD CA
XOR A

PUSH AF

PUSH DE

PUSH BC
LO93A: CALL LO96D

Point to printer configuration data (1/6 inch line
spacing).

Send the configuration data to printer.

[Could have saved 1 byte by using JP $095F
(ROM 0)]

$5B71. Pixel column counter.

Set pixel column counter to 255 pixels.
Output a column of pixels, at double height.
$5B71. Pixel column counter.

Check if all pixels in this row have been output.
Return if so.

Decrement pixel column counter.

Repeat for all pixels in this row.

D=%211000000. Used to hold the double height
pixel.

$5B71. C=Pixel column counter, B=Half row
counter.

B=2xB+1

B=4xB+3. The pixel row coordinate.
Pixel column counter.

C=255-C. The pixel column coordinate.

Clear A. Used to generate double height nibble of

pixels to output.

Save registers.
Test whether pixel (B,C) is set

SPECTRUM 128 ROM o DISASSEMBLY

POP BC

POP DE Restore registers.

LD E,$00 Set double height pixel = 0.

JR Z,L0944 Jump if pixel is reset.

LD E,D The double height pixel to output (%11000000,
900110000, %00001100 or %00000011).

L0944: POP AF

ORE Add the double height pixel value to the byte to
output.

PUSH AF

DECB Decrement half row coordinate.

SRLD

SRL D Create next double height pixel value
(9600110000, %00001100 or %00000011).

PUSH DE

PUSH BC

JR NC,L093A Repeat for all four pixels in the half row.

POP BC

POP DE Unload the stack.

POP AF

LD B,$03 Send double height nibble of pixels output 3

times.

Output Nibble of Pixels

Send each nibble of pixels (i.e. column of 4 pixels) output 3 times so that the width of a pixel is the
same size as its height.

L0955: PUSH BC
PUSH AF
CALL LO8A3 Send byte to RS232 port.
POP AF
POP BC
DJNZ L0955
RET

Output Characters from Table

This routine is used to send a sequence of EPSON printer control codes out to the RS232 port.
It sends (HL) characters starting from HL+1.

LO95F: LD B,(HL) Get number of bytes to send.
INC HL Point to the data to send.
L0961: LD A,(HL) Retrieve value.

SPECTRUM 128 ROM o DISASSEMBLY

PUSH HL
PUSH BC
CALL LOBA3
POP BC
POP HL
INC HL
DJNZ L0961
RET

Test Whether Pixel (B,C) is Set

LO96D: RST 28H
DEFW PIXEL_ADDR
LD B,A
INC B
XOR A
SCF
L0974 RRA
DJNZ L0974
AND (HL)
RET

Send byte to RS232 port.

Point to next data byte to send.
Repeat for all bytes.

Get address of (B,C) pixel into HL and pixel
position within byte into A.

$22AA.

B=Pixel position within byte (0-7).

Pixel mask.
Carry flag holds bit to be rotated into the mask.
Shift the mask bit into the required bit position.

Isolate this pixel from A.

EPSON Printer Control Code Tables

L0979: DEFB $06

DEFB $1B, $31

DEFB $1B, $4C, $00, $03
L0980: DEFB $01

DEFB $0A
L0982: DEFB $02

DEFB $1B, $32

6 characters follow.

ESC '1' - 7/72 inch line spacing.

ESC 'L' 0 3 - Double density (768 bytes per row).
1 character follows.

Line feed.

2 characters follow.

ESC '2' - 1/6 inch line spacing.

PLAY COMMAND ROUTINES

Up to 3 channels of music/noise are supported by the AY-3-8912 sound generator.

Up to 8 channels of music can be sent to support synthesisers, drum machines or sequencers via
the MIDI interface, with the first 3 channels also played by the AY-3-8912 sound generator. For each
channel of music, a MIDI channel can be assigned to it using the 'Y' command.

The PLAY command reserves and initialises space for the PLAY command. This comprises a block
of $003C bytes used to manage the PLAY command (IY points to this command data block) and a

SPECTRUM 128 ROM o DISASSEMBLY

block of $0037 bytes for each channel string (IX is used to point to the channel data block for the
current channel). [Note that the command data block is $04 bytes larger than it needs to be, and each
channel data block is $11 bytes larger than it needs to be]

Entry: B=The number of strings in the PLAY command (1..8).

Command Data Block Format

1Y+$00 / IY+$01 Channel 0 data block pointer. Points to the data for channel O (string 1).
1Y+$02 / IY+$03 Channel 1 data block pointer. Points to the data for channel 1 (string 2).
IY+$04 / 1Y+$05 Channel 2 data block pointer. Points to the data for channel 2 (string 3).
IY+$06 / 1Y+$07 Channel 3 data block pointer. Points to the data for channel 3 (string 4).
IY+$08 / 1Y+$09 Channel 4 data block pointer. Points to the data for channel 4 (string 5).
IY+$0A / IY+$0B Channel 5 data block pointer. Points to the data for channel 5 (string 6).
IY+$0C / IY+$0D Channel 6 data block pointer. Points to the data for channel 6 (string 7).
IY+$0E / IY+$0F Channel 7 data block pointer. Points to the data for channel 7 (string 8).

1Y+$10 Channel bitmap. Initialised to $FF and a 0 rotated in to the left for each string
parameters

of the PLAY command, thereby indicating the channels in use.

IY+$11 /1Y+$12 Channel data block duration pointer. Points to duration length store in channel 0
data block (string 1).

IY+$13 /1Y+$14 Channel data block duration pointer. Points to duration length store in channel 1
data block (string 2).

IY+$15/1Y+$16 Channel data block duration pointer. Points to duration length store in channel 2
data block (string 3).

IY+$17 / 1Y+$18 Channel data block duration pointer. Points to duration length store in channel 3
data block (string 4).

IY+$19 /1Y+$1A Channel data block duration pointer. Points to duration length store in channel 4
data block (string 5).

IY+$1B / IY+$1C Channel data block duration pointer. Points to duration length store in channel 5
data block (string 6).

IY+$1D / IY+$1E Channel data block duration pointer. Points to duration length store in channel 6
data block (string 7).

IY+$1F / 1Y+$20 Channel data block duration pointer. Points to duration length store in channel 7
data block (string 8).

1Y+$21 Channel selector. It is used as a shift register with bit O initially set and then shift
to the left
until a carry occurs, thereby indicating all 8 possible channels have been
processed.

1Y+$22 Temporary channel bitmap, used to hold a working copy of the channel bitmap at
IY+$10.

1Y+$23 / 1Y+$24 Address of the channel data block pointers, or address of the channel data block
duration pointers

(allows the routine at $0A6E (ROM 0) to be used with both set of pointers).
IY+$25 / 1Y+$26 Stores the smallest duration length of all currently playing channel notes.

IY+$27 / 1Y+$28 The current tempo timing value (derived from the tempo parameter 60..240 beats
per second).

SPECTRUM 128 ROM o DISASSEMBLY

1Y+$29 The current effect waveform value.
IY+$2A Temporary string counter selector.
IY+$2B..IY+$37 Holds a floating point calculator routine.
1Y+$38..1Y+$3B Not used.

Channel Data Block Format

IX+$00 The note number being played on this channel (equivalent to index offset into the
note table).

IX+$01 MIDI channel assigned to this string (range O to 15).

IX+$02 Channel number (range 0 to 7), i.e. index position of the string within the PLAY
command.

IX+$03 12*Octave number (0, 12, 24, 36, 48, 60, 72, 84 or 96).

IX+$04 Current volume (range 0 to 15, or if bit 4 set then using envelope).

IX+$05 Last note duration value as specified in the string (range 1 to 9).

IX+$06 / IX+$07 Address of current position in the string.

IX+$08 / IX+$09 Address of byte after the end of the string.

IX+$0A Flags:
Bit 0 : 1=Single closing bracket found (repeat string indefinitely).
Bits 1-7: Not used (always 0).

IX+$0B Open bracket nesting level (range $00 to $04).

IX+$0C / IX+$0D Return address for opening bracket nesting level 0 (points to character after the
bracket).

IX+$0E / IX+$0F Return address for opening bracket nesting level 1 (points to character after the
bracket).

IX+$10 / IX+$11 Return address for opening bracket nesting level 2 (points to character after the
bracket).

IX+$12 / IX+$13 Return address for opening bracket nesting level 3 (points to character after the
bracket).

IX+$14 / IX+$15 Return address for opening bracket nesting level 4 (points to character after the
bracket).

IX+$16 Closing bracket nesting level (range $FF to $04).

IX+$17...IX+$18 Return address for closing bracket nesting level O (points to character after the
bracket).

IX+$19...IX+$1A Return address for closing bracket nesting level 1 (points to character after the
bracket).

IX+$1B...IX+$1C Return address for closing bracket nesting level 2 (points to character after the
bracket).

IX+$1D...IX+$1E Return address for closing bracket nesting level 3 (points to character after the
bracket).

IX+$1F...IX+$20 Return address for closing bracket nesting level 4 (points to character after the
bracket).

IX+$21 Tied notes counter (for a single note the value is 1).

IX+$22 / IX+$23 Duration length, specified in 96ths of a note.

SPECTRUM 128 ROM o DISASSEMBLY

IX+$24...1X+$25 Subsequent note duration length (used only with triplets), specified in 96ths of a

note.

IX+$26...1X+$36 Not used.

L0985:

DI

Disable interrupts to ensure accurate timing.

Create a workspace for the play channel command strings

L098D:

PUSH BC

LD DE,$0037

LD HL,$003C

ADD HL,DE

DJNZ L0O98D

LDC,L

LD B,H

RST 28H

DEFW BC_SPACES

DI

PUSH DE
POP IY

PUSH HL
POP IX

LD (1Y+$10),$FF

Loop over each string to be played

LO9AO:

LD BC,$FFC9

ADD IX,BC
LD (IX+$03),$3C
LD (IX+$01),$FF
LD (IX+$04),$0F
LD (IX+$05),$05
LD (IX+$21),$00
LD (IX+$0A),$00
LD (IX+$0B),$00
LD (IX+$16),$FF
LD (IX+$17),$00

B=Number of channel string (range 1 to 8). Also
used as string index number in the following loop.

Calculate HL=$003C + ($0037 * B).

BC=Space required (maximum = $01F4).

$0030. Make BC bytes of space in the
workspace.

Interrupts get re-enabled by the call mechanism
to ROM 1 so disable them again.

IY=Points at first new byte - the command data
block.

IX=Points at last new byte - byte after all channel
information blocks.

Initial channel bitmap with value meaning ‘zero
strings'

$-37 ($37 bytes is the size of a play channel
string information block).

IX points to start of space for the last channel.
Default octave is 5.

No MIDI channel assigned.

Default volume is 15.

Default note duration.

Count of the number of tied notes.

Signal not to repeat the string indefinitely.

No opening bracket nesting level.

No closing bracket nesting level.

Return address for closing bracket nesting level
0.

SPECTRUM 128 ROM o DISASSEMBLY

LD (IX+$18),$00

[No need to initialise this since it is written to
before it is ever tested]

[BUG - At this point interrupts are disabled and IY is now being used as a pointer to the master
PLAY information block. Unfortunately, interrupts are enabled during the STK_FETCH call and 1Y
is left containing the wrong value. This means that if an interrupt were to occur during execution
of the subroutine then there would be a one in 65536 chance that (I'Y+$40) will be corrupted - this
corresponds to the volume setting for music channel A. Rewriting the SWAP routine to only re-enable
interrupts if they were originally enabled would cure this bug (see end of file for description of her
suggested fix). Credit: Toni Baker, ZX Computing Monthly] [An alternative and simpler solution to the
fix Toni Baker describes would be to stack 1Y, set IY to point to the system variables at $5C3A, call
STK_FETCH, disable interrupts, then pop the stacked value back to 1Y. Credit: Paul Farrow]

RST 28H
DEFW STK_FETCH
DI

LD (IX+$06),E

LD (IX+$07),D
LD (IX+$0C),E

LD (IX+$0D),D

EX DE,HL
ADD HL,BC
LD (IX+$08),L
LD (IX+$09),H
POP BC
PUSH BC
DEC B

LD C,B

LD B,$00
SLAC

PUSH IY
POP HL

ADD HL,BC
PUSH IX
POP BC

LD (HL),C
INC HL

LD (HL),B
ORA

RL (IY+$10)

Get the details of the string from the stack.
$2BF1.

Interrupts get re-enabled by the call mechanism
to ROM 1 so disable them again.

Store the current position within in the string, i.e.
the beginning of it.

Store the return position within the string for a
closing bracket,

which is initially the start of the string in case a
single closing bracket is found.

HL=Points to start of string. BC=Length of string.
HL=Points to address of byte after the string.
Store the address of the character just

after the string.

B=String index number (range 1 to 8).

Save it on the stack again.

Reduce the index so it ranges from 0 to 7.

BC=String index*2.

HL=Address of the command data block.
Skip 8 channel data pointer words.

BC=Address of current channel information block.
Store the pointer to the channel information block.

Clear the carry flag.

Rotate one zero-bit into the least significant bit of
the channel bitmap. This initially holds $FF but
once this loop is over, this byte has a zero bit for
each string parameter of the PLAY command.

Entry point here from the vector table at $011B

LOAOS:

SPECTRUM 128 ROM o DISASSEMBLY

POP BC
DEC B

PUSH BC

LD (IX+$02),B
JR NZ,LO9AO
POP BC

LD (IY+$27),$1A
LD (IY+$28),$0B

PUSH IY
POP HL

LD BC,$002B
ADD HL,BC
EX DE,HL

LD HL,LOA31
LD BC,$000D
LDIR

LD D,$07

LD E,$F8

CALL LOE7C
LD D,$0B
LD E,$FF
CALL LOE7C
INC D

CALL LOE7C
JR LOA7D

B=Current string index.

Decrement string index so it ranges from 0 to 7.
Save it for future use on the next iteration.

Store the channel number.

Jump back while more channel strings to process.
Drop item left on the stack.

Set the initial tempo timing value.
Corresponds to a 'T' command value of 120, and
gives two crotchets per second.

HL=Points to the command data block.

DE=Address to store RAM routine.
HL=Address of the RAM routine bytes.

Copy the calculator routine to RAM.

Register 7 - Mixer.

I/O ports are inputs, noise output off, tone output
on.

Write to sound generator register.

Register 11 - Envelope Period (Fine).

Set period to maximum.

Write to sound generator register.

Register 12 - Envelope Period (Coarse).

Write to sound generator register.

Jump ahead to continue. [Could have saved
these 2 bytes by having the code at $0A7D (ROM
0) immediately follow]

Calculate Timing Loop Counter « RAM Routine »

This routine is copied into the command data block (offset $2B..$37) by the routine at $0A05 (ROM 0).
It uses the floating point calculator found in ROM 1, which is usually invoked via a RST $28 instruction.
Since ROM 0 uses RST $28 to call aroutine in ROM 1, itis unable to invoke the floating point calculator
this way. It therefore copies the following routine to RAM and calls it with ROM 1 paged in.

The routine calculates (10/x)/7.33e-6, where x is the tempo 'T' parameter value multiplied by 4. The
result is used an inner loop counter in the wait routine at $0F76 (ROM 0).

Each iteration of this loop takes 26 T-states. The time taken by 26 T-states is 7.33e-6 seconds. So
the total time for the loop to execute is 2.5/TEMPO seconds.

Entry: The value 4*TEMPO exists on the calculator stack (where TEMPO is in the range 60..240).

Exit :

The calculator stack holds the result.

SPECTRUM 128 ROM o DISASSEMBLY

LOA31: RST 28H Invoke the floating point calculator.
DEFB $A4 stk-ten. = x, 10
DEFB $01 exchange. = 10, x
DEFB $05 division. = 10/x
DEFB $34 stk-data. = 10/x, 7.33e-6
DEFB $DF - exponent $6F (floating point number 7.33e-6).
DEFB $75 - mantissa byte 1
DEFB $F4 - mantissa byte 2
DEFB $38 - mantissa byte 3
DEFB $75 - mantissa byte 4
DEFB $05 division. = (10/x)/7.33e-6
DEFB $38 end-calc.
RET

Test BREAK Key

Test for BREAK being pressed.
Exit: Carry flag reset if BREAK is being pressed.

LOA3E: LD A$7F
IN A,($FE)
RRA
RET C Return with carry flag set if SPACE not pressed.
LD A S$FE
IN A,($FE)
RRA
RET Return with carry flag set if CAPS not pressed.

Select Channel Data Block Duration Pointers

Point to the start of the channel data block duration pointers within the command data block.
Entry: lIY=Address of the command data block.
Exit: HL=Address of current channel pointer.

LOA4A: LD BC,$0011 Offset to the channel data block duration pointers
table.
JR LOA52 Jump ahead to continue.

Select Channel Data Block Pointers

Point to the start of the channel data block pointers within the command data block.
Entry: IY=Address of the command data block.
Exit: HL=Address of current channel pointer.

SPECTRUM 128 ROM o DISASSEMBLY

LOAAF: LD BC,$0000 Offset to the channel data block pointers table.
LOAS2: PUSH IY

POP HL HL=Point to the command data block.

ADD HL,BC Point to the desired channel pointers table.

LD (IY+$23),L
LD (IY+$24),H
LD A,(IY+$10)
LD (IY+$22),A

LD (1Y+$21),$01

RET

Store the start address of channels pointer table.
Fetch the channel bitmap.

Initialise the working copy.

Channel selector. Set the shift register to indicate
the first channel.

Get Channel Data Block Address for Current String

LOAG7: LD E,(HL)
INC HL
LD D,(HL) Fetch the address of the current channel data
block.
PUSH DE
POP IX Return itin IX.
RET

Next Channel Data Pointer

LOAGE:

LD L,(IY+$23)
LD H,(IY+$24)
INC HL

INC HL

LD (IY+$23),L
LD (IY+$24),H
RET

The address of current channel data pointer.

Advance to the next channel data pointer.

The address of new channel data pointer.

PLAY Command (Continuation)

This section is responsible for processing the PLAY command and is a continuation of the routine at
$0985 (ROM 0). It begins by determining the first note to play on each channel and then enters a loop
to play these notes, fetching the subsequent notes to play at the appropriate times.

LOAT7D: CALL LOA4F Select channel data block pointers.

SPECTRUM 128 ROM o DISASSEMBLY

LOAB8O: RR (IY+$22) Working copy of channel bitmap. Test if next
string present.
JR C,LOA8C Jump ahead if there is no string for this channel.

HL=Address of channel data pointer.

CALL LOA67 Get address of channel data block for the current
string into IX.

CALL LOB5C Find the first note to play for this channel from its
play string.

LOA8C: SLA (IY+$21) Have all channels been processed?

JR C,LOA97 Jump ahead if so.

CALL LOAGE Advance to the next channel data block pointer.

JR LOA80 Jump back to process the next channel.

The first notes to play for each channel have now been determined. A loop is entered that coordinates
playing the notes and fetching subsequent notes when required. Notes across channels may be of
different lengths and so the shortest one is determined, the tones for all channels set and then a
waiting delay entered for the shortest note delay. This delay length is then subtracted from all channel
note lengths to leave the remaining lengths that each note needs to be played for. For the channel
with the smallest note length, this will now have completely played and so a new note is fetched for it.
The smallest length of the current notes is then determined again and the process described above
repeated. A test is made on each iteration to see if all channels have run out of data to play, and if
so this ends the PLAY command.

LOA97: CALL LOF91 Find smallest duration length of the current notes
across all channels.
PUSH DE Save the smallest duration length.
CALL LOF42 Play a note on each channel.
POP DE DE=The smallest duration length.
LOA9F: LD A,(IY+$10) Channel bitmap.
CP $FF Is there anything to play?
JR NZ,LOAAB Jump if there is.
CALL LOE93 Turn off all sound and restore IY.
El Re-enable interrupts.
RET End of play command.
LOAAB: DEC DE DE=Smallest channel duration length, i.e.
duration until the next channel state change.
CALL LOF76 Perform a wait.
CALL LOFC1 Play a note on each channel and update the
channel duration lengths.
CALL LOF91 Find smallest duration length of the current notes

across all channels.
JR LOA9F Jump back to see if there is more to process.

SPECTRUM 128 ROM o DISASSEMBLY

PLAY Command Character Table

Recognised characters in PLAY commands.

LOABTY:

DEFM "HZYXWUVMT)(NO!"

Get Play Character

Get the current character from the PLAY string and then increment the character pointer within the

string.

Exit: Carry flag set if string has been fully processed.

Carry flag reset if character is available.

A=Character available.

LOACS:

Get Next Note in Semitones

CALL LOEE3

RET C
INC (IX+$06)
RET NZ

INC (IX+$07)
RET

Get the current character from the play string for
this channel.

Return if no more characters.

Increment the low byte of the string pointer.
Return if it has not overflowed.

Else increment the high byte of the string pointer.
Returns with carry flag reset.

Finds the number of semitones above C for the next note in the string,

Entry:
Exit :

LOAD1:

LOADA4:

LOADF:

LOAE1:

LOAEC:

IX=Address of the channel data block.
A=Number of semitones above C, or $80 for a rest.

PUSH HL
LD C,$00
CALL LOACS

JR C,LOAEL
CP'&

JR NZ,LOAEC
LD A,$80
POP HL

RET

LD A,(IY+$21)
OR (IY+5$10)
LD (IY+$10),A
JR LOADF
cP#

Save HL.

Default is for a 'natural’ note, i.e. no adjustment.
Get the current character from the PLAY string,
and advance the position pointer.

Jump if at the end of the string.

$26. Is it a rest?

Jump ahead if not.

Signal that it is a rest.

Restore HL.

Fetch the channel selector.

Clear the channel flag for this string.
Store the new channel bitmap.
Jump back to return.

$23. Is it a sharpen?

LOAF3:

LOAFA:

LOBO4:

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,LOAF3
INCC

JR LOAD4
cP'y

JR NZ,LOAFA
DECC

JR LOAD4
BIT 5,A

JR NZ,L0B04
PUSH AF

LD A,$0C
ADD AC
LDCA

POP AF
AND $DF
SUB $41

JP C,LOF22

CP $07
JP NC,LOF22

PUSH BC

LD B,$00

LD CA

LD HL,LODF9

ADD HL,BC
LD A,(HL)
POP BC
ADD A,C

POP HL
RET

Jump ahead if not.

Increment by a semitone.

Jump back to get the next character.
$24. Is it a flatten?

Jump ahead if not.

Decrement by a semitone.

Jump back to get the next character.
Is it a lower case letter?

Jump ahead if lower case.

It is an upper case letter so

increase an octave

by adding 12 semitones.

Convert to upper case.

Reduce to range 'A’->0 .. 'G'->6.

Jump if below 'A’ to produce error report "k Invalid
note name".

Is it 7 or above?

Jump if so to produce error report "k Invalid note
name".

C=Number of semitones.

BC holds 0..6 for 'a'’..'g".
Look up the number of semitones above note C
for the note.

A=Number of semitones above note C.
C=Number of semitones due to sharpen/flatten
characters.

Adjust number of semitones above note C for the
sharpen/flatten characters.

Restore HL.

Get Numeric Value from Play String

Get a numeric value from a PLAY string, returning O if no numeric value present.

Entry:
Exit :

LOB1D:

IX=Address of the channel data block.
BC=Numeric value, or 0 if no numeric value found.

PUSH HL
PUSH DE
LD L, (IX+$06)

LD H,(IX+$07)

Save registers.

Get the pointer into the PLAY string.

LOB28:

LOB42:

SPECTRUM 128 ROM o DISASSEMBLY

LD DE,$0000
LD A,(HL)
cPO

JR C,LOB45
cp

JR NC,LOB45
INC HL
PUSH HL
CALL LOB50
SUB'0'

LD H,$00

LD L,A

ADD HL,DE
JR C,LOB42

EX DE,HL
POP HL

JR LOB28
JP LOF1A

The end of the numeric value was reached

LOBA45:

LD (IX+$086),L
LD (IX+$07),H
PUSH DE
POP BC

POP DE

POP HL

RET

Multiply DE by 10

LOB50:

LOB55:

LD HL,$0000
LD B,$0A
ADD HL,DE
JR C,LOB42

DJNZ LOB55
EX DE,HL
RET

Initialise result to 0.

$30. Is character numeric?

Jump ahead if not.

$3A. Is character numeric?

Jump ahead if not.

Advance to the next character.

Save the pointer into the string.

Multiply result so far by 10.

$30. Convert ASCII digit to numeric value.

HL=Numeric digit value.

Add the numeric value to the result so far.

Jump ahead if an overflow to produce error report
"I number too big".

Transfer the result into DE.

Retrieve the pointer into the string.

Loop back to handle any further numeric digits.
Jump to produce error report "I number too big".
[Could have saved 1 byte by directly using JP C,
$OF1A (ROM 0) instead of using this JP and the
two JR C,$0B42 (ROM 0) instructions that come
here]

Store the new pointer position into the string.

Return the result in BC.
Restore registers.

Add DE to HL ten times.

Jump ahead if an overflow to produce error report
"I number too big".

Transfer the result into DE.

SPECTRUM 128 ROM o DISASSEMBLY

Find Next Note from Channel String

LOB5C:

LOB69:

CALL LOA3E
JR C,LOB69

CALL LOE93
El

CALL LO5AC

DEFB $14
CALL LOACS

JP C,LODA2
CALL LODFO

LD B,$00
SLAC

LD HL,LODCA
ADD HL,BC

LD E,(HL)
INC HL

LD D,(HL)
EX DE,HL

CALL LOB84
JR LOB5C

Test for BREAK being pressed.

Jump ahead if not pressed.

Turn off all sound and restore 1Y.

Re-enable interrupts.

Produce error report. [Could have saved 1 byte
by using JP $05D6 (ROM 0)]

"L Break into program"

Get the current character from the PLAY string,
and advance the position pointer.

Jump if at the end of the string.

Find the handler routine for the PLAY command
character.

Generate the offset into the

command vector table.

HL points to handler routine for this command
character.

Fetch the handler routine address.
HL=Handler routine address for this command
character.

Make an indirect call to the handler routine.
Jump back to handle the next character in the
string.

Comes here after processing a non-numeric digit that does not have a specific command routine
handler Hence the next note to play has been determined and so a return is made to process the

other channels.

LOB83:
LOB84:

Play Command '!' (Comment)

RET
JP (HL)

Just make a return.
Jump to the command handler routine.

A comment is enclosed within exclamation marks, e.g. "! A comment !".

Entry: IX=Address of the channel data block.

LOB8S:

CALL LOACS

JP C,LODAL

Get the current character from the PLAY string,
and advance the position pointer.
Jump if at the end of the string.

SPECTRUM 128 ROM o DISASSEMBLY

cpv $21. Is it the end-of-comment character?
RET Z Return if it is.
JR LOB85 Jump back to test the next character.

Play Command 'O’ (Octave)

The 'O' command is followed by a numeric value within the range 0 to 8, although due to loose range
checking the value MOD 256 only needs to be within 0 to 8. Hence 0256 operates the same as OO.
Entry: IX=Address of the channel data block.

LOB90: CALL LOB1D Get following numeric value from the string into

BC.

LD AC Is it between 0 and 8?

CP $09

JP NC,LOF12 Jump if above 8 to produce error report "n Out of
range".

SLA A Multiply A by 12.

SLAA

LD B,A

SLAA

ADD A,B

LD (IX+3$03),A Store the octave value.

RET

Play Command 'N' (Separator)

The 'N' command is simply a separator marker and so is ignored.
Entry: IX=Address of the channel data block.

LOBAS: RET Nothing to do so make an immediate return.

Play Command '((Start of Repeat)

A phrase can be enclosed within brackets causing it to be repeated, i.e. played twice.
Entry: IX=Address of the channel data block.

LOBAG: LD A,(IX+$0B) A=Current level of open bracket nesting.
INC A Increment the count.
CP $05 Only 4 levels supported.
JP Z,LOF2A Jump if this is the fifth to produce error report "d

Too many brackets".
LD (IX+$0B),A Store the new open bracket nesting level.

SPECTRUM 128 ROM o DISASSEMBLY

LD DE,$000C Offset to the bracket level return position stores.

CALL LoC27 HL=Address of the pointer in which to store the
return location of the bracket.

LD A,(IX+$06) Store the current string position as the return
address of the open bracket.

LD (HL),A

INC HL

LD A,(IX+$07)

LD (HL),A

RET

Play Command ') (End of Repeat)

A phrase can be enclosed within brackets causing it to be repeated, i.e. played twice.

Brackets can also be nested within each other, to 4 levels deep.

If a closing bracket if used without a matching opening bracket then the whole string up until that point
is repeated indefinitely.

Entry:

LOBC2:

IX=Address of the channel data block.

LD A,(IX+$16) Fetch the nesting level of closing brackets.

LD DE,$0017 Offset to the closing bracket return address store.
ORA Is there any bracket nesting so far?

JP M,LOBFO Jump if none. [Could have been faster by jumping

to $0BF3 (ROM 0)]

Has the bracket level been repeated, i.e. re-reached the same position in the string as the closing
bracket return address?

CALL LOC27 HL=Address of the pointer to the corresponding
closing bracket return address store.

LD A,(IX+$06) Fetch the low byte of the current address.

CP (HL) Re-reached the closing bracket?

JR NZ,LOBFO Jump ahead if not.

INC HL Point to the high byte.

LD A,(IX+$07) Fetch the high byte address of the current
address.

CP (HL) Re-reached the closing bracket?

JR NZ,LOBFO Jump ahead if not.

The bracket level has been repeated. Now check whether this was the outer bracket level.

DEC (IX+$16) Decrement the closing bracket nesting level since
this level has been repeated.

The outer bracket level has been repeated

SPECTRUM 128 ROM o DISASSEMBLY

LD A,(IX+$16)

ORA
RET P

BIT 0,(IX+$0A)

RET Z

[There is no need for the LD A,(IX+$16) and OR
A instructions since the DEC (IX+$16) already set
the flags]

Reached the outer bracket nesting level?

Return if not the outer bracket nesting level such
that the character after the closing bracket is
processed next.

Was this a single closing bracket?
Return if it was not.

The repeat was caused by a single closing bracket so re-initialise the repeat

A new level of closing bracket nesting

LOBFO:

LOCOB:

LD (IX+$16),$00

XOR A
JR LOCOB

LD A,(IX+$16)
INC A
CP $05

JP Z,LOF2A

LD (IX+$16),A
CALL LOC27

LD A,(IX+$06)

LD (HL),A
INC HL

LD A,(IX+$07)
LD (HL),A

LD A,(IX+$0B)
LD DE,$000C
CALL LOC27

LD A,(HL)
LD (IX+$06),A

INC HL
LD A,(HL)

Restore one level of closing bracket nesting.
Select closing bracket nesting level 0.
Jump ahead to continue.

Fetch the nesting level of closing brackets.
Increment the count.

Only 5 levels supported (4 to match up with
opening brackets and a 5th to repeat indefinitely).
Jump if this is the fifth to produce error report "d
Too many brackets".

Store the new closing bracket nesting level.
HL=Address of the pointer to the appropriate
closing bracket return address store.

Store the current string position as the return
address for the closing bracket.

Fetch the nesting level of opening brackets.

HL=Address of the pointer to the opening bracket
nesting level return address store.

Set the return address of the nesting level's
opening bracket

as new current position within the string.

For a single closing bracket only, this will be the
start address of the string.

SPECTRUM 128 ROM o DISASSEMBLY

LD (IX+$07),A

DEC (IX+$0B) Decrement level of open bracket nesting.
RET P Return if the closing bracket matched an open
bracket.

There is one more closing bracket then opening brackets, i.e. repeat string indefinitely

LD (IX+$0B),$00 Set the opening brackets nesting level to 0.

SET 0,(IX+$0A) Signal a single closing bracket only, i.e. to repeat
the string indefinitely.

RET

Get Address of Bracket Pointer Store

LOC27: PUSH IX
POP HL HL=IX.
ADD HL,DE HL=IX+DE.
LD B,$00
LDCA
SLAC
ADD HL,BC HL=IX+DE+2*A.
RET

Play Command 'T' (Tempo)

A temp command must be specified in the first play string and is followed by a numeric value in the
range 60 to 240 representing the number of beats (crotchets) per minute.
Entry: IX=Address of the channel data block.

LOC32: CALL LOB1D Get following numeric value from the string into

BC.

LD AB

ORA

JP NZ,LOF12 Jump if 256 or above to produce error report "n
Out of range".

LDA,C

CP $3C

JP C,LOF12 Jump if 59 or below to produce error report "n Out
of range".

CP $F1

JP NC,LOF12 Jump if 241 or above to produce error report "n

Out of range".

SPECTRUM 128 ROM o DISASSEMBLY

A holds a value in the range 60 to 240

LD A,(IX+$02) Fetch the channel number.

ORA Tempo 'T' commands have to be specified in the
first string.

RET Nz If it is in a later string then ignore it.

LD B,$00 [Redundant instruction - B is already zero]

PUSH BC C=Tempo value.

POP HL

ADD HL,HL

ADD HL,HL HL=Tempo*4.

PUSH HL

POP BC BC=Tempo*4. [Would have been quicker to use
the combination LD B,H and LD C,L]

PUSH IY Save the pointer to the play command data block.

RST 28H

DEFW STACK_BC

$2D2B. Place the contents of BC onto the stack.
The call restores 1Y to $5C3A.

DI Interrupts get re-enabled by the call mechanism
to ROM 1 so disable them again.

POP IY Restore 1Y to point at the play command data
block.

PUSH IY Save the pointer to the play command data block.

PUSH IY

POP HL HL=pointer to the play command data block.

LD BC,$002B

ADD HL,BC HL =1Y+$002B.

LD IY,$5C3A Reset 1Y to $5C3A since this is required by the
floating point calculator.

PUSH HL HL=Points to the calculator RAM routine.

LD HL,LOC76

LD (RETADDR),HL
LD HL,YOUNGER

$5B5A. Set up the return address.

EX (SP),HL Stack the address of the swap routine used when
returning to this ROM.

PUSH HL Re-stack the address of the calculator RAM
routine.

JP SWAP $5B00. Toggle to other ROM and make a return

to the calculator RAM routine.

Tempo Command Return

The calculator stack now holds the value (10/(Tempo*4))/7.33e-6 and this is stored as the tempo value.
The result is used an inner loop counter in the wait routine at $0F76 (ROM 0). Each iteration of this
loop takes 26 T-states. The time taken by 26 T-states is 7.33e-6 seconds. So the total time for the
loop to execute is 2.5/TEMPO seconds.

SPECTRUM 128 ROM o DISASSEMBLY

LOC76: DI Interrupts get re-enabled by the call mechanism

to ROM 1 so disable them again.

RST 28H

DEFW FP_TO_BC $2DA2. Fetch the value on the top of the
calculator stack.

DI Interrupts get re-enabled by the call mechanism
to ROM 1 so disable them again.

POP IY Restore 1Y to point at the play command data
block.

LD (IY+$27),C Store tempo timing value.

LD (1Y+$28),B

RET

Play Command 'M' (Mixer)

This command is used to select whether to use tone and/or noise on each of the 3 channels.

It is followed by a numeric value in the range 1 to 63, although due to loose range checking the value
MOD 256 only needs to be within 0 to 63. Hence M256 operates the same as MO.

Entry: IX=Address of the channel data block.

LOC84: CALL LOB1D Get following numeric value from the string into
BC.
LDA,C A=Mixer value.
CP $40 Is it 64 or above?
JP NC,LOF12 Jump if so to produce error report "n Out of
range".

Bit 0: 1=Enable channel A tone.
Bit 1: 1=Enable channel B tone.
Bit 2: 1=Enable channel C tone.
Bit 3: 1=Enable channel A noise.
Bit 4: 1=Enable channel B noise.
Bit 5: 1=Enable channel C noise.

CPL Invert the bits since the sound generator's mixer
register uses active low enable. This also sets bit
6 1, which selects the I/O port as an output.

LDE,A E=Mixer value.

LD D,$07 D=Register 7 - Mixer.

CALL LOE7C Write to sound generator register to set the mixer.
RET [Could have saved 1 byte by using JP $0E7C

(ROM 0)]

SPECTRUM 128 ROM o DISASSEMBLY

Play Command 'V' (Volume)

This sets the volume of a channel and is followed by a numeric value in the range 0 (minimum) to 15
(maximum), although due to loose range checking the value MOD 256 only needs to be within 0 to
15. Hence V256 operates the same as VO.

Entry: IX=Address of the channel data block.

LOC95: CALL LOB1D Get following numeric value from the string into
BC.
LDA,C
CP $10 Is it 16 or above?
JP NC,LOF12 Jump if so to produce error report "n Out of
range".
LD (IX+$04),A Store the volume level.

[BUG - An attempt to set the volume for a sound chip channel is now made. However, this routine fails
to take into account that it is also called to set the volume for a MIDI only channel, i.e. play strings 4 to
8. As a result, corruption occurs to various sound generator registers, causing spurious sound output.
There is in fact no need for this routine to set the volume for any channels since this is done every
time a new note is played - see routine at $0A97 (ROM 0). the bug fix is to simply to make a return at
this point. This routine therefore contains 11 surplus bytes. Credit: lan Collier (+3), Paul Farrow (128)]

LD E,(IX+$02) E=Channel number.

LD A,$08 Offset by 8.

ADD A,E A=8+index.

LDD,A D=Sound generator register number for the
channel.

LDE,C E=Volume level.

CALL LOE7C Write to sound generator register to set the
volume for the channel.

RET [Could have saved 1 byte by using JP $0E7C
(ROM 0)]

Play Command 'U' (Use Volume Effect)

This command turns on envelope waveform effects for a particular sound chip channel. The volume
level is now controlled by the selected envelope waveform for the channel, as defined by the 'W'
command. MIDI channels do not support envelope waveforms and so the routine has the effect of
setting the volume of a MIDI channel to maximum, i.e. 15. It might seem odd that the volume for MIDI
channels is set to 15 rather than just filtered out. However, the three sound chip channels can also
drive three MIDI channels and so it would be inconsistent for these MIDI channels to have their volume
set to 15 but have the other MIDI channels behave differently. However, it could be argued that all
MIDI channels should be unaffected by the 'U' command.

There are no parameters to this command.

SPECTRUM 128 ROM o DISASSEMBLY

Entry: IX=Address of the channel data block.

LOCAD: LD E,(IX+$02)
LD A,$08
ADD AE
LD DA

LD E,$1F

LD (IX+$04),E

RET

Get the channel number.

Offset by 8.

A=8+index.

D=Sound generator register number for the
channel. [This is not used and so there is no need
to generate it. It was probably a left over from
copying and modifying the 'V' command routine.
Deleting it would save 7 bytes. Credit: lan Collier
(+3), Paul Farrow (128)]

E=Select envelope defined by register 13, and
reset volume bits to maximum (though these are
not used with the envelope).

Store that the envelope is being used (along with
the reset volume level).

Play command 'W' (Volume Effect Specifier)

This command selects the envelope waveform to use and is followed by a numeric value in the range
0 to 7, although due to loose range checking the value MOD 256 only needs to be within O to 7.

Hence W256 operates the same as WO.

Entry: IX=Address of the channel data block.

LOCBA: CALL LOB1D

LDAC
CP $08
JP NC,LOF12

LD B,$00

LD HL,LODES
ADD HL,BC
LD A,(HL)

LD (IY+$29),A
RET

Get following numeric value from the string into
BC.

Is it 8 or above?
Jump if so to produce error report "n Out of
range".

Envelope waveform lookup table.
HL points to the corresponding value in the table.

Store new effect waveform value.

Play Command 'X' (Volume Effect Duration)

This command allows the duration of a waveform effect to be specified, and is followed by a numeric
value in the range 0 to 65535. A value of 1 corresponds to the minimum duration, increasing up to
65535 and then maximum duration for a value of 0. If no numeric value is specified then the maximum

duration is used.

Entry:

LOCCE:

SPECTRUM 128 ROM o DISASSEMBLY

IX=Address of the channel data block.

CALL LOB1D

LD D,$0B
LDE,C
CALL LOE7C

INC D
LDEB
CALL LOE7C

RET

Get following numeric value from the string into
BC.
Register 11 - Envelope Period Fine.

Write to sound generator register to set the
envelope period (low byte).
Register 12 - Envelope Period Coarse.

Write to sound generator register to set the
envelope period (high byte).

[Could have saved 1 byte by using JP $0E7C
(ROM 0)]

Play Command "Y' (MIDI Channel)

This command sets the MIDI channel number that the string is assigned to and is followed by a numeric
value in the range 1 to 16, although due to loose range checking the value MOD 256 only needs to
be within 1 to 16.

Hence Y257 operates the same as Y1.

Entry:

LOCDD:

IX=Address of the channel data block.

CALL LOB1D
LDAC

DEC A

JP M,LOF12

CP $10
JP NC,LOF12

LD (IX+$01),A

RET

Get following numeric value from the string into
BC.

Is it 0?

Jump if so to produce error report "n Out of
range".

Is it 10 or above?

Jump if so to produce error report "n Out of
range".

Store MIDI channel number that this string is
assigned to.

Play Command 'Z' (MIDI Programming Code)

This command is used to send a programming code to the MIDI port. It is followed by a numeric value
in the range 0 to 255, although due to loose range checking the value MOD 256 only needs to be
within 0 to 255. Hence Z256 operates the same as Z0.

Entry:

IX=Address of the channel data block.

SPECTRUM 128 ROM o DISASSEMBLY

LOCEE: CALL LOB1D Get following numeric value from the string into
BC.
LD AC A=(low byte of) the value.
CALL L11A3 Write byte to MIDI device.
RET [Could have saved 1 byte by using JP $0E7C
(ROM 0)]

Play Command 'H' (Stop)

This command stops further processing of a play command. It has no parameters.
Entry: IX=Address of the channel data block.

LOCF®6: LD (IY+$10),$FF Indicate no channels to play, thereby causing
RET the play command to terminate.

Play Commands 'a'..'g’, 'A"..'"G', '1'.."12",'&" and ' '
This handler routine processes commands 'a'..'g’, 'A"..'G', '1'.."12", '&" and '_', and determines the
length of the next note to play. It provides the handling of triplet and tied notes.
It stores the note duration in the channel data block's duration length entry, and sets a pointer in the
command data block's duration lengths pointer table to point at it. A single note letter is deemed to be
a tied note count of 1. Triplets are deemed a tied note count of at least 2.
Entry: IX=Address of the channel data block.

A=Current character from play string.

LOCFB: CALL LOE19 Is the current character a number?
JP C,LOD81 Jump if not number digit.

The character is a number digit

CALL LODAC HL=Address of the duration length within the
channel data block.

CALL LODB4 Store address of duration length in command
data block's channel duration length pointer table.

XOR A

LD (IX+$21),A Set no tied notes.

CALL LOECS8 Get the previous character in the string, the note
duration.

CALL LOB1D Get following numeric value from the string into
BC.

LD AC

ORA Is the value 0?

SPECTRUM 128 ROM o DISASSEMBLY

JP Z,LOF12

CP $0D
JP NC,LOF12

CP $0A
JR C,LOD32

Jump if so to produce error report "n Out of
range".

Is it 13 or above?

Jump if so to produce error report "n Out of
range".

Is it below 10?

Jump if so.

It is a triplet semi-quaver (10), triplet quaver (11) or triplet crotchet (12)

CALL LOEOO
CALL LOD74
LD (HL),E

INC HL
LD (HL),D
LOD28: CALL LOD74
INC HL
LD (HL),E
INC HL

LD (HL),D
INC HL
JR LOD38

The note duration was in the range 1 to 9

LOD32: LD (IX+$05),C
CALL LOEOO

LOD38: CALL LOD74

LOD3B: CALL LOEE3

CP"’

JR NZ,LOD6E
CALL LOACS
CALL LOB1D
LD AC

CP $0A
JR C,LOD5F

A triplet note was found as part of a tied note

PUSH HL

DE=Note duration length for the duration value.
Increment the tied notes counter.

HL=Address of the duration length within the
channel data block.

Store the duration length.
Increment the counter of tied notes.

Store the subsequent note duration length in the
channel data block.

Jump ahead to continue.

C=Note duration value (1..9).

DE=Duration length for this duration value.
Increment the tied notes counter.

Get the current character from the play string for
this channel.

$5F. Is it a tied note?

Jump ahead if not.

Get the current character from the PLAY string,
and advance the position pointer.

Get following numeric value from the string into
BC.

Place the value into A.

Is it below 10?

Jump ahead for 1 to 9 (semiquaver ... semibreve).

HL=Address of the duration length within the
channel data block.

SPECTRUM 128 ROM o DISASSEMBLY

PUSH DE
CALL LOEOO

POP HL
ADD HL,DE
LD CE

LD B,D

EX DE,HL
POP HL

LD (HL),E
INC HL
LD (HL),D

LDE,C
LD D,B

JR LOD28

A non-triplet tied note

LODS5F:

LD (IX+$05),C
PUSH HL

PUSH DE
CALL LOEOO

POP HL
ADD HL,DE
EX DE,HL
POP HL

JP LOD3B

DE-=First tied note duration length.

DE=Note duration length for this new duration
value.

HL=Current tied note duration length.
HL=Current+new tied note duration lengths.

BC=Note duration length for the duration value.
DE=Current+new tied note duration lengths.
HL=Address of the duration length within the
channel data block.

Store the combined note duration length in the
channel data block.

DE=Note duration length for the second duration
value.
Jump back.

Store the note duration value.

HL=Address of the duration length within the
channel data block.

DE-=First tied note duration length.

DE=Note duration length for this new duration
value.

HL=Current tied note duration length.
HL=Current+new tied not duration lengths.
DE=Current+new tied not duration lengths.
HL=Address of the duration length within the
channel data block.

Jump back to process the next character in case
it is also part of a tied note.

The number found was not part of a tied note, so store the duration value

LODGE:

LD (HL),E
INC HL

LD (HL),D
JP LOD9C

HL=Address of the duration length within the
channel data block.

(For triplet notes this could be the address of the
subsequent note duration length)

Store the duration length.

Jump forward to make a return.

This subroutine is called to increment the tied notes counter

SPECTRUM 128 ROM o DISASSEMBLY

LOD74: LD A,(IX+$21) Increment counter of tied notes.
INC A
CP $0B Has it reached 117
JP Z,LOF3A Jump if so to produce to error report "o too many
tied notes".
LD (IX+$21),A Store the new tied notes counter.
RET

The character is not a number digit so is 'A"..'G', '& or "'

LOD81: CALL LOECS8 Get the previous character from the string.
LD (IX+$21),$01 Set the number of tied notes to 1.

Store a pointer to the channel data block's duration length into the command data block

CALL LODAC HL=Address of the duration length within the
channel data block.

CALL LODB4 Store address of duration length in command
data block's channel duration length pointer table.

LD C,(IX+$05) C=The duration value of the note (1 to 9).

PUSH HL [Not necessary]

CALL LOEOO Find the duration length for the note duration
value.

POP HL [Not necessary]

LD (HL),E Store it in the channel data block.

INC HL

LD (HL),D

JP LOD9C Jump to the instruction below. [Redundant
instruction]

LOD9C: POP HL

INC HL

INC HL Modify the return address to point to the RET
instruction at $0B83 (ROM 0).

PUSH HL

RET [Over elaborate when a simple POP followed by

RET would have sufficed, saving 3 bytes]

End of String Found

This routine is called when the end of string is found within a comment. It marks the string as having
been processed and then returns to the main loop to process the next string.

LODAZ1: POP HL Drop the return address of the call to the
comment command.

SPECTRUM 128 ROM o DISASSEMBLY

Enter here if the end of the string is found whilst processing a string.

LODAZ2:

LD A,(IY+$21) Fetch the channel selector.

OR (IY+$10) Clear the channel flag for this string.
LD (IY+$10),A Store the new channel bitmap.

RET

Point to Duration Length within Channel Data Block

LODAC:

PUSH IX

POP HL HL=Address of the channel data block.

LD BC,$0022

ADD HL,BC HL=Address of the store for the duration length.
RET

Store Entry in Command Data Block's Channel Duration Length
Pointer Table

LODB4:

PUSH HL Save the address of the duration length within the
channel data block.

PUSH IY

POP HL HL=Address of the command data block.

LD BC,$0011

ADD HL,BC HL=Address within the command data block of
the channel duration length pointer table.

LD B,$00

LD C,(IX+$02) BC=Channel number.

SLAC BC=2*Index number.

ADD HL,BC HL=Address within the command data block of
the pointer to the current channel's data block
duration length.

POP DE DE=Address of the duration length within the
channel data block.

LD (HL),E Store the pointer to the channel duration length
in the command data block's channel duration
pointer table.

INC HL

LD (HL),D

EX DE,HL

RET

PLAY Command Jump Table

SPECTRUM 128 ROM o DISASSEMBLY

Handler routine jump table for all PLAY commands.

LODCA:

DEFW LOCFB
DEFW LOB85
DEFW LOB90
DEFW LOBAS
DEFW LOBAG
DEFW LOBC2
DEFW LOC32
DEFW LOC84
DEFW LOC95
DEFW LOCAD
DEFW LOCBA
DEFW LOCCE
DEFW LOCDD
DEFW LOCEE
DEFW LOCF6

Command handler routine for all other characters.
‘I command handler routine.
'O' command handler routine.
‘N' command handler routine.
‘(' command handler routine.
) command handler routine.
'T' command handler routine.
‘M' command handler routine.
'V' command handler routine.
'U' command handler routine.
‘W' command handler routine.
'X' command handler routine.
'Y' command handler routine.
'Z' command handler routine.
'H' command handler routine.

Envelope Waveform Lookup Table

Table used by the play 'W' command to find the corresponding envelope value to write to the sound
generator envelope shape register (register 13). This filters out the two duplicate waveforms possible
from the sound generator and allows the order of the waveforms to be arranged in a more logical

fashion.

LODES:

DEFB $00

DEFB $04

DEFB $0B

DEFB $0D

DEFB $08

DEFB $0C

DEFB $0E

DEFB $0A

WO - Single decay then off. (Continue off, attack
off, alternate off, hold off)

W1 - Single attack then off. (Continue off, attack
on, alternate off, hold off)

W2 - Single decay then hold. (Continue on, attack
off, alternate on, hold on)

W3 - Single attack then hold. (Continue on, attack
on, alternate off, hold on)

W4 - Repeated decay. (Continue on, attack off,
alternate off, hold off)

WS5 - Repeated attack. (Continue on, attack on,
alternate off, hold off)

W6 - Repeated attack-decay. (Continue on,
attack on, alternate on, hold off)

W7 - Repeated decay-attack. (Continue on,
attack off, alternate on, hold off)

SPECTRUM 128 ROM o DISASSEMBLY

Identify Command Character

This routines attempts to match the command character to those in a table.
The index position of the match indicates which command handler routine is required to process the
character. Note that commands are case sensitive.
Entry: A=Command character.
Exit: Zero flag set if a match was found.
BC=Indentifying the character matched, 1 to 15 for match and 0 for no match.

LODFO: LD BC,$000F Number of characters + 1 in command table.
LD HL,LOAB7 Start of command table.
CPIR Search for a match.
RET

Semitones Table

This table contains an entry for each note of the scale, A to G, and is the number of semitones above
the note C.

LODF9: DEFB $09 A
DEFB $0B B
DEFB $00 'C'
DEFB $02 ‘D’
DEFB $04 E
DEFB $05 F
DEFB $07 ‘G’

Find Note Duration Length

LOEOO: PUSH HL Save HL.
LD B,$00
LD HL,LOEOC Note duration table.
ADD HL,BC Index into the table.
LD D,$00
LD E,(HL) Fetch the length from the table.
POP HL Restore HL.
RET

Note Duration Table

A whole note is given by a value of 96d and other notes defined in relation to this.

SPECTRUM 128 ROM o DISASSEMBLY

The value of 96d is the lowest common denominator from which all note durations can be defined.

LOEOC: DEFB $80 Rest [Not used since table is always indexed into
with a value of 1 or more]

DEFB $06 Semi-quaver (sixteenth note).
DEFB $09 Dotted semi-quaver (3/32th note).
DEFB $0C Quaver (eighth note).
DEFB $12 Dotted quaver (3/16th note).
DEFB $18 Crotchet (quarter note).
DEFB $24 Dotted crotchet (3/8th note).
DEFB $30 Minim (half note).
DEFB $48 Dotted minim (3/4th note).
DEFB $60 Semi-breve (whole note).
DEFB $04 Triplet semi-quaver (1/24th note).
DEFB $08 Triplet quaver (1/12th note).
DEFB $10 Triplet crochet (1/6th note).

Is Numeric Digit?

Tests whether a character is a number digit.
Entry: A=Character.
Exit: Carry flag reset if a number digit.

LOE19: CP'0 $30. Is it '0" or less?
RET C Return with carry flag set if so.
CP" $3A. Is it more than '9'?
CCF
RET Return with carry flag set if so.

Play a Note On a Sound Chip Channel

This routine plays the note at the current octave and current volume on a sound chip channel. For
play strings 4 to 8, it simply stores the note number and this is subsequently played later.
Entry: IX=Address of the channel data block.

A=Note value as number of semitones above C (0..11).

LOE20: LD CA C=The note value.
LD A,(IX+$03) Octave number * 12.
ADD A,C Add the octave number and the note value to
form the note number.
CP $80 Is note within range?
JP NC,LOF32 Jump if not to produce error report "m Note out of

range".

SPECTRUM 128 ROM o DISASSEMBLY

LDC.A
LD A,(IX+$02)
ORA

JR NZ,LOE3F

C=Note number.

Get the channel number.
Is it the first channel?
Jump ahead if not.

Only set the noise generator frequency on the first channel

LOE3F:

Channel 0, 1 or 2

Note number 21 to 107 (range O to 86)

LOE5S7:

LOESE:

LDAC
CPL

AND $7F
SRL A

SRL A

LD D,$06

LD E,A

CALL LOE7C
LD (IX+$00),C
LD A,(IX+$02)
CP $03

RET NC

LD HL,L1096
LD B,$00

LD AC

SUB $15

JR NC,LOE57
LD DE,$0FBF

JR LOESE

LDC.A
SLAC
ADD HL,BC
LD E,(HL)
INC HL

LD D,(HL)

EX DE,HL
LD D,(IX+$02)

A=Note number (0..107), in ascending audio
frequency.

Invert since noise register value is in descending
audio frequency.

Mask off bit 7.

Divide by 4 to reduce range to 0..31.
Register 6 - Noise pitch.

Write to sound generator register.

Store the note number.

Get the channel number.

Is it channel O, 1 or 2, i.e. a sound chip channel?
Do not output anything for play strings 4 to 8.

Start of note lookup table.

BC=Note number.

A=Note number.

A=Note number - 21.

Jump if note number was 21 or above.

Note numbers $00 to $14 use the lowest note
value.

[Could have saved 4 bytes by using XOR A and
dropping through to $0E57 (ROM 0)]

Generate offset into the table.
Point to the entry in the table.

DE=Word to write to the sound chip registers to
produce this note.

HL=Register word value to produce the note.
Get the channel number.

SPECTRUM 128 ROM o DISASSEMBLY

SLAD

LDE,L
CALL LOE7C
INC D

LD E,H
CALL LOE7C
BIT 4,(IX+$04)
RET Z

LD D,$0D

LD A,(IY+$29)
LD E,A

CALL LOE7C
RET

Set Sound Generator Register

LOE7C: PUSH BC
LD BC,$FFFD
OUT (C),D

LD BC,$BFFD
OUT (C).E
POP BC

RET

D=2*Channel number, to give the tone channel
register (fine control) number 0, 2, or 4.

E=The low value byte.

Write to sound generator register.

D=Tone channel register (coarse control) number
1,3, 0rb5.

E=The high value byte.

Write to sound generator register.

Is the envelope waveform being used?

Return if it is not.

Register 13 - Envelope Shape.

Get the effect waveform value.

Write to sound generator register.

[Could have saved 4 bytes by dropping down into
the routine below.]

Select the register.

Write out the value.

Read Sound Generator Register

LOES9: PUSH BC

LD BC,$FFFD
OUT (C),A

IN A,(C)

POP BC

RET

Turn Off All Sound

LOE93: LD D,$07

Select the register.
Read the register's value.

Register 7 - Mixer.

SPECTRUM 128 ROM o DISASSEMBLY

LD E,$FF

CALL LOE7C
Turn off the sound from the AY-3-8912

LD D,$08
LD E,$00
CALL LOE7C

INC D
CALL LOE7C

INC D
CALL LOE7C

CALL LOA4F
Now reset all MIDI channels in use

LOEAC: RR (IY+$22)

JR C,LOEBS8
CALL LOAG7

CALL L118D

LOEBS: SLA (IY+$21)
JR C,LOEC3
CALL LOAGE
JR LOEAC

LOEC3: LD IY,$5C3A
RET

I/O ports are inputs, noise output off, tone output
off.
Write to sound generator register.

Register 8 - Channel A volume.

Volume of 0.

Write to sound generator register to set the
volume to 0.

Register 9 - Channel B volume.

Write to sound generator register to set the
volume to 0.

Register 10 - Channel C volume.

Write to sound generator register to set the
volume to 0.

Select channel data block pointers.

Working copy of channel bitmap. Test if next
string present.

Jump ahead if there is no string for this channel.
Get address of channel data block for the current
string into IX.

Turn off the MIDI channel sound assigned to this
play string.

Have all channels been processed?

Jump ahead if so.

Advance to the next channel data block pointer.
Jump back to process the next channel.

Restore 1Y.

Get Previous Character from Play String

Get the previous character from the PLAY string, skipping over spaces and 'Enter' characters.

Entry: IX=Address of the channel data block.

LOECS: PUSH HL
PUSH DE
LD L, (IX+$06)
LD H,(IX+$07)
LOEDO: DEC HL
LD A,(HL)

Save registers.
Get the current pointer into the PLAY string.

Point to previous character.
Fetch the character.

SPECTRUM 128 ROM o DISASSEMBLY

cp'
JR Z,LOEDO
CP $0D

JR Z,LOEDO
LD (IX+$086),L

LD (IX+$07),H
POP DE

POP HL

RET

$20. Is it a space?

Jump back if a space.

Is it an 'Enter'?

Jump back if an 'Enter'.

Store this as the new current pointer into the
PLAY string.

Restore registers.

Get Current Character from Play String

Get the current character from the PLAY string, skipping over spaces and 'Enter' characters.
Exit: Carry flag set if string has been fully processed.

Carry flag reset if character is available.

A=Character available.

LOEES:

LOEEC:

LOEFB:

LOFO5:

LOFO09:

PUSH HL
PUSH DE
PUSH BC
LD L,(IX+$06)

LD H,(IX+$07)
LD AH

CP (IX+$09)
JR NZ,LOEFB
LDAL

CP (IX+$08)
JR NZ,LOEFB
SCF

JR LOFO5

LD A,(HL)
cp"

JR Z,LOF09

CP $0D
JR Z,LOF09

ORA

POP BC
POP DE
POP HL
RET
INC HL

Save registers.

HL=Pointer to next character to process within
the PLAY string.

Reached end-of-string address high byte?
Jump forward if not.

Reached end-of-string address low byte?
Jump forward if not.

Indicate string all processed.

Jump forward to return.

Get the next play character.

$20. Is it a space?

Ignore the space by jumping ahead to process
the next character.

Is it 'Enter'?

Ignore the 'Enter' by jumping ahead to process
the next character.

Clear the carry flag to indicate a new character
has been returned.

Restore registers.

Point to the next character.

SPECTRUM 128 ROM o DISASSEMBLY

LD (IX+$086),L

LD (IX+$07),H Update the pointer to the next character to
process with the PLAY string.
JR LOEEC Jump back to get the next character.

Produce Play Error Reports

LOF12: CALL LOE93 Turn off all sound and restore Y.
El
CALL LO5AC Produce error report.
DEFB $29 "n Out of range"

LOF1A: CALL LOE93 Turn off all sound and restore 1Y.
El
CALL LO5AC Produce error report.
DEFB $27 "I Number too big"

LOF22: CALL LOE93 Turn off all sound and restore Y.
El
CALL LOSAC Produce error report.
DEFB $26 "k Invalid note name"

LOF2A: CALL LOE93 Turn off all sound and restore Y.
El
CALL LO5AC Produce error report.
DEFB $1F "d Too many brackets"

LOF32: CALL LOE93 Turn off all sound and restore 1Y.
El
CALL LO5AC Produce error report.
DEFB $28 "m Note out of range"

LOF3A: CALL LOE93 Turn off all sound and restore Y.
El
CALL LOSAC Produce error report.
DEFB $2A "o Too many tied notes"

Play Note on Each Channel

Play a note and set the volume on each channel for which a play string exists.

LOF42: CALL LOA4F Select channel data block pointers.
LOF45: RR (1Y+$22) Working copy of channel bitmap. Test if next
string present.
JR C,LOF6C Jump ahead if there is no string for this channel.
CALL LOA67 Get address of channel data block for the current

string into IX.

SPECTRUM 128 ROM o DISASSEMBLY

CALL LOAD1

CP $80

JR Z,LOF6C
CALL LOE20
LD A,(IX+$02)
CP $03

JR NC,LOF69

Get the next note in the string as number of
semitones above note C.

Is it a rest?

Jump ahead if so and do nothing to the channel.
Play the note if a sound chip channel.

Get channel number.

Is it channel O, 1 or 2, i.e. a sound chip channel?
Jump if not to skip setting the volume.

One of the 3 sound chip generator channels so set the channel's volume for the new note

LD D,$08
ADD A,D
LDD,A

LD E,(IX+$04)
CALL LOE7C

LOF69: CALL L116E
LOF6C: SLA (IY+$21)
RET C

CALL LOAGE
JR LOF45

Wait Note Duration

A=0to 2.

D=Register (8 + string index), i.e. channel A, B or
C volume register.

E=Volume for the current channel.

Write to sound generator register to set the output
volume.

Play a note and set the volume on the assigned
MIDI channel.

Have all channels been processed?

Return if so.

Advance to the next channel data block pointer.
Jump back to process the next channel.

This routine is the main timing control of the PLAY command.

It waits for the specified length of time, which will be the lowest note duration of all active channels.
The actual duration of the wait is dictated by the current tempo.

Entry: DE=Note duration, where 96d represents a whole note.

Enter a loop waiting for (135+ ((26*(tempo-100))-5))*DE+5 T-states

LOF76: PUSH HL
LD L,(IY+$27)
LD H,(1Y+$28)
LD BC,$0064
ORA
SBC HL,BC
PUSH HL
POP BC
POP HL

(11) Save HL.

(19) Get the tempo timing value.
(19)

(10) BC=100

4

(15) HL=tempo timing value - 100.
11

(10) BC=tempo timing value - 100.
(10) Restore HL.

Tempo timing value = (10/(TEMPO*4))/7.33e-6, where 7.33e-6 is the time for 26 T-states.

SPECTRUM 128 ROM o DISASSEMBLY

The loop below takes 26 T-states per iteration, where the number of iterations is given by the tempo
timing value.

So the time for the loop to execute is 2.5/TEMPO seconds.

For a TEMPO of 60 beats (crotchets) per second, the time per crotchet is 1/24 second.

The duration of a crotchet is defined as 24 from the table at $0EOC, therefore the loop will get executed
24 times and hence the total time taken will be 1 second.

The tempo timing value above has 100 subtracted from it, presumably to approximately compensate
for the overhead time previously taken to prepare the notes for playing. This reduces the total time
by 2600 T-states, or 733us.

LOF86: DEC BC (6) Wait for tempo-100 loops.
LD AB (4)
ORC 4
JR NZ,LOF86 (12/7)
DEC DE (6) Repeat DE times
LD AD 4)
ORE (4)
JR NZ,LOF76 (12/7)
RET (10)

Find Smallest Duration Length

This routine finds the smallest duration length for all current notes being played across all channels.
Exit: DE=Smallest duration length.

LOF91: LD DE,$FFFF Set smallest duration length to ‘'maximum’.
CALL LOA4A Select channel data block duration pointers.
LOF97: RR (1Y+$22) Working copy of channel bitmap. Test if next
string present.
JR C,LOFAF Jump ahead if there is no string for this channel.

HL=Address of channel data pointer. DE holds the smallest duration length found so far.

PUSH DE Save the smallest duration length.
LD E,(HL)

INC HL

LD D,(HL)

EX DE,HL DE=Channel data block duration length.
LD E,(HL)

INC HL

LD D,(HL) DE=Channel duration length.
PUSH DE

POP HL HL=Channel duration length.
POP BC Last channel duration length.

ORA

SPECTRUM 128 ROM o DISASSEMBLY

SBC HL,BC

JR C,LOFAF

Is current channel's duration length smaller than
the smallest so far?

Jump ahead if so, with the new smallest value in
DE.

The current channel's duration was not smaller so restore the last smallest into DE.

LOFAF:

LOFBA:

PUSH BC
POP DE
SLA (IY+$21)
JR C,LOFBA
CALL LOAGE

JR LOF97

LD (IY+$25),E
LD (IY+$26),D
RET

DE=Smallest duration length.

Have all channel strings been processed?
Jump ahead if so.

Advance to the next channel data block duration
pointer.

Jump back to process the next channel.

Store the smallest channel duration length.

Play a Note on Each Channel and Update Channel Duration
Lengths

This routine is used to play a note and set the volume on all channels.

It subtracts an amount of time from the duration lengths of all currently playing channel note durations.
The amount subtracted is equivalent to the smallest note duration length currently being played, and
as determined earlier.

Hence one channel's duration will go to 0 on each call of this routine, and the others will show the
remaining lengths of their corresponding notes.

Entry: IY=Address of the command data block.

LOFC1: XOR A
LD (IY+$2A),A Holds a temporary channel bitmap.
CALL LOA4F Select channel data block pointers.
LOFCS: RR (1Y+$22) Working copy of channel bitmap. Test if next
string present.
JP C,L105A Jump ahead if there is no string for this channel.
CALL LOA67 Get address of channel data block for the current
string into IX.
PUSH IY
POP HL HL=Address of the command data block.
LD BC,$0011
ADD HL,BC HL=Address of channel data block duration
pointers.
LD B,$00

LD C,(IX+$02)
SLAC

BC=Channel number.
BC=2*Channel number.

SPECTRUM 128 ROM o DISASSEMBLY

ADD HL,BC HL=Address of channel data block duration
pointer for this channel.

LD E,(HL)

INC HL

LD D,(HL) DE=Address of duration length within the channel
data block.

EX DE,HL HL=Address of duration length within the channel
data block.

PUSH HL Save it.

LD E,(HL)

INC HL

LD D,(HL) DE=Duration length for this channel.

EX DE,HL HL=Duration length for this channel.

LD E,(IY+$25)
LD D,(IY+$26)

DE=Smallest duration length of all current
channel notes.

ORA

SBC HL,DE HL=Duration length - smallest duration length.

EX DE,HL DE=Duration length - smallest duration length.

POP HL HL=Address of duration length within the channel
data block.

JR Z,LOFFC Jump if this channel uses the smallest found
duration length.

LD (HL),E

INC HL Update the duration length for this channel with
the remaining length.

LD (HL),D

JR L105A Jump ahead to update the next channel.

The current channel uses the smallest found duration length

[A note has been completed and so the channel volume is set to O prior to the next note being played.
This occurs on both sound chip channels and MIDI channels. When a MIDI channel is assigned to
more than one play string and a rest is used in one of those strings. As soon as the end of the rest
period is encountered, the channel's volume is set to off even though one of the other play strings
controlling the MIDI channel may still be playing. This can be seen using the command PLAY "Y1a&",
"Y1N9a". Here, string 1 starts playing 'a’ for the period of a crotchet (1/4 of a note), where as string
2 starts playing 'a’ for nine periods of a crotchet (9/4 of a note). When string 1 completes its crotchet,
it requests to play a period of silence via the rest '&'. This turns the volume of the MIDI channel off
even though string 2 is still timing its way through its nine crotchets. The play command will therefore
continue for a further seven crotchets but in silence. This is because the volume for note is set only
at its start and no coordination occurs between strings to turn the volume back on for the second
string. It is arguably what the correct behaviour should be in such a circumstance where the strings
are providing conflicting instructions, but having the latest command or note take precedence seems
a logical approach. Credit: lan Collier (+3), Paul Farrow (128)]

LOFFC: LD A,(IX+$02) Get the channel number.
CP $03 Isit channel 0, 1 or 2, i.e. a sound chip channel?

L100C:

SPECTRUM 128 ROM o DISASSEMBLY

JR NC,L100C
LD D,$08
ADD A,D
LDD,A

LD E,$00
CALL LOE7C

CALL L118D
PUSH IX
POP HL

LD BC,$0021
ADD HL,BC
DEC (HL)

JR NZ,L1026
CALL LOB5C

LD A,(IY+$21)
AND (IY+$10)

JR NZ,L105A

JR L103D

The channel has more tied notes

L1026:

PUSH IY
POP HL

LD BC,$0011
ADD HL,BC

LD B,$00

LD C,(IX+$02)
SLAC

ADD HL,BC

LD E,(HL)
INC HL
LD D,(HL)

INC DE
INC DE
LD (HL),D
DEC HL
LD (HL),E

Jump ahead if not a sound generator channel.

D=Register (8+channel number) - Channel
volume.

E=Volume level of 0.

Write to sound generator register to turn the
volume off.

Turn off the assigned MIDI channel sound.

HL=Address of channel data block.

HL=Points to the tied notes counter.

Decrement the tied notes counter. [This contains
a value of 1 for a single note]

Jump ahead if there are more tied notes.

Find the next note to play for this channel from its
play string.

Fetch the channel selector.

Test whether this channel has further data in its
play string.

Jump to process the next channel if this channel
does not have a play string.

The channel has more data in its play string so
jump ahead.

HL=Address of the command data block.

HL=Address of channel data block duration
pointers.

BC=Channel number.
BC=2*Channel number.

HL=Address of channel data block duration
pointer for this channel.

DE=Address of duration length within the channel
data block.

Point to the subsequent note duration length.

Store the new duration length.

SPECTRUM 128 ROM o DISASSEMBLY

L103D: CALL LOAD1 Get next note in the string as number of

semitones above note C.

LD C,A C=Number of semitones.

LD A,(IY+$21) Fetch the channel selector.

AND (1Y+$10) Test whether this channel has a play string.

JR NZ,L105A Jump to process the next channel if this channel
does not have a play string.

LD AC A=Number of semitones.

CP $80 Is it a rest?

JR Z,L105A Jump to process the next channel if it is.

CALL LOE20 Play the new note on this channel at the current

volume if a sound chip channel, or simply store
the note for play strings 4 to 8.

LD A,(IY+$21) Fetch the channel selector.

OR (IY+$2A) Insert a bit in the temporary channel bitmap to
indicate this channel has more to play.

LD (IY+$2A),A Store it.

Check whether another channel needs its duration length updated

L105A: SLA (IY+$21) Have all channel strings been processed?
JR C,L1066 Jump ahead if so.
CALL LOAGE Advance to the next channel data pointer.
JP LOFC8 Jump back to update the duration length for the

next channel.

[BUG - By this point, the volume for both sound chip and MIDI channels has been set to 0, i.e. off.
So although the new notes have been set playing on the sound chip channels, no sound is audible.
For MIDI channels, no new notes have yet been output and hence these are also silent. If the time
from turning the volume off for the current note to the time to turn the volume on for the next note is
short enough, then it will not be noticeable. However, the code at $1066 (ROM 0) introduces a 1/96th
of a note delay and as a result a 1/96th of a note period of silence between notes. The bug can be
resolved by simply deleting the two instructions below that introduce the delay. A positive side effect
of the bug in the 'V' volume command at $0C95 (ROM 0) is that it can be used to overcome the gaps of
silence between notes for sound chip channels. By interspersing volume commands between notes,
a new volume level is immediately set before the 1/96th of a note delay is introduced for the new note.
Therefore, the delay occurs when the new note is audible instead of when it is silent. For example,
PLAY "cV15cV15c" instead of PLAY "ccc". The note durations are still 1/96th of a note longer than
they should be though. This technique will only work on the sound chip channels and not for any MIDI
channels. Credit: lan Collier (+3), Paul Farrow (128)]

L1066: LD DE,$0001 Delay for 1/96th of a note.
CALL LOF76
CALL LOA4F Select channel data block pointers.

SPECTRUM 128 ROM o DISASSEMBLY

All channel durations have been updated. Update the volume on each sound chip channel, and the
volume and note on each MIDI channel

L106F: RR (IY+$2A) Temporary channel bitmap. Test if next string
present.
JR NC,L108C Jump ahead if there is no string for this channel.
CALL LOA67 Get address of channel data block for the current
string into IX.
LD A,(IX+$02) Get the channel number.
CP $03 Is it channel 0, 1 or 2, i.e. a sound chip channel?
JR NC,L1089 Jump ahead if so to process the next channel.
LD D,$08
ADD A,D
LDD,A D=Register (8+channel number) - Channel
volume.
LD E,(IX+$04) Get the current volume.
CALL LOE7C Write to sound generator register to set the
volume of the channel.
L1089: CALL L116E Play a note and set the volume on the assigned
MIDI channel.
L108C: SLA (IY+$21) Have all channels been processed?
RET C Return if so.
CALL LOAGE Advance to the next channel data pointer.
JR L106F Jump back to process the next channel.

Note Lookup Table

Each word gives the value of the sound generator tone registers for a given note.

There are 9 octaves, containing a total of 108 notes. These represent notes 21 to 128. Notes 0 to 20
cannot be reproduced on the sound chip and so note 21 will be used for all of these (they will however
be sent to a MIDI device if one is assigned to a channel). [Note that both the sound chip and the MIDI
port can not play note 128 and so its inclusion in the table is a waste of 2 bytes]. The PLAY command
does not allow octaves higher than 8 to be selected directly. Using PLAY "O8G" will select note 115.
To select higher notes, sharps must be included, e.g. PLAY "O8#G" for note 116, PLAY "O8##G" for
note 117, etc, up to PLAY "O8###t#HiHH###G" for note 127. Attempting to access note 128 using
PLAY "O8##HH##H##H##G" will lead to error report "m Note out of range".

L1096: DEFW $0FBF Octave 1, Note 21 - A (27.50 Hz, Ideal=27.50 Hz,
Error=-0.01%) CO
DEFW $0EDC Octave 1, Note 22 - A# (29.14 Hz, Ideal=29.16
Hz, Error=-0.08%)
DEFW $0EQ7 Octave 1, Note 23 - B (30.87 Hz, Ideal=30.87 Hz,
Error=-0.00%)
DEFW $0D3D Octave 2, Note 24 - C (32.71 Hz, Ideal=32.70 Hz,

Error=+0.01%) C1

SPECTRUM 128 ROM o DISASSEMBLY

DEFW $0C7F

DEFW $0BCC

DEFW $0B22

DEFW $0A82

DEFW $09EB

DEFW $095D

DEFW $08D6

DEFW $0857

DEFW $07DF

DEFW $076E

DEFW $0703

DEFW $069F

DEFW $0640

DEFW $05E6

DEFW $0591

DEFW $0541

DEFW $04F6

DEFW $04AE

DEFW $046B

DEFW $042C

DEFW $03F0

DEFW $03B7

DEFW $0382

Octave 2, Note 25 - C# (34.65 Hz, |deal=34.65
Hz, Error=-0.00%)

Octave 2, Note 26 - D (36.70 Hz, Ideal=36.71 Hz,
Error=-0.01%)

Octave 2, Note 27 - D# (38.89 Hz, |deal=38.89
Hz, Error=+0.01%)

Octave 2, Note 28 - E (41.20 Hz, Ideal=41.20 Hz,
Error=+0.00%)

Octave 2, Note 29 - F (43.66 Hz, Ideal=43.65 Hz,
Error=+0.00%)

Octave 2, Note 30 - F# (46.24 Hz, Ideal=46.25
Hz, Error=-0.02%)

Octave 2, Note 31 - G (49.00 Hz, Ideal=49.00 Hz,
Error=+0.00%)

Octave 2, Note 32 - G# (51.92 Hz, Ideal=51.91
Hz, Error=+0.01%)

Octave 2, Note 33 - A (55.01 Hz, Ideal=55.00 Hz,
Error=+0.01%)

Octave 2, Note 34 - A# (58.28 Hz, Ideal=58.33
Hz, Error=-0.08%)

Octave 2, Note 35 - B (61.75 Hz, Ideal=61.74 Hz,
Error=+0.02%)

Octave 3, Note 36 - C (65.39 Hz, Ideal= 65.41
Hz, Error=-0.02%) C2

Octave 3, Note 37 - C# (69.28 Hz, Ideal= 69.30
Hz, Error=-0.04%)

Octave 3, Note 38 - D (73.40 Hz, Ideal= 73.42
Hz, Error=-0.01%)

Octave 3, Note 39 - D# (77.78 Hz, Ideal= 77.78
Hz, Error=+0.01%)

Octave 3, Note 40 - E (82.41 Hz, Ideal= 82.41
Hz, Error=+0.00%)

Octave 3, Note 41 - F (87.28 Hz, Ideal= 87.31
Hz, Error=-0.04%)

Octave 3, Note 42 - F# (92.52 Hz, Ideal= 92.50
Hz, Error=+0.02%)

Octave 3, Note 43 - G (98.00 Hz, Ideal= 98.00
Hz, Error=+0.00%)

Octave 3, Note 44 - G# (103.78 Hz, Ideal=103.83
Hz, Error=-0.04%)

Octave 3, Note 45 - A (109.96 Hz, Ideal=110.00
Hz, Error=-0.04%)

Octave 3, Note 46 - A# (116.55 Hz, Ideal=116.65
Hz, Error=-0.08%)

Octave 3, Note 47 - B (123.43 Hz, Ideal=123.47
Hz, Error=-0.03%)

SPECTRUM 128 ROM o DISASSEMBLY

DEFW $034F

DEFW $0320

DEFW $02F3

DEFW $02C8

DEFW $02A1

DEFW $027B

DEFW $0257

DEFW $0236

DEFW $0216

DEFW $01F8

DEFW $01DC

DEFW $01C1

DEFW $01A8

DEFW $0190

DEFW $0179

DEFW $0164

DEFW $0150

DEFW $013D

DEFW $012C

DEFW $011B

DEFW $010B

DEFW $00FC

DEFW $00EE

Octave 4, Note 48 - C (130.86 Hz, Ideal=130.82
Hz, Error=+0.04%) C3

Octave 4, Note 49 - C# (138.55 Hz, Ideal=138.60
Hz, Error=-0.04%)

Octave 4, Note 50 - D (146.81 Hz, Ideal=146.83
Hz, Error=-0.01%)

Octave 4, Note 51 - D# (155.68 Hz, Ideal=155.55
Hz, Error=+0.08%)

Octave 4, Note 52 - E (164.70 Hz, Ideal=164.82
Hz, Error=-0.07%)

Octave 4, Note 53 - F (174.55 Hz, Ideal=174.62
Hz, Error=-0.04%)

Octave 4, Note 54 - F# (185.04 Hz, Ideal=185.00
Hz, Error=+0.02%)

Octave 4, Note 55 - G (195.83 Hz, Ideal=196.00
Hz, Error=-0.09%)

Octave 4, Note 56 - G# (207.57 Hz, Ideal=207.65
Hz, Error=-0.04%)

Octave 4, Note 57 - A (219.92 Hz, Ideal=220.00
Hz, Error=-0.04%)

Octave 4, Note 58 - A# (232.86 Hz, Ideal=233.30
Hz, Error=-0.19%)

Octave 4, Note 59 - B (246.86 Hz, Ideal=246.94
Hz, Error=-0.03%)

Octave 5, Note 60 - C (261.42 Hz, |deal=261.63
Hz, Error=-0.08%) C4 Middle C

Octave 5, Note 61 - C# (277.10 Hz, Ideal=277.20
Hz, Error=-0.04%)

Octave 5, Note 62 - D (294.01 Hz, Ideal=293.66
Hz, Error=+0.12%)

Octave 5, Note 63 - D# (311.35 Hz, Ideal=311.10
Hz, Error=+0.08%)

Octave 5, Note 64 - E (329.88 Hz, Ideal=329.63
Hz, Error=+0.08%)

Octave 5, Note 65 - F (349.65 Hz, Ideal=349.23
Hz, Error=+0.12%)

Octave 5, Note 66 - F# (369.47 Hz, Ideal=370.00
Hz, Error=-0.14%)

Octave 5, Note 67 - G (391.66 Hz, Ideal=392.00
Hz, Error=-0.09%)

Octave 5, Note 68 - G# (415.13 Hz, Ideal=415.30
Hz, Error=-0.04%)

Octave 5, Note 69 - A (439.84 Hz, Ideal=440.00
Hz, Error=-0.04%)

Octave 5, Note 70 - A# (465.72 Hz, Ideal=466.60
Hz, Error=-0.19%)

SPECTRUM 128 ROM o DISASSEMBLY

DEFW $00EO

DEFW $00D4

DEFW $00C8

DEFW $00BD

DEFW $00B2

DEFW $00A8

DEFW $009F

DEFW $0096

DEFW $008D

DEFW $0085

DEFW $007E

DEFW $0077

DEFW $0070

DEFW $006A

DEFW $0064

DEFW $005E

DEFW $0059

DEFW $0054

DEFW $004F

DEFW $004B

DEFW $0047

DEFW $0043

DEFW $003F

Octave 5, Note 71 - B (494.82 Hz, Ideal=493.88
Hz, Error=+0.19%)

Octave 6, Note 72 - C (522.83 Hz, Ideal=523.26
Hz, Error=-0.08%) C5

Octave 6, Note 73 - C# (554.20 Hz, Ideal=554.40
Hz, Error=-0.04%)

Octave 6, Note 74 - D (586.46 Hz, |deal=587.32
Hz, Error=-0.15%)

Octave 6, Note 75 - D# (622.70 Hz, Ideal=622.20
Hz, Error=+0.08%)

Octave 6, Note 76 - E (659.77 Hz, Ideal=659.26
Hz, Error=+0.08%)

Octave 6, Note 77 - F (697.11 Hz, |deal=698.46
Hz, Error=-0.19%)

Octave 6, Note 78 - F# (738.94 Hz, Ideal=740.00
Hz, Error=-0.14%)

Octave 6, Note 79 - G (786.10 Hz, Ideal=784.00
Hz, Error=+0.27%)

Octave 6, Note 80 - G# (833.39 Hz, Ideal=830.60
Hz, Error=+0.34%)

Octave 6, Note 81 - A (879.69 Hz, Ideal=880.00
Hz, Error=-0.04%)

Octave 6, Note 82 - A# (931.43 Hz, Ideal=933.20
Hz, Error=-0.19%)

Octave 6, Note 83 - B (989.65 Hz, Ideal=987.76
Hz, Error=+0.19%)

Octave 7, Note 84 - C (1045.67 Hz,
Ideal=1046.52 Hz, Error=-0.08%) C6

Octave 7, Note 85 - C# (1108.41 Hz,
Ideal=1108.80 Hz, Error=-0.04%)

Octave 7, Note 86 - D (1179.16 Hz,
Ideal=1174.64 Hz, Error=+0.38%)

Octave 7, Note 87 - D# (1245.40 Hz,
Ideal=1244.40 Hz, Error=+0.08%)

Octave 7, Note 88 - E (1319.53 Hz,
Ideal=1318.52 Hz, Error=+0.08%)

Octave 7, Note 89 - F (1403.05 Hz,
Ideal=1396.92 Hz, Error=+0.44%)

Octave 7, Note 90 - F# (1477.88 Hz,
Ideal=1480.00 Hz, Error=-0.14%)

Octave 7, Note 91 - G (1561.14 Hz,
Ideal=1568.00 Hz, Error=-0.44%)

Octave 7, Note 92 - G# (1654.34 Hz,
Ideal=1661.20 Hz, Error=-0.41%)

Octave 7, Note 93 - A (1759.38 Hz,
Ideal=1760.00 Hz, Error=-0.04%)

SPECTRUM 128 ROM o DISASSEMBLY

DEFW $003B

DEFW $0038

DEFW $0035

DEFW $0032

DEFW $002F

DEFW $002D

DEFW $002A

DEFW $0028

DEFW $0025

DEFW $0023

DEFW $0021

DEFW $001F

DEFW $001E

DEFW $001C

DEFW $001A

DEFW $0019

DEFW $0018

DEFW $0016

DEFW $0015

DEFW $0014

DEFW $0013

DEFW $0012

DEFW $0011

Octave 7, Note 94 - A# (1878.65 Hz,
Ideal=1866.40 Hz, Error=+0.66%)
Octave 7, Note 95 - B (1979.30 Hz,
Ideal=1975.52 Hz, Error=+0.19%)
Octave 8, Note 96 - C (2091.33 Hz,
Ideal=2093.04 Hz, Error=-0.08%) C7
Octave 8, Note 97 - C# (2216.81 Hz,
Ideal=2217.60 Hz, Error=-0.04%)
Octave 8, Note 98 - D (2358.31 Hz,
Ideal=2349.28 Hz, Error=+0.38%)
Octave 8, Note 99 - D# (2463.13 Hz,
Ideal=2488.80 Hz, Error=-1.03%)
Octave 8, Note 100 - E (2639.06 Hz,
Ideal=2637.04 Hz, Error=+0.08%)
Octave 8, Note 101 - F (2771.02 Hz,
Ideal=2793.84 Hz, Error=-0.82%)
Octave 8, Note 102 - F# (2995.69 Hz,
Ideal=2960.00 Hz, Error=+1.21%)
Octave 8, Note 103 - G (3166.88 Hz,
Ideal=3136.00 Hz, Error=+0.98%)
Octave 8, Note 104 - G# (3358.81 Hz,
Ideal=3322.40 Hz, Error=+1.10%)
Octave 8, Note 105 - A (3575.50 Hz,
Ideal=3520.00 Hz, Error=+1.58%)
Octave 8, Note 106 - A# (3694.69 Hz,
Ideal=3732.80 Hz, Error=-1.02%)
Octave 8, Note 107 - B (3958.59 Hz,
Ideal=3951.04 Hz, Error=+0.19%)
Octave 9, Note 108 - C (4263.10 Hz,
Ideal=4186.08 Hz, Error=+1.84%) C8
Octave 9, Note 109 - C# (4433.63 Hz,
Ideal=4435.20 Hz, Error=-0.04%)
Octave 9, Note 110 - D (4618.36 Hz,
Ideal=4698.56 Hz, Error=-1.71%)
Octave 9, Note 111 - D# (5038.21 Hz,
Ideal=4977.60 Hz, Error=+1.22%)
Octave 9, Note 112 - E (5278.13 Hz,
Ideal=5274.08 Hz, Error=+0.08%)
Octave 9, Note 113 - F (5542.03 Hz,
Ideal=5587.68 Hz, Error=-0.82%)
Octave 9, Note 114 - F# (5833.72 Hz,
Ideal=5920.00 Hz, Error=-1.46%)
Octave 9, Note 115 - G (6157.81 Hz,
Ideal=6272.00 Hz, Error=-1.82%)
Octave 9, Note 116 - G# (6520.04 Hz,
Ideal=6644.80 Hz, Error=-1.88%)

SPECTRUM 128 ROM o DISASSEMBLY

DEFW $0010
DEFW $000F
DEFW $000E
DEFW $000D
DEFW $000C
DEFW $000C
DEFW $000B
DEFW $000B
DEFW $000A
DEFW $0009
DEFW $0009

DEFW $0008

Play Note on MIDI Channel

This routine turns on a note on the MIDI channel and sets its volume, if MIDI channel is assigned

to the current string.

Octave 9, Note 117 - A (6927.54 Hz,
Ideal=7040.00 Hz, Error=-1.60%)

Octave 9, Note 118 - A# (7389.38 Hz,
Ideal=7465.60 Hz, Error=-1.02%)

Octave 9, Note 119 - B (7917.19 Hz,
Ideal=7902.08 Hz, Error=+0.19%)

Octave 10, Note 120 - C (8526.20 Hz, Ideal=
8372.16 Hz, Error=+1.84%) C9

Octave 10, Note 121 - C# (9236.72 Hz, Ideal=
8870.40 Hz, Error=+4.13%)

Octave 10, Note 122 - D (9236.72 Hz, Ideal=
9397.12 Hz, Error=-1.71%)

Octave 10, Note 123 - D# (10076.42 Hz, Ideal=
9955.20 Hz, Error=+1.22%)

Octave 10, Note 124 - E (10076.42 Hz,
Ideal=10548.16 Hz, Error=-4.47%)

Octave 10, Note 125 - F (11084.06 Hz,
Ideal=11175.36 Hz, Error=-0.82%)

Octave 10, Note 126 - F# (12315.63 Hz,
Ideal=11840.00 Hz, Error=+4.02%)

Octave 10, Note 127 - G (12315.63 Hz,
Ideal=12544.00 Hz, Error=-1.82%)

Octave 10, Note 128 - G# (13855.08 Hz,
Ideal=13289.60 Hz, Error=+4.26%)

Three bytes are sent, and have the following meaning:
Byte 1: Channel number $00..$0F, with bits 4 and 7 set.

Byte 2: Note number $00..$7F.
Byte 3: Note velocity $00..$78.

Entry: IX=Address of the channel data block.
L116E: LD A,(IX+$01)

ORA

RET M

A holds the assigned channel number ($00..$0F)

OR $90

CALL L11A3
LD A,(IX+$00)

Is a MIDI channel assigned to this string?

Return if not.

Set bits 4 and 7 of the channel number. A=$90..
$9F.

Write byte to MIDI device.

The note number.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L11A3 Write byte to MIDI device.

LD A,(IX+$04) Fetch the channel's volume.

RES 4,A Ensure the 'using envelope' bit is reset so

SLAA that A holds a value between $00 and $0F.

SLAA Multiply by 8 to increase the range to $00..$78.

SLA A A=Note velocity.

CALL L11A3 Write byte to MIDI device.

RET [Could have saved 1 byte by using JP $11A3
(ROM 0)]

Turn MIDI Channel Off

This routine turns off a note on the MIDI channel, if a MIDI channel is assigned to the current string.
Three bytes are sent, and have the following meaning:

Byte 1: Channel number $00..$0F, with bit 7 set.

Byte 2: Note number $00..$7F.

Byte 3: Note velocity $40.

Entry: IX=Address of the channel data block.

L118D: LD A,(IX+$01) Is a MIDI channel assigned to this string?
ORA
RET M Return if not.

A holds the assigned channel number ($00..$0F)

OR $80 Set bit 7 of the channel number. A=$80..$8F.
CALL L11A3 Write byte to MIDI device.

LD A,(IX+$00) The note number.

CALL L11A3 Write byte to MIDI device.

LD A,$40 The note velocity.

CALL L11A3 Write byte to MIDI device.

RET [Could have saved 1 byte by using JP $11A3

(ROM 0)]

Send Byte to MIDI Device

This routine sends a byte to the MIDI port. MIDI devices communicate at 31250 baud, although this
routine actually generates a baud rate of 31388, which is within the 1% tolerance supported by MIDI
devices.

Entry: A=Byte to send.

L11A3: LD L,A Store the byte to send.
LD BC,$FFFD

L11B4:

L11BE:

L11Co:

L11CF:

L11D1:

SPECTRUM 128 ROM o DISASSEMBLY

LD A $OE
OUT (C),A

LD BC,$BFFD
LD A $FA

OUT (C),A
LD E,$03

DECE
JRNZ,L11B4
NOP

NOP

NOP

NOP

LD AL

LD D,$08
RRA

LD LA

JP NC,L11C9
LD A SFE

OUT (C),A
JR L11CF
LD A$FA

OUT (C),A
JR L11CF
LD E,$02

DECE
JRNZ,L11D1
NOP

ADD A,$00
LD AL
DECD
JRNZ,L11BE
NOP

NOP
ADD A,$00
NOP
NOP

Select register 14 - 1/O port.

Set RS232 'RXD' transmit line to 0. (Keep
KEYPAD 'CTS' output line low to prevent the
keypad resetting)

Send out the START bit.

(7) Introduce delays such that the next bit is
output 113 T-states from now.

4

a2/7)

4

4

4)

4

(4) Retrieve the byte to send.

(7) There are 8 bits to send.

(4) Rotate the next bit to send into the carry.
(4) Store the remaining bits.

(10) Jump ifitis a O bit.

(7) Set RS232 'RXD' transmit line to 1. (Keep
KEYPAD 'CTS' output line low to prevent the
keypad resetting)

(11)

(12) Jump forward to process the next bit.
(7) Set RS232 'RXD' transmit line to 0. (Keep
KEYPAD 'CTS' output line low to prevent the
keypad resetting)

(11)

(12) Jump forward to process the next bit.
(7) Introduce delays such that the next data bit is
output 113 T-states from now.

4

a2/7)

4)

()

(4) Retrieve the remaining bits to send.

(4) Decrement the bit counter.

(12/7) Jump back if there are further bits to send.
(4) Introduce delays such that the stop bit is
output 113 T-states from now.

4)

O]

4)

4

SPECTRUM 128 ROM o DISASSEMBLY

LD A$FE

OUT (C),A

LD E,$06
L11E7: DECE

JR NZ,L11E7

RET

CASSETTE / RAM DISK

PART 1

SAVE Routine

L11EB: LD HL,FLAGS3
SET 5,(HL)
JR L1205

LOAD Routine

L11F2: LD HL,FLAGS3
SET 4,(HL)
JR L1205

VERIFY Routine

L11F9: LD HL,FLAGS3
SET 7,(HL)
JR L1205

MERGE Routine

L1200: LD HL,FLAGS3
SET 6,(HL)
L1205: LD HL,FLAGS3

RES 3,(HL)

(7) Set RS232 'RXD' transmit line to 0. (Keep
KEYPAD 'CTS' output line low to prevent the
keypad resetting)

(11) Send out the STOP bit.

(7) Delay for 101 T-states (28.5us).

4)

(12/7)

(10)

COMMAND ROUTINES —

$5B66.
Indicate SAVE.

$5B66.
Indicate LOAD.

$5B66.
Indicate VERIFY.

$5B66.

Indicate MERGE.
$5B66.

Indicate using cassette.

RAM disk operation

L1219:

RAM Disk Command Handling

SPECTRUM 128 ROM o DISASSEMBLY

RST 18H
Ccp
JP NZ,L13BE

LD HL,FLAGS3
SET 3,(HL)
RST 20H

JP L13BE
CALL LOSAC
DEFB $0B

Get current character.
$21. "
Jump ahead to handle cassette command.

$5B66.

Indicate using RAM disk.

Move on to next character.

Jump ahead to handle RAM disk command.
Produce error report.

"C Nonsense in BASIC"

The information relating to the file is copied into memory in $5B66 (FLAGS3) to ensure that it is

available once other RAM banks are switched in.

This code is very similar to that in the ZX Interface 1 ROM at $08F6.
Entry: HL=Start address.
IX=File header descriptor.

L121D:

LD (HD_0D),HL
LD A, (IX+$00)
LD (HD_00),A
LD L,(IX+$0B)
LD H,(IX+$0C)
LD (HD_0B),HL
LD L,(IX+$0D)
LD H,(IX+$0E)
LD (HD_11),HL
LD L,(IX+$0F)
LD H,(IX+$10)
LD (HD_OF),HL

$5B74. Save start address.
Transfer header file information
$5B71. from IX to HD_00 onwards.

$5B72.

$5B78.

$5B76.

A copy of the header information has now been copied from IX+$00 onwards to HD_00 onwards

An array type

ORA

JR Z,L124E
CP $03

JR Z,L124E

LD A, (IX+$OE)

Test file type.
Jump ahead for a program file.

Jump ahead for a CODE/SCREENS$ file.

L124E:

SPECTRUM 128 ROM o DISASSEMBLY

LD (HD_OF),A
PUSH IX

POP HL

INC HL

LD DE,N_STR1
LD BC,$000A
LDIR

LD HL,FLAGS3
BIT 5,(HL)

JP NZ,L1BAD

Load / Verify or Merge

LD HL,HD_00
LD DE,SC_00
LD BC,$0007
LDIR

CALL L1C2E

$5B76. Store array name.
IX points to file header.
Retrieve into HL.

HL points to filename.
$5B67.

Copy the filename.
$5B66.

SAVE operation?
Jump ahead if SAVE.

$5B71.
$5B7A.

Transfer requested details from HD_00 onwards

into SC_00 onwards.

Find and load requested file header into HD_00

($5B71).

The file exists else the call above would have produced an error "h file does not exist"

L1280:

L1284:

LD A,(SC_00)
LD B,A

LD A,(HD_00)
CcPB

JR NZ,L1280
CP $03

JR Z,L1290

JR C,L1284
CALL LOSAC
DEFB $1D

LD A,(FLAGS3)
BIT 6,A

JR NZ,L12C5
BIT 7,A

JP Z,L12DB

$5B7A. Requested file type.
$5B71. Loaded file type.

Error 'b' if file types do not match.

Is it a CODE file type?

Jump ahead to avoid MERGE program/array
check.

Only file types 0, 1 and 2 are OK.
Produce error report.

"b Wrong file type"

$5B66.

Is it a MERGE program/array operation?
Jump ahead if so.

Is it a VERIFY program/array operation?
Jump ahead if LOAD.

Either a verify program/array or a load/verify CODE/SCREENS$ type file

L1290:

LD A,(FLAGS3)
BIT 6,A
JR Z,L129B

$5B66.
MERGE operation?
Jump ahead if VERIFY.

SPECTRUM 128 ROM o DISASSEMBLY

Cannot merge CODE/SCREEN$

CALL LO5AC
DEFB $1C

RAM Disk VERIFY! Routine

L129B: LD HL,(SC_OB)
LD DE,(HD_0B)
LD AH
ORL
JR Z,L12AE

SBC HL,DE
JR NC,L12AE

File was smaller than requested

CALL LO5AC
DEFB $1E
L12AE: LD HL,(SC_0D)
LD AH
ORL
JRNZ,L12B8
LD HL,(HD_OD)
L12B8: LD A,(HD_00)
AND A
JR NZ,L12C1
LD HL,($5C53)

L12C1: CALL L137E

RET

Produce error report.
"a MERGE error"

$5B7B. Length requested.
$5B72. File length.

Jump ahead if requested length is 0, i.e. not
specified.

Is file length <= requested length?

Jump ahead if so; requested length is OK.

Produce error report.
"c CODE error"
$5B7D. Fetch start address.

Is length 0, i.e. not provided?

Jump ahead if start address was provided.
$5B74. Not provided so use file's start address.
$5B71. File type.

Is it a program?

Jump ahead if not.

PROG. Set start address as start of program
area.

Load DE bytes at address pointed to by HL. [The
Spectrum 128 manual states that the VERIFY
keyword is not used with the RAM disk yet it
clearly is, although verifying a RAM disk file
simply loads it in just as LOAD would do. To
support verifying, the routine at $1E37 (ROM

0) which loads blocks of data would need to be
able to load or verify a block. The success status
would then need to be propagated back to here
via routines at $137E (ROM 0), $1C4B (ROM 0)
and $1E37 (ROM 0)]

[Could have saved 1 byte by using JP $137E
(ROM 0), although could have saved a lot more
by not supporting the VERIFY keyword at all]

SPECTRUM 128 ROM o DISASSEMBLY

RAM Disk MERGE! Routine

L12C5: LD BC,(HD_0B)
PUSH BC

INC BC

RST 28H

DEFW BC_SPACES
LD (HL),$80

EX DE,HL

POP DE

PUSH HL

CALL L137E

POP HL

RST 28H

DEFW ME_CONTRL+$0018

RET

RAM Disk LOAD! Routine

L12DB: LD DE,(HD_0B)
LD HL,(SC_0D)
PUSH HL

LD AH

ORL

JR NZ,L12ED
Start address was not specified

INC DE
INC DE
INC DE
EX DE,HL
JR L12F6

A start address was specified

L12ED: LD HL,(SC_0B)
EX DE,HL

SCF

SBC HL,DE

JR C,L12FF

$5B72. File length.
Save the length.
Increment for terminator $80 (added later).

$0030. Create room in the workspace for the file.
Insert terminator.

HL=Start address.

DE=File length.

Save start address.

Load DE bytes to address pointed to by HL.
Retrieve start address.

$08CE. Delegate actual merge handling to ROM
1.

$5B72. File length.
$5B7D. Requested start address.
Save requested start address.

Was start address specified? (0 if not).
Jump ahead if start address specified.

Allow for variable overhead.

HL=File Length+3.
Jump ahead to test if there is room.

$5B7B. Requested length.
DE=Requested length. HL=File length.

File length-Requested Length-1
Jump if file is smaller than requested.

SPECTRUM 128 ROM o DISASSEMBLY

Test if there is room since file is bigger than requested

L12F6:

Test file type

L12FF:

L1303:

Array type

Start address of existing array was specified

LD DE,$0005

ADD HL,DE

LD B,H

LDC,.L

RST 28H

DEFW TEST_ROOM

POP HL
LD A,(HD_00)
AND A

JR Z,L1335

LD AH
ORL
JR Z,L1315

DEC HL
LD B,(HL)

DEC HL

LD C,(HL)

DEC HL

INC BC

INC BC

INC BC

RST 28H

DEFW RECLAIM_2

Insert new array entry into variables area

L1315:

LD HL,($5C59)
DEC HL

LD BC,(HD_0B)
PUSH BC

INC BC

INC BC

INC BC

Space required in BC.

$1F05. Will automatically produce error ‘4" if out
of memory.

Requested start address.
$5B71. Get requested file type.
Test file type.

Jump if program file type.

Was start address of existing array specified?
Jump ahead if not.

Fetch array length.

Allow for variable header.

$19E8. Delete old array.

E_LINE.
Point to end

$5B72. Array length.
Save array length.

Allow for variable header.

L1331:

Program type

L1335:

L1370:

SPECTRUM 128 ROM o DISASSEMBLY

LD A,(SC_OF)
PUSH AF
RST 28H
DEFW MAKE_ROOM
INC HL

POP AF

LD (HL),A
POP DE

INC HL

LD (HL),E
INC HL

LD (HL),D
INC HL

CALL L137E
RET

LD HL,FLAGS3
RES 1,(HL)

LD DE,($5C53)
LD HL,($5C59)
DEC HL

RST 28H

DEFW RECLAIM
LD BC,(HD_0B)
LD HL,($5C53)
RST 28H

DEFW MAKE_ROOM
INC HL

LD BC,(HD_OF)
ADD HL,BC

LD ($5C4B),HL
LD A,(HD_11+1)
LD H,A

AND $CO

JR NZ,L1370

LD A,(HD_11)
LD L,A

LD ($5C42),HL
LD (IY+$0A),$00
LD HL,FLAGS3
SET 1,(HL)

LD HL,($5C53)
LD DE,(HD_0B)

$5B7F. Get array name.
Save array name.

$1655. Create room for new array.

Store array name.

Store array length.

Load DE bytes to address pointed to by HL.
[Could have saved 1 byte by using JP $137E
(ROM 0)]

$5B66.

Signal do not auto-run BASIC program.
PROG. Address of start of BASIC program.
E_LINE. Address of end of program area.
Point before terminator.

$19E5. Delete current BASIC program.
$5B72. Fetch file length.
PROG. Address of start of BASIC program.

$1655. Create room for the file.

Allow for terminator.

$5B76. Length of variables.

Determine new address of variables.

VARS.

$5B79. Fetch high byte of auto-run line number.

If holds $80 then no auto-run line number
specified.
$5B78. Low byte of auto-run line number.

NEWPPC. Set line number to run.

NSPPC. Statement 0.

$5B66.

Signal auto-run BASIC program.

PROG. Address of start of BASIC program.
$5B72. Program length.

SPECTRUM 128 ROM o DISASSEMBLY

DEC HL

LD ($5C57),HL NXTLIN. Set the address of next line to the end of
the program.

INC HL

JR L1331 Jump back to load program bytes.

RAM Disk Load Bytes

Make a check that the requested length is not zero before proceeding to perform the LOAD, MERGE
or VERIFY. Note that VERIFY simply performs a LOAD.
Entry: HL=Destination address.

DE=Length.

IX=Address of catalogue entry.

HD_00-HD_11 holds file header information.

L137E: LD AD
ORE
RET Z Return if length is zero.
CALL L1C4B Load bytes
RET [Could have used JP $1C4B (ROM 0) to save 1

byte]

Get Expression from BASIC Line

Returns in BC.

L1385: RST 28H Expect an expression on the BASIC line.
DEFW EXPT_EXP $1C8C.
BIT 7,(1Y+3$01) Return early if syntax checking.
RET Z
PUSH AF Get the item off the calculator stack
RST 28H
DEFW STK_FETCH $2BF1.
POP AF
RET

Check Filename and Copy

Called to check a filename for validity and to copy it into N_STR1 ($5B67).

L1393: RST 20H Advance the pointer into the BASIC line.
CALL L1385 Get expression from BASIC line.

L13AD:

L13BA:

SPECTRUM 128 ROM o DISASSEMBLY

RET Z
PUSH AF
LDAC
ORB

JR Z,L13BA

LD HL,$000A
SBC HL,BC
JR C,L13BA

PUSH DE
PUSH BC

LD HL,N_STR1
LD B,$0A

LD A,$20

LD (HL),A

INC HL

DJNZ L13AD
POP BC

POP HL

LD DE,N_STR1
LDIR

POP AF

RET
CALL LO5AC
DEFB $21

Return if syntax checking.
[No need to save AF - see comment below]
Check for zero length.

Jump if so to produce error report "f Invalid
name".
Check for length greater than 10.

Jump if so to produce error report “f Invalid
name".

Save the filename start address.

Save the filename length.

$5B67. HL points to filename buffer.

Fill it with 10 spaces.

Restore filename length.

Restore filename start address.

$5B67. DE points to where to store the filename.
Perform the copy.

[No need to have saved AF as not subsequently
used]

Produce error report.
“f Invalid name"

Cassette / RAM Disk Command Handling

Handle SAVE, LOAD, MERGE, VERIFY commands.
Bit 3 of FLAGS3 indicates whether a cassette or RAM disk command.
This code is very similar to that in ROM 1 at $0605.

L13BE:

RST 28H

DEFW EXPT_EXP

BIT 7,(1Y+$01)
JR Z,L1407
LD BC,$0011
LD A,($5C74)
AND A

JR Z,L13D2
LD C,$22

$1C8C. Pass the parameters of the 'name' to the
calculator stack.

Jump ahead if checking syntax.

Size of save header, 17 bytes.

T_ADDR. Indicates which BASIC command.

Is it SAVE?

Jump ahead if so.

Otherwise need 34d bytes for LOAD, MERGE
and VERIFY commands. 17 bytes for the header

SPECTRUM 128 ROM o DISASSEMBLY

L13D2: RST 28H

DEFW BC_SPACES
PUSH DE

POP IX

LD B,$0B

LD A,$20

LD (DE),A

INC DE

DJNZ L13DC

LD (IX+$01),$FF
RST 28H

DEFW STK_FETCH
LD HL,$FFF6

DEC BC

ADD HL,BC

INC BC

JR NC,L1400

L13DC:

LD A,(35C74)
AND A
JR NZ,L13F9

CALL LO5AC
DEFB $0E

Continue to handle the name of the program.
L13F9: LD AB
ORC

JR Z,L1407
LD BC,$000A

of the requested file, and 17 bytes for the files
tested from tape.

$0030. Create space in workspace.
Get start of the created space into IX.

Clear the filename.

Set all characters to spaces.

Indicate a null name.

The parameters of the name are fetched.
$2BF1.

=-10.

Jump ahead if filename length within 10
characters.

T_ADDR. Indicates which BASIC command.
Is it SAVE?

Jump ahead if not since LOAD, MERGE and
VERIFY can have null filenames.

Produce error report.

"F Invalid file name"

Jump forward if the name has a null length.
Truncate longer filenames.

The name is now transferred to the work space (second location onwards)

L1400: PUSH IX
POP HL
INC HL
EX DE,HL

LDIR

Transfer address of the workspace to HL.
Step to the second location.

Copy the filename.

The many different parameters, if any, that follow the command are now considered.

Start by handling 'xxx "name" DATA'".

L1407: RST 18H

Get character from BASIC line.

SPECTRUM 128 ROM o DISASSEMBLY

CP $E4
JR NZ,L145F

'Xxx "name" DATA'

LD A,($5C74)
CP $03

JP Z,L1219
RST 20H

RST 28H
DEFW LOOK_VARS
JR NC,L142F
LD HL,$0000
BIT 6,(1Y+$01)
JR Z,L1425
SET7.C

LD A,(35C74)
DEC A

JR Z,L1444
CALL LOSAC
DEFB $01

L1425:

Continue with the handling of an existing array

L142F: JP NZ,L1219
BIT 7,(1Y+$01)
JR Z,L1451
LD C,(HL)

INC HL

LD A,(HL)

LD (IX+$0B),A
INC HL

LD A,(HL)

LD (IX+$0C),A
INC HL

Is it 'DATA'?
Jump if not DATA.

T_ADDR. Check the BASIC command.
Is it MERGE?

"C Nonsense in BASIC" if so.

Get next character from BASIC line.

$28B2. Look in the variables area for the array.
Jump if handling an existing array.
Signal 'using a new array'.
FLAGS. Is it a string Variable?
Jump forward if so.

Set bit 7 of the array's hame.
T_ADDR.

Give an error if trying to

SAVE or VERIFY a new array.
Produce error report.

"2 Variable not found"

Jump if not an array to produce "C Nonsense in
BASIC".

FLAGS.

Jump forward if checking syntax.

Point to the 'low length' of the variable.
The low length byte goes into
the work space.

The high length byte goes into
the work space.
Step past the length bytes.

The next part is common to both ‘old’ and 'new' arrays

L1444 LD (IX+$0E),C
LD A,$01

BIT 6,C

JR Z,L144E
INC A

L144E: LD (IX+$00),A

Copy the array's name.
Assume an array of numbers - Code $01.

Jump if itis so.

Indicate it is an array of characters - Code $02.
Save the 'type' in the first location of the header
area.

SPECTRUM 128 ROM o DISASSEMBLY

The last part of the statement is examined before joining the other pathways

L1451:

EX DE,HL
RST 20H
CPY

JR NZ,L142F
RST 20H
CALL L18A1
EX DE,HL

JP L1519

Now Consider 'SCREEN$'

L145F:

CP $AA
JR NZ,L1482

'xxx "name" SCREEN$'

LD A,(35C74)
CP $03
JP Z,L1219

RST 20H
CALL L18A1

LD (IX+$0B),$00
LD (IX+$0C),$1B

LD HL,$4000
LD (IX+$0D),L

LD (IX+$0E),H
JR L14CF

Now consider 'CODE'

L1482:

'xxx "name" CODE'

CP $AF
JR NZ,L14D5

LD A,(35C74)
CP $03
JP Z,L1219

Save the pointer in DE.

$29. Is the next character a ')'?

Give report C if it is not.

Advance to next character.

Move on to the next statement if checking syntax.
Return the pointer to the HL. (The pointer
indicates the start of an existing array's contents).
Jump forward.

Is the present code the token 'SCREEN$'?
Jump ahead if not.

T_ADDR_lo. Check the BASIC command.

Is it MERGE?

Jump to "C Nonsense in BASIC" if so since it is
not possible to have '"MERGE name SCREENS$'".
Advance pointer into BASIC line.

Move on to the next statement if checking syntax.
Length of the block.

The display area and the attribute area occupy
$1800 locations.

Start of the block, beginning of the display file
$4000.

Store in the workspace.
Jump forward.

Is the present code the token 'CODE'?
Jump ahead if not.

T_ADDR_lo. Check the BASIC command.

Is it MERGE?

Jump to "C Nonsense in BASIC" if so since it is
not possible to have '"MERGE name CODE'.

SPECTRUM 128 ROM o DISASSEMBLY

RST 20H
RST 28H

DEFW PR_ST_END
JR NZ,L14A0

LD A,($5C74)

AND A

JP Z,L1219
RST 28H
DEFW USE_ZERO

JR L14AF

Look for a 'starting address'

L14A0:

L14AF:

RST 28H
DEFW EXPT_1NUM
RST 18H

cp,

JR Z,L14B4

LD A,($5C74)

AND A

JP Z,L1219
RST 28H
DEFW USE_ZERO

JR L14B8

Fetch the 'length’ as it was specified

L14B4:

RST 20H
RST 28H
DEFW EXPT_1NUM

Advance pointer into BASIC line.

$2048.

Jump forward if the statement has not finished
T_ADDR_lo.

It is not possible to have 'SAVE name CODE' by
itself.

Jump if so to produce "C Nonsense in BASIC".

$1CES6. Put a zero on the calculator stack - for the
'start'.
Jump forward.

$1C82. Fetch the first number.

$2C. Is the present character a','?

Jump if it is - the number was a 'starting address'
T_ADDR_lo.

Refuse 'SAVE name CODE' that does not have a
'start' and a 'length’.

Jump if so to produce "C Nonsense in BASIC".

$1CES6. Put a zero on the calculator stack - for the

'length’.
Jump forward.

Advance to next character.

$1C82. Fetch the 'length'.

The parameters are now stored in the header area of the work space

L14B8:

CALL L18A1

RST 28H
DEFW FIND_INT2
LD (IX+$0B),C

LD (IX+$0C),B
RST 28H

DEFW FIND_INT2
LD (IX+$0D),C

But move on to the next statement now if
checking syntax.

$1E99. Compress the ‘'length’ into BC.
Store the length of the CODE block.

$1E99. Compress the 'starting address' into BC.
Store the start address of the CODE block.

SPECTRUM 128 ROM o DISASSEMBLY

LD (IX+$0E),B
LD H,B Transfer start address pointer to HL.
LDL,C

'SCREENS$' and 'CODE!' are both of type 3

L14CF: LD (IX+$00),$03 Store file type = $03 (CODE).
JR L1519 Rejoin the other pathways.

'xxx "name" / 'SAVE "name" LINE'
Now consider ‘'LINE' and 'no further parameters'

L14D5: CP $CA Is the present code the token 'LINE'?
JR Z,L14E2 Jump ahead if so.
CALL L18A1 Move on to the next statement if checking syntax.
LD (IX+$0E),$80 Indicate no LINE number.
JR L14F9 Jump forward.

Fetch the 'line number' that must follow 'LINE'

L14E2: LD A,($5C74) T_ADDR_lo. Only allow 'SAVE name LINE
number'.

AND A Is it SAVE?
JP NZz,L1219 Produce "C Nonsense in BASIC" if not.
RST 20H Advance pointer into BASIC line.
RST 28H Get LINE number onto calculator stack
DEFW EXPT_1NUM $1C82. Pass the number to the calculator stack.
CALL L18A1 Move on to the next statement if checking syntax.
RST 28H Retrieve LINE number from calculator stack
DEFW FIND_INT2 $1E99. Compress the 'line number" into BC.
LD (IX+$0D),C Store the LINE number.

LD (IX+$0E),B

'LINE' and 'no further parameters' are both of type 0

L14F9: LD (IX+$00),$00 Store file type = $00 (program).
LD HL,($5C59) E_LINE. The pointer to the end of the variables
area.
LD DE,($5C53) PROG. The pointer to the start of the BASIC
program.
SCF
SBC HL,DE Perform the subtraction to find the length of the

‘program + variables'.
LD (IX+$0B),L
LD (IX+$0C),H Store the length.

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,($5C4B) VARS. Repeat the operation but this
SBC HL,DE time storing the length of the

LD (IX+$0F),L ‘program’ only.

LD (IX+$10),H

EX DE,HL Transfer pointer to HL.

In all cases the header information has now been prepared:

- The location 'IX+00' holds the type number.

- Locations 'IX+01 to IX+0A' holds the name ($FF in 'IX+01" if null).

- Locations 'IX+0B & IX+0C' hold the number of bytes that are to be found in the 'data block'.

- Locations 'IX+0D to IX+10' hold a variety of parameters whose exact interpretation depends on the
‘type'.

The routine continues with the first task being to separate SAVE from LOAD, VERIFY and MERGE.

L1519: LD A,(FLAGS3) $5B66.
BIT 3,A Using RAM disk?
JP NZ,L121D Jump if the operation is on the RAM disk.
LD A,($5C74) T_ADDR_lo. Get the BASIC command.
AND A Is it SAVE?
JR NZ,L152B Jump ahead if not.
RST 28H
DEFW SA_CONTROL $0970. Run the save routine in ROM 1.
RET

In the case of a LOAD, VERIFY or MERGE command the first seventeen bytes of the 'header area' in
the work space hold the prepared information, as detailed above and it is now time to fetch a ‘header'
from the tape.

L152B: RST 28H
DEFW SA_ALL+$0007 $0761. Run the load/merge/verify routine in ROM
1.
RET

EDITOR ROUTINES — PART 1

Relist the BASIC Program from the Current Line

This routine lists the BASIC program from the current line number. It initially shows the last line
displayed but rows may subsequently be scrolled up until the required BASIC line has been found.
The structure of the ROM program only supports listing BASIC lines that are 20 rows or less; larger
lines are shown truncated to 20 rows.

L152F: LD HL,$EEF5 Flags.
RES 0,(HL) Signal this is not the current line.

SPECTRUM 128 ROM o DISASSEMBLY

SET 1,(HL)

Signal not yet located the current line.

A loop is entered to display a screenful of program listing. If the current line number is not found in
the lines displayed then all lines are scrolled up and the listing reproduced. This procedure repeats
until the current line number has been found and displayed.

L1536:

L1540:

L1554:

LD HL,($5C49)
LD AH

ORL

JR NZ,L1540
LD ($EC06),HL
LD A,($F9DB)

PUSH AF
LD HL,($FC9A)

CALL L334A
LD ($F9D7),HL
CALL L3222
CALL L30D6
POP AF

ORA
JR Z,L1563

E_PPC. Fetch current line number.

Is there a currently selected line?

Jump ahead if so.

Set to $0000 to indicate no editable characters
before the cursor.

Fetch the number of rows of the BASIC line that
are in the Above-Screen Line Edit Buffer,

i.e. that are off the top of the screen.

Line number of the BASIC line at the top of the
screen (or O for the first line).

Find closest line number (or $0000 if no
subsequent line exists).

Store the line number of the BASIC line being
edited in the buffer.

Set default Above-Screen Line Edit Buffer
settings.

Set default Below-Screen Line Edit Buffer
settings.

A=Number of rows of the BASIC line that are in
the Above-Screen Line Edit Buffer.

Are there any rows off the top of the screen?
Jump ahead if not.

The current settings indicate that the top BASIC line straggles into the Above-Screen Line Edit Buffer.
It is therefore necessary to insert the current BASIC line into the Below-Screen Line Edit Buffer and
then shift the appropriate number of rows into the Above-Screen Line Edit Buffer.

PUSH AF

CALL L30DF

EX DE,HL

CALL L326A

POP AF

DECA
JR L1554

Save the number of rows off the top of the
screen.

Copy a BASIC line from the program area into the
Below-Screen Line Edit Buffer.

DE=Address of the Below-Screen Line Edit
Buffer.

Shift up a row into the Above-Screen Line Edit
Buffer.

Retrieve the number of rows off the top of the
screen.

Decrement the number of rows.

Jump back to shift up another row if required.

SPECTRUM 128 ROM o DISASSEMBLY

Either there the top BASI Cline does not straggle off the top of the the screen or the appropriate number
of rows have been copied into the Above-Screen Line Edit Buffer. In the latter case, the Below-Screen
Line Edit Buffer contains the remaining rows of the BASIC line and which be copied into the top of
the Screen Line Edit Buffer.

L1563: LD C,$00 C=Row 0.

CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the first row, as specified in C.

LD B,C B=Row 0.

LD A,($EC15) The number of editing rows on screen.

LDCA C=Number of editing rows on screen.

PUSH BC B=Row number, C=Number of editing rows on
screen.

PUSH DE DE=Start address in Screen Line Edit Buffer of

the first row.

Enter a loop to copy BASIC line rows into the Screen Line Edit Buffer. The Below-Screen Line Edit
Buffer is used as a temporary store for holding each BASIC line as it is copied into the Screen Line
Edit Buffer. If the top BASIC line straggles above the screen then this loop is entered with the remains
of the line already in the Below-Screen Line Edit Buffer.

L156F: CALL L30DF Shift up all rows of the BASIC line in the Below-
Screen Line Edit Buffer, or if empty then copy a
BASIC line from the program area into it. If no
BASIC line available then empty the first row of
the Below-Screen Line Edit Buffer.

LD A,($EEF5) Listing flags.
BIT 1,A Has the current line been previously found?
JR Z,L1596 Jump if so.

The current line has not yet been found so examine the current row in case it is the current line

PUSH DE DE=Start address in Screen Line Edit Buffer of
the current row.

PUSH HL HL=Address of the first row in the Below-Screen
Line Edit Buffer.

LD DE,$0020

ADD HL,DE Point to the flag byte for the first row.

BIT 0,(HL) Is it the first row of a BASIC line?

JR Z,L1594 Jump if not.

The Below-Screen Line Edit Buffer contains a complete BASIC line so determine whether this is the
current line

INC HL
LD D,(HL) Get line number into DE.

SPECTRUM 128 RO

INC HL
LD E,(HL)
ORA
LD HL,($5C49)
SBC HL,DE
JR NZ,L1594
LD HL,$EEF5
SET 0,(HL)
L1594 POP HL

POP DE

M o DISASSEMBLY

E_PPC. Current line number.
Jump ahead unless this is the current line.

Signal this is the current line.

HL=Address of the current row in the Below-
Screen Line Edit Buffer.

DE=Start address in Screen Line Edit Buffer of
the current row.

Copy the row of the BASIC line from the Below-Screen Line Edit Buffer into the Screen Line Edit Buffer

L1596: PUSH BC
PUSH HL

LD BC,$0023
LDIR

POP HL

POP BC
PUSH DE
PUSH BC

EX DE,HL

LD HL,$EEF5

BIT 0,(HL)
JR Z,L15D3

This is the current line so scan across the BASIC |

LD B,$00

L15AB: LD HL,($EC06)

LD AH
ORL

B=Row number, C=Number of editing rows on
screen.

HL=Address of the current row in the Below-
Screen Line Edit Buffer.

Copy the first row of the BASIC line in the Below-
Screen Line Edit Buffer into the next row of the
Screen Line Edit Buffer.

HL=Address of the current row in the Below-
Screen Line Edit Buffer.

B=Row number, C=Number of editing rows on
screen.

DE=Start address in Screen Line Edit Buffer of
the next row.

B=Row number, C=Number of editing rows on
screen.

DE=Address of the current row in the Below-
Screen Line Edit Buffer.

Flags.

Is this the current line?

Jump if not.

ine to locate the cursor column position

Column 0.

HL=Count of the number of editable characters in
the BASIC line up to the cursor within the Screen
Line Edit Buffer.

Are there any editable characters in this row prior
to the cursor?

SPECTRUM 128 ROM o DISASSEMBLY

JR Z,L15C0 Jump if there are none, i.e. cursor at start of the

row.

There are editable characters on this row prior to the cursor [BUG - Entering ' 10 REM' or '0010 REM'
will insert the line into the program area but instead of placing the cursor on the following row it is
placed after the following BASIC line, or if the line inserted was the last in the program then the cursor
is placed on row 20. The bug occurs due to the leading spaces or zeros, and hence will apply to every
BASIC command. When the line is inserted into the Screen Line Edit Buffer, the leading spaces are
discarded and hence the line length is shorter than that typed in. However, it is the typed in line length
that is used when parsing the BASIC line in the Screen Line Edit Buffer and as a result this causes an
attempt to find the remaining characters on the following row of the Screen Line Edit Buffer. If another
BASIC line is on the following Screen Line Edit Buffer row then the search completes and the cursor
is placed on the row after this BASIC line. If there is not a BASIC line on the following row then the
search continues on the next row. Since this will also be empty, the search advances onto the next
row, and then the next, and so on until row 20 is reached. To fix the bug, the typed in character count
until the cursor (held in $EC06) ideally needs to be adjusted to match the actual number of characters
stored in the Screen Line Edit Buffer. However, this is not a trivial change to implement. A simpler
solution to fix the bug is to intercept when a move to the next row is made and to determine whether
the BASIC line actually continues on this row. Credit: Paul Farrow] [To fix the bug, the POP HL and
JR NC,$15CB (ROM 0) instructions following the call to $2E41 (ROM 0) should be replaced with the
following. Credit: Paul Farrow.

SPANS_ROW

CHAR_FOUND

PUSH DE DE=Address of the start of the row of the BASIC
line in the Screen Line Edit Buffer.

PUSH AF Save the flags.

LD HL,$0020

ADD HL,DE

EX DE,HL DE=Address of the flag byte for the row in the
Screen Line Edit Buffer.

POP AF Restore the flags.

JR C,CHAR_FOUND Jump if editable column found.

LD A,(DE) Fetch the flag byte.

BIT 1,A Does the BASIC line span onto the next row?

JR NZ,SPANS_ROW
POP DE

POP HL
LD HL,$0000

LD ($EC06),HL

JP $15C0 (ROM 0)

POP DE

POP HL
JP $15CB (ROM 0)

Jump if it does.

DE=Address of the start of the BASIC row in the
Screen Line Edit Buffer.

Signal no editable characters left on the row.

Jump since all characters on the row have been
scanned through.

DE=Address of the start of the BASIC row in the
Screen Line Edit Buffer.

Jump if no editable columns left on the row.

SPECTRUM 128 ROM o DISASSEMBLY

POP DE DE=Address of the start of the BASIC row in the
Screen Line Edit Buffer.

POP HL]

PUSH HL

CALL L2E41 Find editable position on this row from the
previous column to the right, returning column
number in B.

POP HL

JR NC,L15CB Jump if no editable character found on this row,
i.e. there must be more characters on the next
row.

An editable character was found to the right on the current row

DEC HL Decrement the count of characters prior to the
cursor.

INC B Advance to next column.

LD ($ECO06),HL Update the count of the number of editable
characters up to the cursor.

JR L15AB Jump back to test next column.

Column position of cursor located, find the closest editable character

L15Co: CALL L2E41 Find editable position on this row from the

previous column to the right, returning column
number in B.

CALL NC,L2E63 If no editable character found then find editable
position to the left, returning column number in B.

LD HL,$EEF5 Flags.

LD (HL),$00 Signal ‘'not the current line', ‘current line has
previously been found' and ‘update display file
enabled'.

Store the current cursor position

L15CB: LD AB A=Column number. This will be the preferred
column number.
POP BC B=Row number, C=Number of editing rows on
screen.
PUSH BC
LD C,B C=Row number.
LD B,A B=Column number.

CALL L2A11 Store this as the current cursor editing position.

Move to next row

L15D3:

The bottom screen row has been exceeded

SPECTRUM 128 ROM o DISASSEMBLY

POP BC
POP DE

LDAC

INC B

CPB

JR NC,L156F

LD A,($EEF5)
BIT 1,A
JR Z,L1602

Current line has not yet been found

BIT 0,A
JR NZ,L1602

This is not the current line

LD HL,($5C49)
LD AH

ORL

JR Z,L15F4

LD ($FC9A),HL
CALL L3222

JR L15FD

There is no current line number

L15F4:

L15FD:

LD ($FC9A),HL
CALL L3352
LD ($5C49),HL

POP DE

B=Row number, C=Number of editing rows on
screen.

DE=Start address in Screen Line Edit Buffer of
the next row.

A=Number of editing rows on screen.

Next row.

Reached the bottom screen row?

Jump back if not to display the next row.

Listing flags.
Has the current line been previously found?
Jump if so.

Is this the current line?
Jump if so.

E_PPC. Current line number.

Jump if there is no current line number.

Store it as the line number at top of the screen.
Set default Above-Screen Line Edit Buffer
settings to clear the count of the number of rows
it contains.

Jump forward.

Set the line number at top of the screen to $0000,
i.e. first available.

Create line number representation in the Keyword
Construction Buffer of the next BASIC line.
E_PPC. Current line number is the first in the
BASIC program.

DE=Start address in Screen Line Edit Buffer of
the first row.

SPECTRUM 128 ROM o DISASSEMBLY

POP BC

JP L1536

The bottom line is the current line

L1602: POP DE

POP BC

CPA

B=Row number, C=Number of editing rows on
screen.

Jump back to continue listing the program until
the current line is found.

DE=Start address in Screen Line Edit Buffer of
the first row.

B=Row number, C=Number of editing rows on
screen.

Set the zero flag if current line has yet to be
found, hence signal do not update cursor position
settings.

Print All Screen Line Edit Buffer Rows to the Display File

Print all rows of the edit buffer to the display file, and updating the cursor position settings if required.
Entry: Zero flag reset if update of cursor position settings required.

B=Row number.
C=Number of editing rows on screen.

L1605: PUSH AF
LDAC
LD C,B
CALL L30B4

EX DE,HL
L160C: PUSH AF

CALL L3604

POP AF

LD DE,$0023

ADD HL,DE
L1615: INC C

CPC

JR NC,L160C

All rows printed

POP AF
RET Z

Find the new cursor column position

Save the zero flag.

Save the number of editing rows on screen.
C=Row number.

DE=Start address in Screen Line Edit Buffer of
row held in C

and transfer into HL.

A=Number of editing rows on screen.

Print a row of the edit buffer to the screen.

Point to the start of the next row.
Advance to the next row.

All rows printed?

Jump back if not to print next row.

Retrieve the zero flag.
Return if 'not the current line' and ‘current line has
previously been found'.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2A07 Get current cursor position (C=row, B=column,
A=preferred column).
L161E: CALL L2B78 Find next Screen Line Edit Buffer editable

position to right, moving to next row if necessary.
Returns column number in B.

LD HL,($EC06) Fetch the number of editable characters on this
row prior to the cursor.

DEC HL Decrement the count.

LD AH Are there any characters?

ORL

LD ($ECO06),HL Store the new count.

JR NZ,L161E Jump if there are some characters prior to the
cursor.

JP L2A11 Store cursor editing position, with preferred
column of 0.

RET [Redundant byte]

Clear Editing Display

L1630: LD B,$00 Top row of editing area.
LD A,($EC15) The number of editing rows on screen.
LDD,A D=Number of rows in editing area.
JP L3B5E Clear specified display rows.

Shift All Edit Buffer Rows Up and Update Display File if
Required
This routine shifts all edit buffer rows up, updating the display file if required.

Entry: HL=Address of the 'Bottom Row Scroll Threshold' within the editing area information.
Exit: Carry flag set if edit buffer rows were shifted.

L1639: LD B,$00 Row number to start shifting from.
PUSH HL Save the address of the 'Bottom Row Scroll
Threshold' within the editing area information.

Attempt to shift a row into the Above-Screen Line Edit Buffer

LDC,B Find the address of row 0.
CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L326A

POP HL

RET NC

Attempt to shift the top row of the Screen Line
Edit Buffer into the Above-Screen Line Edit
Buffer.

Retrieve the address of the 'Bottom Row Scroll
Threshold' within the editing area information.
Return if the Above-Screen Line Edit Buffer is full,
i.e. no edit buffer rows shifted.

A change to the number of rows in the Above-Screen Line Edit Buffer occurred

CALL L30DF

Shift up rows of the BASIC line in Below-Screen
Line Edit Buffer, inserting the next line BASIC
line if the buffer becomes empty. Returns with HL
holding the address of the first row in the Below-
Screen Line Edit Buffer.

Shift All Screen Line Edit Buffer Rows Up and Update Display File if Required

L1648:

PUSH BC
PUSH HL

LD HL,$0023
ADD HL,DE
LD A,($EC15)
LD C,A

CPB
JR Z,L1663

Shift all Screen Line Edit Buffer rows up

L1656:

PUSH BC
PUSH BC
LD BC,$0023

LDIR

POP BC
LDAC

INC B

CPB

JR NZ,L1656

B=Row counter.

HL=Address of first row in the Below-Screen Line
Edit Buffer.

DE=Address of the current row in the Screen Line
Edit Buffer.

HL=Address of the next row in the Screen Line
Edit Buffer.

C=Number of editing rows on screen.
Any rows to shift?
Jump if not.

C=Number of editing rows on screen.
C=Number of editing rows on screen.
DE=Current Screen Line Edit Buffer row,
HL=Next Screen Line Edit Buffer row.

Shift one row of the Screen Line Edit Buffer up.
C=Number of editing rows on screen.

Fetch the number of editing rows on screen.
Next row.

All rows shifted?

Repeat for all edit buffer rows to shift.

All Screen Line Edit Buffer rows have been shifted up

SPECTRUM 128 ROM o DISASSEMBLY

POP BC C=Number of editing rows on screen, B=Row
number, i.e. 0.
L1663: POP HL HL=Address of the first row in the Below-Screen
Line Edit Buffer.
L1664: CALL L3618 Shift up all edit rows in the display file if updating
required.
LD BC,$0023 HL=Address of the first row in the Below-Screen

Line Edit Buffer, DE=Address of last row in
Screen Line Edit Buffer.

LDIR Copy the first row of the Below-Screen Line Edit
Buffer into the last row of the Screen Line Edit
Buffer.

SCF Signal that edit buffer rows were shifted.

POP BC B=Row counter.

RET

Shift All Edit Buffer Rows Down and Update Display File if
Required

This routine shifts all edit buffer rows down, updating the display file if required.

Exit : Carry flag set if edit buffer rows were shifted.

B=Last row number to shift.

Shift all rows in the Above-Screen Line Edit Buffer, shifting in a new BASIC line if applicable

L166F: LD B,$00 Last row number to shift.
CALL L322B Attempt to shift down the Above-Screen Line Edit
Buffer, loading in a new BASIC line if it is empty.
RET NC Return if Above-Screen Line Edit Buffer is empty,

i.e. no edit buffer rows were shifted.
Entry point from routine at $2ED3 (ROM 0) to insert a blank row

L1675: PUSH BC B=Last row number to shift.
PUSH HL HL=Address of next row to use within the Above-
Screen Line Edit Buffer.

Shift all rows in the Below-Screen Line Edit Buffer down, shifting in a new BASIC line if applicable

LD A,($EC15) A=Number of editing rows on screen.
LDCA C=Number of editing rows on screen.
CALL L30B4 DE=Start address in Screen Line Edit Buffer of

the last editing row.

L168E:

L1695:

SPECTRUM 128 ROM o DISASSEMBLY

CALL L311E

JR NC,L16A9
DEC DE

LD HL,$0023
ADD HL,DE

EX DE,HL

PUSH BC

LDAB
CPC

JR Z,L169A
PUSH BC

LD BC,$0023
LDDR

POP BC

LDAB
DECC
CPC

JR C,L168E

Shift down all rows in the Below-Screen Line

Edit Buffer, or empty the buffer a row does not
straggle off the bottom of the screen.

Jump if the Below-Screen Line Edit Buffer is full.
DE=Address of the last flag byte of the
penultimate editing row in the Screen Line Edit
Buffer.

Length of an edit buffer row.

HL=Address of the last flag byte of the last editing
row in the Screen Line Edit Buffer.

DE=Address of last flag byte of last editing row

in Screen Line Edit Buffer, HL=Address of last
flag byte of penultimate editing row in Screen Line
Edit Buffer.

C=Number of editing rows on screen, B=Last row
number to shift.

Any rows to shift?

Jump if not.

C=Row number to shift, B=Last row number to
shift.

Copy one row of the Screen Line Edit Buffer
down.

C=Number of editing rows on screen, B=Row
shift counter.

A=Row shift counter.

Repeat for all edit buffer rows to shift.

All Screen Line Edit Buffer rows have been shifted down

L169A:

EX DE,HL

INC DE
POP BC

POP HL
CALL L362C

LD BC,$0023

HL=Address of last flag byte of first editing row

in Screen Line Edit Buffer, DE=Address of byte
before start of first editing row in Screen Line Edit
Buffer.

DE=Start of first row in Screen Line Edit Buffer.
C=Number of editing rows on screen, B=Last row
number to shift.

HL=Address of next row to use within the Above-
Screen Line Edit Buffer.

Shift down all edit rows in the display file if
updating required.

SPECTRUM 128 ROM o DISASSEMBLY

LDIR

SCF
POP BC
RET

The Below-Screen Line Edit Buffer is full

L16A9: POP HL
POP BC
RET

Copy the next row of the Above-Screen Line Edit
Buffer into the first row of the Screen Line Edit
Buffer.

Signal Below-Screen Line Edit Buffer is not full.
B=Last row number to shift.

Restore registers.
B=Last row number to shift.

Insert Character into Edit Buffer Row, Shifting Row Right

This routine shifts a byte into an edit buffer row, shifting all existing characters right until either the
end of the row is reached or the specified end column is reached.

Entry: DE=Start address of an edit buffer row.
A=Character to shift into left of row.

B=Column to start shifting at.

Exit: A=Byte shifted out from last column.
HL=Points byte after row (i.e. flag byte).

Zero flag set if the character shifted out was a null ($00).

L16AC: PUSH DE
LD H,$00
LDL,B

L16B0: ADD HL,DE
LDD,A
LDAB

Shift all bytes in the row to the right.

L16B3: LD E,(HL)
LD (HL),D
LD D,E
INC HL
INC A
CP $20
JR C,L16B3
LD AE
CP $00
POP DE
RET

Save DE.

HL=Start column number.
HL=Address of the starting column.
Store the character to shift in.
A=Start column number.

Fetch a character from the row.

Replace it with the character to shift in.
Store the old character for use next time.
Point to the next column.

End of row reached?

Jump if not to shift the next character.
A=Character that was shifted out.

Return with zero flag set if the character was $00.
Restore DE

SPECTRUM 128 ROM o DISASSEMBLY

Insert Character into Edit Buffer Row, Shifting Row Left

This routine shifts a byte into an edit buffer row, shifting all existing characters left until either the
beginning of the row is reached or the specified end column is reached.
Entry: DE=Start address of an edit buffer row.
A=Character to shift into right of row.
B=Column to stop shifting at.
Exit: A=Byte shifted out.
HL=Points byte before row.
Zero flag set if the character shifted out was a null ($00).

L16C1: PUSH DE Save DE.
LD HL,$0020 32 columns.
L16C5: ADD HL,DE Point to the flag byte for this row.
PUSH HL Save it.
LD D,A Store the character to shift in.
LD A $1F Maximum of 31 shifts.
JR L16D3 Jump ahead to start shifting.
L16CC: LD E,(HL) Fetch a character from the row.
LD (HL),D Replace it with the character to shift in.
LD D,E Store the old character for use next time.
CPB End column reached?
JR Z,L16D6 Jump if so to exit.
DECA Decrement column counter.
L16D3: DEC HL Point back a column.
JRL16CC Loop back to shift the next character.
L16D6: LD AE A=Character that was shifted out.
CP $00 Return with zero flag set if the character was $00.
POP HL Fetch address of next flag byte for the row.
POP DE Restore DE.
RET

BASIC LINE AND COMMAND INTERPRETATION
ROUTINES — PART 1

The Syntax Offset Table

Similar in construction to the table in ROM 1 at $1A48.
[No instruction fetch at $1708 hence ZX Interface 1 will not be paged in by this ROM. Credit: Paul
Farrow].

L16DC: DEFB $B1 DEF FN -> $178D (ROM 0)

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $C9
DEFB $BC
DEFB $BE
DEFB $C3
DEFB $AF
DEFB $B4
DEFB $93
DEFB $91
DEFB $92
DEFB $95
DEFB $98
DEFB $98
DEFB $98
DEFB $98
DEFB $98
DEFB $98
DEFB $98
DEFB $7F
DEFB $81
DEFB $2E
DEFB $6C
DEFB $6E
DEFB $70
DEFB $48
DEFB $94
DEFB $56
DEFB $3F
DEFB $41
DEFB $2B
DEFB $17
DEFB $1F
DEFB $37
DEFB $77
DEFB $44
DEFB $0F
DEFB $59
DEFB $2B
DEFB $43
DEFB $2D
DEFB $51
DEFB $3A
DEFB $6D
DEFB $42
DEFB $0D
DEFB $49
DEFB $5C
DEFB $44

CAT -> $17A6 (ROM 0)
FORMAT -> $179A (ROM 0)
MOVE -> $179D (ROM 0)
ERASE -> $17A3 (ROM 0)
OPEN # -> $1790 (ROM 0)
CLOSE # -> $1796 (ROM 0)
MERGE -> $1776 (ROM 0)
VERIFY -> $1775 (ROM 0)
BEEP -> $1777 (ROM 0)
CIRCLE -> $177B (ROM 0)
INK -> $177F (ROM 0)
PAPER -> $1780 (ROM 0)
FLASH -> $1781 (ROM 0)
BRIGHT -> $1782 (ROM 0)
INVERSE -> $1783 (ROM 0)
OVER -> $1784 (ROM 0)
OUT -> $1785 (ROM 0)
LPRINT -> $176D (ROM 0)
LLIST -> $1770 (ROM 0)
STOP -> $171E (ROM 0)
READ -> $175D (ROM 0)
DATA -> $1760 (ROM 0)
RESTORE -> $1763 (ROM 0)
NEW -> $173C (ROM 0)
BORDER -> $1789 (ROM 0)
CONTINUE -> $174C (ROM 0)
DIM -> $1736 (ROM 0)

REM -> $1739 (ROM 0)
FOR -> $1724 (ROM 0)

GO TO -> $1711 (ROM 0)
GO SUB -> $171A (ROM 0)
INPUT -> $1733 (ROM 0)
LOAD -> $1774 (ROM 0)
LIST -> $1742 (ROM 0)

LET -> $170E (ROM 0)
PAUSE -> $1759 (ROM 0)
NEXT -> $172C (ROM 0)
POKE -> $1745 (ROM 0)
PRINT -> $1730 (ROM 0)
PLOT -> $1755 (ROM 0)
RUN -> $173F (ROM 0)
SAVE -> $1773 (ROM 0)
RANDOMIZE -> $1749 (ROM 0)
IF -> $1715 (ROM 0)

CLS -> $1752 (ROM 0)
DRAW -> $1766 (ROM 0)
CLEAR -> $174F (ROM 0)

The Syntax Parameter Table

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $15
DEFB $5D

RETURN -> $1721 (ROM 0)
COPY -> $176A (ROM 0)

Similar to the parameter table in ROM 1 at $1A7A.

L170E:

L1711:

L1715:

L171A:

L171E:

L1721:

L1724:

L172C:

L1730:

L1733:

L1736:

L1739:

L173C:

L173F:

DEFB $01
DEFB '='
DEFB $02
DEFB $06
DEFB $00
DEFW GO_TO
DEFB $06
DEFB $CB
DEFB $0E
DEFW L1967
DEFB $06
DEFB $0C
DEFW L1A53
DEFB $00
DEFW STOP
DEFB $0C
DEFW L1A6F
DEFB $04
DEFB '='
DEFB $06
DEFB $CC
DEFB $06
DEFB $0E
DEFW L1981
DEFB $04
DEFB $00
DEFW NEXT
DEFB $0E
DEFW L2178
DEFB $0E
DEFW L218C
DEFB $0E
DEFW L21D5
DEFB $0E
DEFW L1862
DEFB $0C
DEFW L21AA
DEFB $0D
DEFW L1A02

CLASS-01 LET

$3D. =

CLASS-02

CLASS-06 GO TO

CLASS-00

$1E67. GO TO routine in ROM 1.
CLASS-06 IF

‘THEN'

CLASS-0E

New IF routine in ROM 0.
CLASS-06 GO SuUB

CLASS-0C

New GO SUB routine in ROM 0.
CLASS-00 STOP

$1CEE. STOP routine in ROM 1.
CLASS-0C RETURN

New RETURN routine in ROM 0.
CLASS-04 FOR

$3D. '='

CLASS-06

TO'

CLASS-06

CLASS-0E

New FOR routine in ROM 0.
CLASS-04 NEXT

CLASS-00

$1DAB. NEXT routine in ROM 1.
CLASS-0E PRINT

New PRINT routine in ROM 0.
CLASS-0E INPUT

New INPUT routine in ROM 0.
CLASS-0E DIM

New DIM routine in ROM 0.
CLASS-0E REM

New REM routine in ROM 0.
CLASS-0C NEW

New NEW routine in ROM 0.
CLASS-0D RUN

New RUN routine in ROM 0.

L1742:

L1745:

L1749:

L174C:

L174F:

L1752:

L1755:

L1759:

L175D:

L1760:

L1763:

L1766:

L176A:

L176D:

L1770:

L1773:
L1774:
L1775:
L1776:
L1777:

L177B:

L177F:
L1780:
L1781:

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $0E
DEFW L1B75
DEFB $08
DEFB $00
DEFW POKE
DEFB $03
DEFW RANDOMIZE
DEFB $00
DEFW CONTINUE
DEFB $0D
DEFW L1A0OD
DEFB $00
DEFW CLS
DEFB $09
DEFB $00
DEFW PLOT
DEFB $06
DEFB $00
DEFW PAUSE
DEFB $0E
DEFW L19AB
DEFB $0E
DEFW L19EB
DEFB $03
DEFW RESTORE
DEFB $09
DEFB $0E
DEFW L21BE
DEFB $0C
DEFW L21A7
DEFB $0E
DEFW L2174
DEFB $0E
DEFW L1B71
DEFB $0B
DEFB $0B
DEFB $0B
DEFB $0B
DEFB $08
DEFB $00
DEFW BEEP
DEFB $09
DEFB $0E
DEFW L21AE
DEFB $07
DEFB $07
DEFB $07

CLASS-0E LIST

New LIST routine in ROM 0.
CLASS-08 POKE
CLASS-00

$1E80. POKE routine in ROM 1.
CLASS-03 RANDOMIZE
$1E4F. RANDOMIZE routine in ROM 1.
CLASS-00 CONTINUE

$1E5F. CONTINUE routine in ROM 1.
CLASS-0D CLEAR

New CLEAR routine in ROM 0.
CLASS-00 CLS

$0D6B. CLS routine in ROM 1.
CLASS-09 PLOT

CLASS-00

$22DC. PLOT routine in ROM 1
CLASS-06 PAUSE

CLASS-00

$1F3A. PAUSE routine in ROM 1.
CLASS-0E READ

New READ routine in ROM 0.
CLASS-0E DATA

New DATA routine in ROM 0.
CLASS-03 RESTORE

$1E42. RESTORE routine in ROM 1.
CLASS-09 DRAW

CLASS-0E

New DRAW routine in ROM 0.
CLASS-0C COPY

New COPY routine in ROM 0.
CLASS-0E LPRINT

New LPRINT routine in ROM 0.
CLASS-0E LLIST

New LLIST routine in ROM 0.
CLASS-0B SAVE

CLASS-0B LOAD

CLASS-0B VERIFY

CLASS-0B MERGE

CLASS-08 BEEP

CLASS-00

$03F8. BEEP routine in ROM 1.
CLASS-09 CIRCLE

CLASS-0E

New CIRCLE routine in ROM 0.
CLASS-07 INK

CLASS-07 PAPER

CLASS-07 FLASH

SPECTRUM 128 ROM o DISASSEMBLY

L1782: DEFB $07 CLASS-07 BRIGHT
L1783: DEFB $07 CLASS-07 INVERSE
L1784: DEFB $07 CLASS-07 OVER
L1785: DEFB $08 CLASS-08 OUT
DEFB $00 CLASS-00
DEFW COUT $1E7A. OUT routine in ROM 1.
L1789: DEFB $06 CLASS-06 BORDER
DEFB $00 CLASS-00

DEFW BORDER

L178D: DEFB $0E CLASS-0E DEF FN

DEFW L1A8C New DEF FN routine in ROM 0.
L1790: DEFB $06 CLASS-06 OPEN #

DEFB ', $2C. ")

DEFB $0A CLASS-0A

DEFB $00 CLASS-00

DEFW OPEN $1736. OPEN # routine in ROM 1.
L1796: DEFB $06 CLASS-06 CLOSE #

DEFB $00 CLASS-00

DEFW CLOSE $16E5. CLOSE # routine in ROM 1.
L179A: DEFB $0E CLASS-0E FORMAT

DEFW L0641 FORMAT routine in ROM 0.
L179D: DEFB $0A CLASS-0A MOVE

DEFB', $2C. ")

DEFB $0A CLASS-0A

DEFB $0C CLASS-0C

DEFW L1AFO Just execute a RET.
L17A3: DEFB $0E CLASS-0E ERASE

DEFW L1COC New ERASE routine in ROM 0.
L17A6: DEFB $0E CLASS-0E CAT

DEFW L1BE5 New CAT routine in ROM 0.
L17A9: DEFB $0C CLASS-0C SPECTRUM

DEFW L1B2B SPECTRUM routine in ROM 0.
L17AC: DEFB $0E CLASS-0E PLAY

DEFW L2317 PLAY routine in ROM 0.

$2294. BORDER routine in ROM 1.

(From Logan & O'Hara's 48K ROM disassembly):

The requirements for the different command classes are as follows: CLASS-00 - No further operands.
CLASS-01 - Used in LET. A variable is required.

CLASS-02 - Used in LET. An expression, numeric or string, must follow.
CLASS-03 - A numeric expression may follow. Zero to be used in case of default.
CLASS-04 - A single character variable must follow.

CLASS-05 - A set of items may be given.

CLASS-06 - A numeric expression must follow.

CLASS-07 - Handles colour items.

CLASS-08 - Two numeric expressions, separated by a comma, must follow.
CLASS-09 - As for CLASS-08 but colour items may precede the expressions.
CLASS-0A - A string expression must follow.

SPECTRUM 128 ROM o DISASSEMBLY

CLASS-0B - Handles cassette/RAM disk routines.

In addition the 128 adds the following classes:

CLASS-0C - Like class 00 but calling ROM 0. (Used by SPECTRUM, MOVE, COPY, NEW, GO SUB,
RETURN)

CLASS-0D - Like class 06 but calling ROM 0. (Used by CLEAR, RUN)

CLASS-0E - Handled in ROM 0. (Used by PLAY, ERASE, CAT, FORMAT, CIRCLE, LPRINT, LLIST,
DRAW, DATA, READ, LIST, DIM, INPUT, PRINT, FOR, IF)

The 'Main Parser' Of the BASIC Interpreter

The parsing routine of the BASIC interpreter is entered at $17AF (ROM 0) when syntax is being
checked, and at $1838 (ROM 0) when a BASIC program of one or more statements is to be executed.
This code is similar to that in ROM 1 at $1B17.

L17AF: RES 7,(IY+$01)
RST 28H
DEFW E_LINE_NO

FLAGS. Signal 'syntax checking'.

$19FB. CH-ADD is made to point to the first code
after any line number

XOR A

LD ($5C47),A SUBPPC. Set to $00.

DEC A

LD ($5C3A),A ERR_NR. Set to $FF.

JRL17C1 Jump forward to consider the first statement of
the line.

The Statement Loop

Each statement is considered in turn until the end of the line is reached.

L17Co: RST 20H Advance CH-ADD along the line.
L17C1: RST 28H
DEFW SET_WORK $16BF. The work space is cleared.
INC (IY+$0D) SUBPPC. Increase SUBPPC on each passage
around the loop.
JP M,L1912 Only '127' statements are allowed in a single line.
Jump to report "C Nonsense in BASIC".
RST 18H Fetch a character.
LD B,$00 Clear the register for later.
CP $0D Is the character a ‘carriage return'?
JP Z,L1863 jump if it is.
CcpP" $3A. Go around the loop again ifitis a "'
JR Z,L17CO

A statement has been identified so, first, its initial command is considered

L17F4:

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,L1821

PUSH HL
LD CA
RST 20H

LDAC
SUB $CE

JRNC,L17F4
ADD A $CE
LD HL,L17A9
CP $A3

JR Z,L.1800

LD HL,L17AC
CP $A4
JR Z,L1800

JP L1912
LD CA

LD HL,L16DC
ADD HL,BC
LD C,(HL)
ADD HL,BC

JR L1800

Pre-load the machine stack with the return
address.

Save the command temporarily
in the C register whilst CH-ADD is advanced
again.

Reduce the command's code by $CE giving the
range indexed from $00.
Jump for DEF FN and above.

Is it 'SPECTRUM'?
Jump if so into the scanning loop with this
address.

Is it 'PLAY'?

Jump if so into the scanning loop with this
address.

Produce error report "C Nonsense in BASIC".
Move the command code to BC (B holds $00).
The base address of the syntax offset table.

Find address for the command's entries in the
parameter table.

Jump forward into the scanning loop with this
address.

Each of the command class routines applicable to the present command are executed in turn.

Any required separators are also considered.

L17FD:

L1800:

LD HL,($5C74)

LD A,(HL)
INC HL

LD ($5C74),HL
LD BC,L17FD

PUSH BC

LD CA

CP $20

JR NC,L181A
LD HL,L18B5
LD B,$00
ADD HL,BC

T_ADDR. The temporary pointer to the entries in
the parameter table.

Fetch each entry in turn.

Update the pointer to the entries for the next
pass.

T_ADDR.

Pre-load the machine stack with the return
address.

Copy the entry to the C register for later.

Jump forward if the entry is a 'separator'.
The base address of the 'command class' table.

Index into the table.

SPECTRUM 128 ROM o DISASSEMBLY

LD C,(HL)

ADD HL,BC HL=base + code + (base + code).

PUSH HL HL=The starting address of the required
command class routine.

RST 18H Before making an indirect jump to the command
class routine pass the command code

DECB to the A register and set the B register to $FF.

RET Return to the stacked address.

The 'Separator' Subroutine

The report ‘Nonsense in BASIC is given if the required separator is not present.

But note that when syntax is being checked the actual report does not appear on the screen - only
the ‘error marker'.

This code is similar to that in ROM 1 at $1B6F.

L181A: RST 18H The current character is
CPC fetched and compared to the entry in the
parameter table.
JP NZz,L1912 Give the error report if there is not a match.
RST 20H Step past a correct character
RET and return.

The 'Statement Return' Subroutine

After the correct interpretation of a statement, a return is made to this entry point.
This code is similar to that in ROM 1 at $1B76.

L1821: CALL LO5D6 Check for BREAK
JR C,L182A Jump if pressed.
CALL LO5AC Produce error report.
DEFB $14 "L Break into program"
L182A: BIT 7,(1IY+$0A) NSPPC - statement number in line to be jumped
to
JP NZ,L18A8 Jump forward if there is not a 'jump’ to be made.
LD HL,($5C42) NEWPPC, line number to be jumped to.
BIT 7,H
JR Z,L184C Jump forward unless dealing with a further

statement in the editing area.

The 'Line Run' Entry Point

This entry point is used wherever a line in the editing area is to be 'run'.

SPECTRUM 128 ROM o DISASSEMBLY

In such a case the syntax/run flag (bit 7 of FLAGS) will be set.
The entry point is also used in the syntax checking of a line in the editing area that has more than

one statement (bit 7 of FLAGS will be reset).
This code is similar to that in ROM 1 at $1B8A.

L1838: LD HL,$FFFE
LD ($5C45),HL
LD HL,($5C61)

DEC HL
LD DE,($5C59)

DEC DE
LD A,($5C44)

JR L1882

The 'Line New' Subroutine

A line in the editing area is considered as line '-2'.
PPC.

WORKSP. Make HL point to the end marker of
the editing area.

E_LINE. Make DE point to the location before the
end marker of the editing area.

NSPPC. Fetch the number of the next statement
to be handled.
Jump forward.

There has been a jump in the program and the starting address of the new line has to be found.

This code is similar to that in ROM 1 at 1B9E.

L184C: RST 28H
DEFW LINE_ADDR

LD A,($5C44)
JR Z,L1870
AND A

JR NZ,L189D

LD B,A
LD A,(HL)
AND $CO
LDAB

JR Z,L1870

CALL LO5AC
DEFB $FF

REM Routine

$196E. The starting address of the line, or the
first line after' is found.

NSPPC. Collect the statement number.

Jump forward if the required line was found.
Check the validity of the statement number - must
be zero.

Jump if not to produce error report "N Statement
lost".

Also check that the first

line after' is not after the

actual 'end of program'.

Jump forward with valid addresses; otherwise
signal the error 'OK".

Produce error report.

"0 OK"

The return address to STMT-RET is dropped which has the effect of forcing the rest of the line to

be ignored.

SPECTRUM 128 ROM o DISASSEMBLY

This code is similar to that in ROM 1 at $1BB2.

L1862: POP BC Drop the statement return address.

The 'Line End' Routine

If checking syntax a simple return is made but when 'running' the address held by NXTLIN has to be
checked before it can be used.
This code is similar to that in ROM 1 at $1BB3.

L1863: BIT 7,(1Y+$01)
RET Z Return if syntax is being checked.
LD HL,($5C55) NXTLIN.
LD A$CO Return if the address is after the end of the
program - the 'run' is finished.
AND (HL)
RET Nz
XOR A Signal 'statement zero' before proceeding.

The 'Line Use' Routine

This routine has three functions:

i. Change statement zero to statement '1'.

ii. Find the number of the new line and enter it into PPC.
iii. Form the address of the start of the line after.

This code is similar to that in ROM 1 at $1BBF.

L1870: CP $01 Statement zero becomes statement 1.

ADC A,$00

LD D,(HL) The line number of the line to be used is collected
and

INC HL passed to PPC.

LD E,(HL)

LD ($5C45),DE PPC.

INC HL

LD E,(HL) Now find the 'length' of the line.

INC HL

LD D,(HL)

EX DE,HL Switch over the values.

ADD HL,DE Form the address of the start of the line after in
HL and the

INC HL location before the 'next' line's first character in

DE.

SPECTRUM 128 ROM o DISASSEMBLY

The 'Next Line' Routine

On entry the HL register pair points to the location after the end of the 'next' line to be handled and
the DE register pair to the location before the first character of the line.

This applies to lines in the program area and also to a line in the editing area - where the next line will
be the same line again whilst there are still statements to be interpreted.

This code is similar to that in ROM 1 at $1BD1.

L1882: LD ($5C55),HL NXTLIN. Set NXTLIN for use once the current line

has been completed.

EX DE,HL

LD ($5C5D),HL CH_ADD. CH_ADD points to the location before
the first character to be considered.

LDD,A The statement number is fetched.

LD E,$00 The E register is cleared in case the 'Each
Statement' routine is used.

LD (IY+$0A),$FF NSPPC. Signal 'no jump'.

DECD

LD (IY+$0D),D SUB_PPC. Statement number-1.

JP Z,L17CO0 Jump if the first statement.

INC D For later statements the 'starting address' has to
be found.

RST 28H

DEFW EACH_STMT $198B.

JR Z,L18A8 Jump forward unless the statement does not
exist.

L189D: CALL LOSAC Produce error report.
DEFB $16 "N Statement lost"

The 'CHECK-END' Subroutine

This is called when the syntax of the edit-line is being checked. The purpose of the routine is to give
an error report if the end of a statement has not been reached and to move on to the next statement
if the syntax is correct.

The routine is the equivalent of routine CHECK_END in ROM 1 at $1BEE.

L18A1: BIT 7,(IY+$01) Very like CHECK-END at 1BEE in ROM 1
RET Nz Return unless checking syntax.
POP BC Drop scan loop and statement return addresses.

POP BC

SPECTRUM 128 ROM o DISASSEMBLY

The 'STMT-NEXT' Routine

If the present character is a 'carriage return' then the 'next statement' is on the 'next line', if :" it is on
the same line; but if any other character is found then there is an error in syntax.
The routine is the equivalent of routine STMT_NEXT in ROM 1 at $1BF4.

L18AS8: RST 18H Fetch the present character.
CP $0D Consider the 'next line' if
JR Z,L1863 it is a 'carriage return'.
CP" $3A. Consider the 'next statement'
JP Z,L17CO ifitisa""
JP L1912 Otherwise there has been a syntax error so

produce "C Nonsense in BASIC".

The 'Command Class' Table

L18B5:

DEFB L18D9-$
DEFB L18F9-$
DEFB L18FD-$
DEFB L18D6-$
DEFB L1905-$
DEFB L18DA-$
DEFB L190E-$
DEFB L191A-$
DEFB L190A-$
DEFB L1944-$
DEFB L1916-$
DEFB L1948-$
DEFB L18C7-$
DEFB L18C4-$
DEFB L18C8-$

CLASS-00 -> L18D9 = $24
CLASS-01 -> L18F9 = $43
CLASS-02 -> L18FD = $46
CLASS-03 -> L18D6 = $1E
CLASS-04 -> L1905 = $4C
CLASS-05 -> L18DA = $20
CLASS-06 -> L190E = $53
CLASS-07 -> L191A = $5E
CLASS-08 -> L190A = $4D
CLASS-09 -> L1944 = $86
CLASS-0A -> L1916 = $57
CLASS-0B -> 11948 = $88
CLASS-0C -> L18C7 = $06
CLASS-0D -> L18C4 = $02
CLASS-0E -> L18C8 = $05

The 'Command Classes — 0C, 0D & OE'

For commands of class-0D a numeric expression must follow.

L18C4:

RST 28H

DEFW FETCH_NUM

Code 0D enters here.
$1CDE.

The commands of class-0C must not have any operands. e.g. SPECTRUM.

L18C7:

CPA

Code OC enters here. Set zero flag.

SPECTRUM 128 ROM o DISASSEMBLY

The commands of class-OE may be followed by a set of items. e.g. PLAY.

L18Cs: POP BC Code OE enters here. Retrieve return address.
CALL Z,L18A1 If handling commands of classes 0C & 0D and
syntax is being checked move on now to consider
the next statement.
EX DE,HL Save the line pointer in DE.

After the command class entries and the separator entries in the parameter table have been
considered the jump to the appropriate command routine is made.
The routine is similar to JUMP-C-R in ROM 1 at $1C16.

LD HL,($5C74) T_ADDR.

LD C,(HL) Fetch the pointer to the entries in the parameter
table

INC HL and fetch the address of the

LD B,(HL) required command routine.

EX DE,HL Exchange the pointers back.

PUSH BC Make an indirect jump to the command routine.

RET

The 'Command Classes — 00, 03 & 05

These routines are the equivalent of the routines in ROM 1 starting at $1C0D.
The commands of class-03 may, or may not, be followed by a number. e.g. RUN & RUN 200.

L18D6: RST 28H Code 03 enters here.
DEFW FETCH_NUM $1CDE. A number is fetched but zero is used in
cases of default.

The commands of class-00 must not have any operands. e.g. COPY & CONTINUE.
L18D9: CPA Code 00 enters here. Set the zero flag.
The commands of class-05 may be followed by a set of items. e.g. PRINT & PRINT "222".

L18DA: POP BC Code 05 enters here. Drop return address.

CALL Z,L18A1 If handling commands of classes 00 & 03 and
syntax is being checked move on now to consider
the next statement.

EX DE,HL Save the line pointer in DE.

LD HL,($5C74) T_ADDR. Fetch the pointer to the entries in the
parameter table.

LD C,(HL)

SPECTRUM 128 ROM o DISASSEMBLY

INC HL
LD B,(HL)

EX DE,HL
PUSH HL

LD HL,L18F8

LD (RETADDR),HL
LD HL,YOUNGER
EX (SP),HL

PUSH HL
LD H,B
LDL,.C
EX (SP),HL

JP SWAP

Fetch the address of the required command
routine.

Exchange the pointers back.

Save command routine address.

The address to return to (the RET below).
$5B5A. Store the return address.

$5B14. Paging subroutine.

Replace the return address with the address of
the YOUNGER routine.

Save the original top stack item.

HL=Address of command routine.

Put onto the stack so that an indirect jump will be
made to it.

$5B00. Switch to other ROM and 'return’ to the
command routine.

Comes here after ROM 1 has been paged in, the command routine called, ROM 0 paged back in.

L18FS8:

The 'Command Class — 01'

RET

Simply make a return.

Command class 01 is concerned with the identification of the variable in a LET, READ or INPUT

statement.

L18F9:

The 'Command Class — 02'

RST 28H
DEFW CLASS_01
RET

Delegate handling to ROM 1.
$1C1F.

Command class 02 is concerned with the actual calculation of the value to be assigned in a LET

statement.

L18FD:

POP BC

RST 28H

DEFW VAL_FET 1

CALL L18A1

Code 02 enters here. Delegate handling to ROM
1.

$1C56. "... used by LET, READ and INPUT
statements to first evaluate and then

assign values to the previously designated
variable" (Logan/O'Hara)

Move on to the next statement if checking syntax

SPECTRUM 128 ROM o DISASSEMBLY

RET else return here.

The 'Command Class — 04'

The command class 04 entry point is used by FOR & NEXT statements.

L1905: RST 28H Code 04 enters here. Delegate handling to ROM
1.
DEFW CLASS_04 $1C6C.
RET

The 'Command Class — 08'

Command class 08 allows for two numeric expressions, separated by a comma, to be evaluated.

L1909: RST 20H [Redundant byte]

L190A: RST 28H Delegate handling to ROM 1.
DEFW EXPT_2NUM $1C7A.
RET

The 'Command Class — 06'

Command class 06 allows for a single numeric expression to be evaluated.

L190E: RST 28H Code 06 enters here. Delegate handling to ROM
1.
DEFW EXPT_1NUM $1C82.
RET

Report C — Nonsense in BASIC

L1912: CALL LO5AC Produce error report. [Could have saved 4 bytes
by using the identical routine at $1219 (ROM 0)
instead]

DEFB $0B "C Nonsense in BASIC"

The 'Command Class — OA'

Command class OA allows for a single string expression to be evaluated.

SPECTRUM 128 ROM o DISASSEMBLY

L1916: RST 28H Code 0A enters here. Delegate handling to ROM
1.
DEFW EXPT_EXP $1C8C.
RET

The 'Command Class — 07'

Command class 07 is the command routine for the six colour item commands.
Makes the current temporary colours permanent.

L191A: BIT 7,(1Y+$01) The syntax/run flag is read.

RES 0,(1Y+$02) TV_FLAG. Signal 'main screen'.

JR Z,L1927 Jump ahead if syntax checking.

RST 28H Only during a 'run’ call TEMPS to ensure the

temporary

DEFW TEMPS $0D4D. colours are the main screen colours.
L1927: POP AF Drop the return address.

LD A,($5C74) T_ADDR.

SUB (L177F & $00FF)+$28 Reduce to range $D9-$DE which are the token
codes for INK to OVER.

RST 28H

DEFW CO_TEMP_4 $21FC. Change the temporary colours as
directed by the BASIC statement.

CALL L18A1 Move on to the next statement if checking syntax.

LD HL,($5C8F) ATTR_T. Now the temporary colour

LD ($5C8D),HL ATTR_P. values are made permanent

LD HL,$5C91 P_FLAG.

LD A,(HL) Value of P_FLAG also has to be considered.

The following instructions cleverly copy the even bits of the supplied byte to the odd bits.
In effect making the permanent bits the same as the temporary ones.

RLCA Move the mask leftwards.
XOR (HL) Impress onto the mask
AND $AA only the even bits of the
XOR (HL) other byte.

LD (HL),A Restore the result.

RET

The 'Command Class — 09’

This routine is used by PLOT, DRAW & CIRCLE statements in order to specify the default conditions
of 'FLASH 8; BRIGHT 8; PAPER 8;' that are set up before any embedded colour items are considered.

SPECTRUM 128 ROM o DISASSEMBLY

L1944: RST 28H Code 09 enters here. Delegate handling to ROM
1.
DEFW CLASS_09 $1CBE.
RET

The 'Command Class — OB’

This routine is used by SAVE, LOAD, VERIFY & MERGE statements.

L1948: POP AF Drop the return address.
LD A,(FLAGS3) $5B66.
AND $0F Clear LOAD/SAVE/VERIFY/MERGE indication
bits.
LD (FLAGS3),A $5B66.
LD A,($5C74) T_ADDR-lo.

SUB 1+(L1773 & $00FF) Correct by $74 so that SAVE = $00, LOAD = $01,
VERIFY = $02, MERGE = $03.

LD ($5C74),A T_ADDR-lo.

JP Z,L11EB Jump to handle SAVE.
DEC A

JP Z,L11F2 Jump to handle LOAD.
DEC A

JP Z,L11F9 Jump to handle VERIFY.
JP L1200 Jump to handle MERGE.

IF Routine

On entry the value of the expression between the IF and the THEN is the 'last value' on the calculator
stack. If this is logically true then the next statement is considered; otherwise the line is considered
to have been finished.

L1967: POP BC Drop the return address.
BIT 7,(1Y+$01)
JR Z,L197E Jump forward if checking syntax.

Now 'delete’ the last value on the calculator stack

L196E: LD HL,($5C65) STKEND.
LD DE,$FFFB -5
ADD HL,DE The present 'last value' is deleted.
LD ($5C65),HL STKEND. HL point to the first byte of the value.
RST 28H
DEFW TEST_ZERO $34E9. Is the value zero?

JP C,L1863 If the value was 'FALSE' jump to the next line.

SPECTRUM 128 ROM o DISASSEMBLY

L197E: JP L17C1 But if " TRUE' jump to the next statement (after the
THEN).

FOR Routine

This command routine is entered with the VALUE and the LIMIT of the FOR statement already on
the top of the calculator stack.

L1981: CP $CD Jump forward unless a 'STEP' is given.
JR NZ,L198E
RST 20H Advance pointer
CALL L190E Indirectly call EXPT_1NUM in ROM 1 to get the
value of the STEP.
CALL L18A1 Move on to the next statement if checking syntax.
JR L19A6 Otherwise jump forward.

There has not been a STEP supplied so the value '1' is to be used.

L198E: CALL L18A1 Move on to the next statement if checking syntax.
LD HL,($5C65) STKEND.
LD (HL),$00
INC HL
LD (HL),$00
INC HL
LD (HL),$01
INC HL
LD (HL),$00
INC HL
LD (HL),$00 Place a value of 1 on the calculator stack.
INC HL
LD ($5C65),HL STKEND.

The three values on the calculator stack are the VALUE (v), the LIMIT () and the STEP (s).
These values now have to be manipulated. Delegate handling to ROM 1.

L19A6: RST 28H

DEFW F_REORDER $1D16.
RET

READ Routine

L19AA: RST 20H Come here on each pass, after the first, to move
along the READ statement.

SPECTRUM 128 ROM o DISASSEMBLY

L19AB: CALL L18F9 Indirectly call CLASS_01 in ROM 1 to consider
whether the variable has been used before, and
find the existing entry if it has.

BIT 7,(1Y+$01)

JR Z,L19E2 Jump forward if checking syntax.

RST 18H Save the current pointer CH_ADD in X_PTR.
LD ($5C5F),HL X_PTR.

LD HL,($5C57) DATADD.

LD A,(HL) Fetch the current DATA list pointer

CP $2C and jump forward unless a new

JR Z,L19CB DATA statement has to be found.

LD E,$E4 The search is for 'DATA'".

RST 28H

DEFW LOOK_PROG $1D86.

JR NC,L19CB Jump forward if the search is successful.
CALL LO5AC Produce error report.

DEFB $0D "E Out of Data"

Pick up a value from the DATA list.

L19CB: INC HL Advance the pointer along the DATA list.
LD ($5C5D),HL CH_ADD.
LD A,(HL)
RST 28H
DEFW VAL_FET_1 $1C56. Fetch the value and assign it to the
variable.
RST 18H
LD ($5C57),HL DATADD.
LD HL,($5C5F) X_PTR. Fetch the current value of CH_ADD and
store it in DATADD.
LD (1Y+%$26),$00 X_PTR_hi. Clear the address of the character
after the '?' marker.
LD ($5C5D),HL CH_ADD. Make CH-ADD once again point to the
READ statement.
LD A,(HL)
L19E2: RST 18H GET the present character
cpP', $2C. Check ifitisa’,".
L19ES5: JR Z,L19AA If it is then jump back as there are further items.
CALL L18A1 Return if checking syntax
RET or here if not checking syntax.

DATA Routine

During syntax checking a DATA statement is checked to ensure that it contains a series of valid
expressions, separated by commas. But in ‘run-time' the statement is passed by.

SPECTRUM 128 ROM o DISASSEMBLY

L19EB: BIT 7,(IY+$01) Jump forward unless checking syntax.
JR NZ,L19FC

A loop is now entered to deal with each expression in the DATA statement.

L19F1: RST 28H
DEFW SCANNING $24FB. Scan the next expression.
CP' $2C. Check for the correct separator ','.
CALL NZ,L18A1 but move on to the next statement if not matched.
RST 20H Whilst there are still expressions to be checked
JR L19F1 go around again.

The DATA statement has to be passed-by in 'run-time'.
L19FC: LD A,$E4 It is a 'DATA' statement that is to be passed-by.

On entry the A register will hold either the token 'DATA' or the token 'DEF FN' depending on the type
of statement that is being ‘passed-by".

L19FE: RST 28H
DEFW PASS_BY $1E39. Delegate handling to ROM 1.
RET

RUN Routine

The parameter of the RUN command is passed to NEWPPC by calling the GO TO command routine.
The operations of 'RESTORE 0' and 'CLEAR 0' are then performed before a return is made.

L1A02: RST 28H
DEFW GO_TO $1E67.
LD BC,$0000 Now perform a 'RESTORE 0'.
RST 28H
DEFW REST_RUN $1E45.
JR L1A10 Exit via the CLEAR command routine.

CLEAR Routine

This routine allows for the variables area to be cleared, the display area cleared and RAMTOP moved.
In consequence of the last operation the machine stack is rebuilt thereby having the effect of also
clearing the GO SUB stack.

L1AOD: RST 28H
DEFW FIND_INT2 $1E99. Fetch the operand - using zero by default.

L1A10:

L1A18:

SPECTRUM 128 ROM o DISASSEMBLY

LDA,B
ORC
JRNZ,L1A18

LD BC,($5CB2)
PUSH BC

LD DE,($5C4B)
LD HL,($5C59)
DEC HL

RST 28H

DEFW RECLAIM
RST 28H

DEFW CLS

Jump forward if the operand is

other than zero. When called

from RUN there is no jump.

RAMTOP. Use RAMTOP if the parameter is 0.
BC = Address to clear to. Save it.

VARS.

E LINE.

Delete the variables area.
$19E5.

Clear the screen

$0D6B.

The value in the BC register pair which will be used as RAMTOP is tested to ensure it is neither too

low nor too high.

L1A3B:

L1A3F:

LD HL,($5C65)
LD DE,$0032
ADD HL,DE
POP DE

SBC HL,DE
JR NC,L1A3B
LD HL,($5CB4)
AND A

SBC HL,DE

JR NC,L1A3F
CALL LO5AC
DEFB $15

LD ($5CB2),DE
POP DE

POP HL

POP BC

STKEND. The current value of STKEND
is increased by 50 before

being tested. This forms the

ADE = address to clear to lower limit.

Ramtop no good.
P_RAMT. For the upper test the value
for RAMTORP is tested against P_RAMT.

Jump forward if acceptable.

Produce error report.

"M Ramtop no good"

RAMTOP.

Retrieve interpreter return address from stack
Retrieve 'error address' from stack

Retrieve the GO SUB stack end marker. [BUG -
It is assumed that the top of the GO SUB stack
will be empty and hence only contain the end
marker. This will not be the case if CLEAR is
used within a subroutine, in which case BC will
now hold the calling line number and this will

be stacked in place of the end marker. When a
RETURN command is encountered, the GO SUB
stack appears to contain an entry since the end
marker was not the top item. An attempt to return
is therefore made. The CLEAR command handler
within the 48K Spectrum ROM does not make
any assumption about the contents of the GO
SUB stack and instead always re-inserts the end
marker. The bug could be fixed by inserting the

SPECTRUM 128 ROM o DISASSEMBLY

LD SP,($5CB2)
INC SP

PUSH BC
PUSH HL

LD ($5C3D),SP
PUSH DE

RET

GO SUB Routine

The present value of PPC and the incremented value of SUBPPC are stored on the GO SUB stack.

L1A53:

POP DE
LD H,(IY+$0D)

INCH
EX (SP),HL

INC SP
LD BC,($5C45)
PUSH BC
PUSH HL
LD ($5C3D),SP
PUSH DE
RST 28H
DEFW GO_TO

LD BC,$0014
RST 28H

DEFW TEST_ROOM

RET

RETURN Routine

The line number and the statement number that are to be made the object of a 'return’ are fetched
from the GO SUB stack.

L1AGF:

POP BC
POP HL
POP DE
LD A,D

line LD BC,$3E00 after the POP BC. Credit: lan
Collier (+3), Paul Farrow (128)]
RAMTOP.

Stack the GO SUB stack end marker.
Stack 'error address'.

ERR_SP.

Stack the interpreter return address.

Save the return address.
SUBPPC. Fetch the statement number and
increment it.

Exchange the 'error address' with the statement
number.

Reclaim the use of a location.

PPC.

Next save the present line number.

Return the 'error address' to the machine stack
ERR-SP. and reset ERR-SP to point to it.

Stack the return address.

$1E67. Now set NEWPPC & NSPPC to the
required values.
But before making the jump make a test for room.

$1F05. Will automatically produce error '4" if out
of memory.

Fetch the return address.

Fetch the 'error address'.

Fetch the last entry on the GO SUB stack.
The entry is tested to see if

L1A86:

SPECTRUM 128 ROM o DISASSEMBLY

CP $3E
JR Z,L1A86
DEC SP
EX (SP),HL

EX DE,HL
LD ($5C3D),SP
PUSH BC

LD ($5C42),HL
LD (IY+$0A),D
RET

PUSH DE
PUSH HL
CALL LOSAC
DEFB $06

DEF FN Routine

During syntax checking a DEF FN statement is checked to ensure that it has the correct form.
Space is also made available for the result of evaluating the function.
But in 'run-time' a DEF FN statement is passed-by.

L1A8C:

First consider the variable of the function.

L1A97:

L1AAA:

BIT 7,(1Y+$01)
JR Z,L1A97
LD A$CE

JP L19FE

SET 6,(1Y+$01)
RST 28H
DEFW ALPHA
JR NC,L1AB6
RST 20H
CP'¢$

JR NZ,L1AAA
RES 6,(1Y+$01)
RST 20H

CP'(

JR NZ,L1AEA
RST 20H

CPY

JR Z,L1AD3

it is the GO SUB stack end marker.

Jump if it is.

The full entry uses three locations only.
Exchange the statement number with the 'error
address'.

Move the statement number.

ERR_SP. Reset the error pointer.

Replace the return address.

NEWPPC. Enter the line number.

NSPPC. Enter the statement number.

Replace the end marker and
the 'error address'.

Produce error report.

"7 RETURN without GO SUB"

Jump forward if checking syntax.
Otherwise bass-by the
'DEF FN' statement.

Signal ‘a numeric variable'.

$2C8D. Check that the present code is a letter.
Jump forward if not.

Fetch the next character.

$24.

Jump forward unless itis a '$'.

Change bit 6 as it is a string variable.
Fetch the next character.

$28. A (" must follow the variable's name.
Jump forward if not.

Fetch the next character

$29. Jump forward if itis a ')’

as there are no parameters of the function.

A loop is now entered to deal with each parameter in turn.

L1ABS:

L1AB6:

L1ACI:

Next the definition of the function is considered.

L1AD3:

L1AEA:

SPECTRUM 128 ROM o DISASSEMBLY

RST 28H
DEFW ALPHA
JP NC,L1912
EX DE,HL
RST 20H
CP'$

JR NZ,L1AC1
EX DE,HL
RST 20H

EX DE,HL

LD BC,$0006

RST 28H

DEFW MAKE_ROOM
INC HL

INC HL

LD (HL),$0E

CPY

JR NZ,L1AD3
RST 20H
JR L1AB3

CPYy

JR NZ,L1AEA
RST 20H

cP'=

JR NZ,L1AEA
RST 20H

LD A,($5C3B)
PUSH AF

RST 28H

DEFW SCANNING

POP AF

XOR (IY+$01)
AND $40

JP NZ,L1912
CALL L18A1

$2C8D.

The present code must be a letter.

Save the pointer in DE.

Fetch the next character.

$24.

Jump forward unless itis a '$".

Otherwise save the new pointer in DE instead.
Fetch the next character.

Move the pointer to the last character of the name
to HL.

Now make six locations after that last character.

$1655.

Enter a 'number marker' into the first of the new
locations.

$2C. If the present character is a ', then jump
back as

there should be a further parameter.

Otherwise jump out of the loop.

$29. Check that the ')’ does exist.

Jump if not.

The next character is fetched.

$3D. It must be an '=".

Jump if not.

Fetch the next character.

FLAGS.

Save the nature (numeric or string) of the variable

$24FB. Now consider the definition as an
expression.

Fetch the nature of the variable.

FLAGS. Check that it is of the same type

as found for the definition.

Give an error report if required.

Move on to consider the next statement in the
line.

SPECTRUM 128 ROM o DISASSEMBLY

MOVE Routine

L1AFO:

RET

Simply return.

MENU ROUTINES — PART 1

Run Tape Loader

Used by Main Menu - Tape Loader option.

L1AF1:

LD HL,$ECOE
LD (HL),$FF
CALL L1F20

RST 28H

DEFW SET_MIN
LD HL,($5C59)
LD BC,$0003

RST 28H
DEFW MAKE_ROOM
LD HL,L1B6E

LD DE,($5C59)

LD BC,$0003

LDIR

CALL L026B

List Program to Printer
Used by Edit Menu - Print option.

L1B14:

CALL L1F20

RST 28H
DEFW SET_MIN

LD HL,($5C59)

LD BC,$0001

RST 28H

DEFW MAKE_ROOM
LD HL,($5C59)

Fetch mode.

Set Tape Loader mode.

Use Normal RAM Configuration (physical RAM
bank 0).

$16B0. Clear out editing area.

E_LINE.

Create 3 bytes of space for the LOAD "™
command.

$1655.
Address of command bytes for LOAD ™.
E_LINE.

Copy LOAD " into the line editing area.
Parse and execute the BASIC line. [Will not return
here but will exit via the error handler routine]

Use Normal RAM Configuration (physical RAM
bank 0).

$16B0. Clear out editing area.
E_LINE.
Create 1 byte of space.

$1655.
E_LINE.

SPECTRUM 128 ROM o DISASSEMBLY

LD (HL),$E1 Copy LLIST into the line editing area.
CALL L026B Parse and execute the BASIC line. [Will not return
here but will exit via the error handler routine]

BASIC LINE AND COMMAND INTERPRETATION
ROUTINES — PART 2

SPECTRUM Routine

Return to 48K BASIC Mode. This routine will force caps lock is off.

L1B2B: CALL L1B53 Overwrite 'P' channel data to use the ZX Printer.
LD SP,($5C3D) ERR_SP. Purge the stack.
POP HL Remove error handler address.
LD HL,MAIN_4 $1303. The main execution loop within ROM 1.
PUSH HL

LD HL,PRINT_A_1+$0003 $0013. Address of a $FF byte within ROM 1,
used to generate error report "0 OK".

PUSH HL

LD HL,ERROR_1 $0008. The address of the error handler within
ROM 1.

PUSH HL

[BUG - Although the channel 'P' information has been reconfigured to use the ZX Printer, the ZX
printer buffer and associated system variables still need to be cleared. Failure to do so means that the
first use of the ZX Printer will cause garbage to the printed, i.e. the paging routines and new system
variables still present in the ZX Printer buffer. Subsequently printer output will then be ok since the ZX
Printer buffer and system variables will be cleared. Worse still, there is the possibility that new data
to be printed will be inserted beyond the ZX Printer buffer since ROM 1 does not trap whether the ZX
Printer system variable PR_POSN and PR_CC hold invalid values. The bug can be fixed by inserting
the following instructions, which cause the ZX Printer buffer to be cleared immediately after switching
to ROM 1 and before the error report "0 OK" is produced. Credit: Paul Farrow and Andrew Owen.]

LD HL,CLEAR_PRB Address of the routine in ROM 1 to clear the ZX
Printer buffer and associated system variables.

PUSH HL

SET 1,(1Y+$01) FLAGS. Signal the printer is in use.]

LD A,$20 Force 48K mode.

LD (BANK_M),A $5B5C.

JP SWAP $5B00. Swap to ROM 1 and return via a RST

$08 / DEFB $FF.

SPECTRUM 128 ROM o DISASSEMBLY

MENU ROUTINES — PART 2

Main Menu — 48 BASIC Option

L1B47: LD HL,$0000
PUSH HL

LD A,$20

LD (BANK_M),A
JP SWAP

Set 'P' Channel Data

This routine overwrites the 'P' channel data with
using the ZX Printer.

L1B53: LD HL,($5C4F)
LD DE,$0005
ADD HL,DE
LD DE,$000A
EX DE,HL
ADD HL,DE
EX DE,HL

LD BC,$0004
LDIR

RES 3,(IY+$30)

RES 4,(1Y+$01)
RET

LOAD "" Command Bytes

Used by the Tape Loader routine.

L1B6E: DEFB $EF, $22, $22

Stack a $0000 address to return to.

Force 48 mode.
$5B5C
$5B00. Swap to ROM 1, return to $0000.

the 'S' channel data, i.e. the default values when

CHANS.
HL=Address 'S' channel data.

HL=$000A, DE=Address 'S' channel data.
HL=Address 'P' channel data.

DE=Address 'P' channel data, HL=Address 'S’
channel data.

Copy the 'S' channel data over the 'P' channel
data.

FLAGS?2. Signal caps lock unset. [Not really
necessary for switching back to 48 BASIC mode]
FLAGS. Signal not 128K mode.

LOAD ™

SPECTRUM 128 ROM o DISASSEMBLY

BASIC LINE AND COMMAND INTERPRETATION

ROUTINES — PART 3

LLIST Routine

L1B71: LD A,$03
JR L1B77

LIST Routine

L1B75: LD A,$02
L1B77: LD (IY+$02),$00

RST 28H

DEFW SYNTAX_Z

JR Z,L1B83

RST 28H

DEFW CHAN_OPEN
L1B83: RST 28H

DEFW GET_CHAR

RST 28H

DEFW STR_ALTER

JR C,L1BA3

RST 28H

DEFW GET_CHAR

CP $3B

JR Z,L1B96

CP'

JR NZ,L1B9E
L1B96: RST 28H

DEFW NEXT_CHAR

CALL L190E

JR L1BA6

L1B9E: RST 28H
DEFW USE_ZERO
JR L1BA6

Come here if the stream was unaltered.

Printer channel.
Jump ahead to join LIST.

Main screen channel.
TV_FLAG. Signal 'an ordinary listing in the main
part of the screen'.

$2530.
Do not open the channel if checking syntax.

$1601. Open the channel.
$0018. [Could just do RST $18]

$2070. See if the stream is to be changed.
Jump forward if unchanged.

$0018. Get current character.
Isita';"?

Jump if it is.

$2C. Isita’,'?

Jump if it is not.

$0020. Get the next character.

Indirectly call EXPT-INUM in ROM 1 to check
that a numeric expression follows, e.g. LIST
#5,20.

Jump forward with it.

$1CE6. Otherwise use zero and
jump forward.

L1BAS:

L1BAG:

SPECTRUM 128 ROM o DISASSEMBLY

RST 28H
DEFW FETCH_NUM

CALL L18A1
RST 28H

DEFW LIST_5+3
RET

RAM Disk SAVE! Routine

L1BAD:

LD (OLDSP),SP
LD SP,TSTACK
CALL L1C97
LD BC,(HD_0B)
LD HL,$FFF7
OR $FF

SBC HL,BC
CALL L1CF3

LD BC,$0009
LD HL,HD_00
CALL L1DAC
LD HL,(HD_0D)
LD BC,(HD_0B)
CALL L1DAC
CALL L1D56

LD A,$05
CALL L1C64

LD SP,(OLDSP)
RET

CAT! Routine

L1BES:

RST 28H

DEFW GET_CHAR
cpr

JP NZ,L1912

RST 28H

DEFW NEXT_CHAR

$1CDE. Fetch any line or use zero if none
supplied.

If checking the syntax of the edit-line move on to
the next statement.

$1825. Delegate handling to ROM 1.

$5B81. Save SP.

$5BFF. Use temporary stack.

Create new catalogue entry.

$5B72. get the length of the file.

-9 (9 is the length of the file header).

Extend the negative number into the high byte.
AHL=-(length of file + 9).

Check for space in RAM disk (produce "4 Out of
memory" if no room).

File header length.

$5B71. Address of file header.

Store file header to RAM disk.

$5B74. Start address of file data.

$5B72. Length of file data.

Store bytes to RAM disk.

Update catalogue entry (leaves logical RAM bank
4 paged in).

Page in logical RAM bank 5 (physical RAM bank
0).

$5B81. Use original stack.

Get the current character.

$0018. [Could just do RST $18 here]
$21. Isit'1'?

Jump to "C Nonsense in BASIC" if not.
Get the next character.

$0020. [Could just do RST $20 here]

SPECTRUM 128 ROM o DISASSEMBLY

CALL L18A1
LD A,$02

RST 28H

DEFW CHAN_OPEN
LD (OLDSP),SP

LD SP,TSTACK
CALL L20D2

LD A,$05

CALL L1C64
LD SP,(OLDSP)
RET

ERASE! Routine

L1COC:

RST 28H

DEFW GET_CHAR
cpr

JP NZ,L1912
CALL L1393

CALL L18A1

LD (OLDSP),SP
LD SP,TSTACK
CALL L1F5F

LD A,$05
CALL L1C64

LD SP,(OLDSP)
RET

Check for end of statement.
Select main screen.

$1601.

$5B81. Store SP.

$5BFF. Use temporary stack.

Print out the catalogue.

Page in logical RAM bank 5 (physical RAM bank
0).

$5B81. Use original stack.

Get character from BASIC line.

$0018.

$21. Isit'1?

Jump to "C Nonsense in BASIC" if not.

Get the filename into N_STR1.

Make sure we've reached the end of the BASIC
statement.

$5B81. Store SP.

$5BFF. Use temporary stack.

Do the actual erasing (leaves logical RAM bank 4
paged in).

Restore RAM configuration.

Page in logical RAM bank 5 (physical RAM bank
0).

$5B81. Use original stack.

RAM DISK COMMAND ROUTINES — PART 2

Load Header from RAM Disk

L1C2E:

LD (OLDSP),SP
LD SP,TSTACK
CALL L1D35

$5B81. Store SP.

$5BFF. Use temporary stack.

Find file (return details pointed to by IX). Leaves
logical RAM bank 4 paged in.

SPECTRUM 128 ROM o DISASSEMBLY

The file exists else the call above would have produced an error "h file does not exist"

LD HL,HD_00
LD BC,$0009
CALL L1E37
LD A,$05
CALL L1C64

LD SP,(OLDSP)
RET

Load from RAM Disk

Used by LOAD, VERIFY and MERGE. Note that VERIFY will simply perform a LOAD.

Entry:

L1C4B:

HL=Destination address.

DE=Length (will be greater than zero).

IX=File descriptor.

$5B71. Load 9 header bytes.

Load bytes from RAM disk.

Restore RAM configuration.

Page in logical RAM bank 5 (physical RAM bank
0).

$5B81. Use original stack.

IX=Address of catalogue entry (IX+$10-IX+$12 points to the address of the file's data, past

its header).

HD_00-HD_11 holds file header information.

LD (OLDSP),SP
LD SP,TSTACK
LD B,D

LD C,E

CALL L1E37
CALL L1D56

LD A,$05
CALL L1C64

LD SP,(OLDSP)
RET

$5B81. Store SP
$5BFF. Use temporary stack.

BC=Length.

Load bytes from RAM disk.

Update catalogue entry (leaves logical RAM bank
4 paged in).

Restore RAM configuration.

Page in logical RAM bank 5 (physical RAM bank
0).

$5B81. Use original stack.

PAGING ROUTINES — PART 1

Page Logical RAM Bank

This routine converts between logical and physical RAM banks and pages the selected bank in.
Entry: A=Logical RAM bank.

L1C64:

PUSH HL

Save BC and HL.

SPECTRUM 128 ROM o DISASSEMBLY

PUSH BC

LD HL,L1C81 Physical banks used by RAM disk.
LD B,$00

LDCA BC=Logical RAM bank.

ADD HL,BC Point to table entry.

LD C,(HL) Look up physical page.

DI Disable interrupts whilst paging.

LD A,(BANK_M) $5B5C. Fetch the current configuration.
AND $F8 Mask off current RAM bank.

ORC Include new RAM bank.

LD (BANK_M),A $5B5C. Store the new configuration.
LD BC,$7FFD

OUT (C),A Perform the page.

El Re-enable interrupts.

POP BC Restore BC and HL.

POP HL

RET

Physical RAM Bank Mapping Table

L1C81: DEFB $01 Logical bank $00.
DEFB $03 Logical bank $01.
DEFB $04 Logical bank $02.
DEFB $06 Logical bank $03.
DEFB $07 Logical bank $04.
DEFB $00 Logical bank $05.

RAM DISK COMMAND ROUTINES — PART 3

Compare Filenames

Compare filenames at N_STR1 and IX.
Exit: Zero flag set if filenames match.
Carry flag set if filename at DE is alphabetically lower than filename at IX.

L1C87: LD DE,N_STR1 $5B67.
Compare filenames at DE and IX

L1C8A: PUSH IX
POP HL
LD B,$0A Maximum of 10 characters.

SPECTRUM 128 ROM o DISASSEMBLY

L1C8F: LD A,(DE)
INC DE
CP (HL) compare each character.
INC HL
RET Nz Return if characters are different.
DJINZ L1C8F Repeat for all characters of the filename.
RET

Create New Catalogue Entry

Add a catalogue entry with filename contained in N_STR1.
Exit: HL=Address of next free catalogue entry.
IX=Address of newly created catalogue entry.

L1CO7:

L1CAO:

L1CBE:

CALL L1D12

JR Z,L1CAOQ
CALL LO5AC
DEFB $20
PUSH IX

LD BC,$3FEC
ADD IX,BC

POP IX
JR NC,L1DOE
LD HL,$FFEC

LD A $FF
CALL L1CF3
LD HL,FLAGS3
SET 2,(HL)
PUSH IX

POP DE

LD HL,N_STR1
LD BC,$000A
LDIR

SET 0,(IX+$13)
LD A,(IX+$0A)
LD (IX+$10),A
LD A,(IX+$0B)
LD (IX+$11),A
LD A,(IX+$0C)

Find entry in RAM disk area, returning IX pointing
to catalogue entry (leaves logical RAM bank 4
paged in).

Jump ahead if does not exist.

Produce error report.

"e File already exists"

16384-20 (maximum size of RAM disk catalogue).
IX grows downwards as new RAM disk catalogue
entries added. If adding the maximum size to IX
does not result in the carry flag being set then the
catalogue is full, so issue an error report "4 Out of
Memory".

Jump if out of memory.

-20 (20 bytes is the size of a RAM disk catalogue
entry).

Extend the negative number into the high byte.
Ensure space in RAM disk area.

$5B66.

Signal editing RAM disk catalogue.

DE=Address of new catalogue entry.
$5B67. Filename.

10 characters in the filename.

Copy the filename.

Indicate catalogue entry requires updating.
Set the file access address to be the

start address of the file.

Adjust RAM Disk Free Space

SPECTRUM 128 ROM o DISASSEMBLY

LD (IX+$12),A
XOR A

LD (IX+$0D),A
LD (IX+$0E),A
LD (IX+$0F),A
LD A,$05
CALL L1C64
PUSH IX

POP HL

LD BC,$FFEC
ADD HL,BC
LD (SFNEXT),HL

RET

Set the fill length to zero.

Logical RAM bank 5 (physical RAM bank 0).

HL=Address of new catalogue entry.
-20 (20 bytes is the size of a catalogue entry).

$5B83. Store address of next free catalogue
entry.

Adjust the count of free bytes within the RAM disk.

The routine can produce "4 Out of memory" when adding.

Entry: AHL=Size adjustment (negative when a file added, positive when a file deleted).
A=Bit 7 set for adding data, else deleting data.

L1CF3:

Deleting data

L1DO03:

Adding data

L1DOA:

L1DOE:

LD DE,(SFSPACE)
EX AF,AF'

LD A,(SFSPACE+2)
LD CA

EX AF,AF'

BIT 7,A

JR NZ,L1DOA

ADD HL,DE
ADCA,C

LD (SFSPACE),HL
LD (SFSPACE+2),A
RET

ADD HL,DE

ADCAC

JR C,L1D03

CALL LO5AC

$5B85.

A'HL=Requested space.

$5B87. ADE=Free space on RAM disk.
CDE=Free space.

AHL=Requested space.

A negative adjustment, i.e. adding data?
Jump ahead if so.

AHL=Free space left.
$5B85. Store free space.
$5B87.

Jump back to store free space if space left.
Produce error report.

SPECTRUM 128 ROM o DISASSEMBLY

DEFB 03 "4 Out of memory"

Find Catalogue Entry for Filename

L1D12: LD A,$04 Page in logical RAM bank 4 (physical RAM bank
7).
CALL L1C64
LD IX,$EBEC Point to first catalogue entry.
L1D1B: LD DE,(SFNEXT) $5B83. Pointer to last catalogue entry.
ORA Clear carry flag.
PUSH IX
POP HL HL=First catalogue entry.
SBC HL,DE
RET Z Return with zero flag set if end of catalogue
reached and hence filename not found.
CALL L1C87 Test filename match with N_STR1 ($5B67).
JR NZ,L1D2E Jump ahead if names did not match.
OR $FF Reset zero flag to indicate filename exists.
RET
L1D2E: LD BC,$FFEC -20 bytes (20 bytes is the size of a catalogue
entry).
ADD IX,BC Point to the next directory entry.
JR L1D1B Test the next name.

Find RAM Disk File

Find a file in the RAM disk matching name held in N_STR1,
and return with 1X pointing to the catalogue entry.

L1D35: CALL L1D12 Find entry in RAM disk area, returning IX pointing
to catalogue entry (leaves logical RAM bank 4
paged in).

JR NZ,L1D3E Jump ahead if it exists.
CALL LO5AC Produce error report.
DEFB $23 "h File does not exist"
L1D3E: LD A,(IX+$0A) Take the current start address (bank + location)
LD (IX+$10),A and store it as the current working address.
LD A,(IX+$0B)
LD (IX+$11),A
LD A,(IX+$0C)
LD (IX+$12),A
LD A,$05 Page in logical RAM bank 5 (physical RAM bank

0).

Update Catalogue Entry

L1D56:

SPECTRUM 128 ROM o DISASSEMBLY

CALL L1C64
RET

LD A,$04

CALL L1C64
BIT 0,(IX+$13)
RET Z

RES 0,(IX+$13)
LD HL,FLAGS3
RES 2,(HL)

LD L,(IX+$10)
LD H,(IX+$11)
LD A,(IX+$12)
LD E,(IX+$0A)
LD D,(IX+$0B)
LD B,(IX+$0C)
ORA

SBC HL,DE

SBC AB

RLH
RL H

SRA A

RR H

SRA A

RR H

LD (IX+$0D),L
LD (IX+$0E),H
LD (IX+$0F),A

[Could have saved 1 byte by using JP $1C64
(ROM 0)]

Page in logical RAM bank 4 (physical RAM bank
7).

Ignore if catalogue entry does not require
updating.

Indicate catalogue entry updated.

$5B66.

Signal not editing RAM disk catalogue.

Points to end address within logical RAM bank.

Points to end logical RAM bank.
Start address within logical RAM bank.

Start logical RAM bank.

Clear carry flag.

HL=End address-Start address. Maximum
difference fits within 14 bits.

A=End logical RAM bank-Start logical RAM bank
- 1 if addresses overlap.

Work out how many full banks of 16K are being
used.
Place this in the upper two bits of H.

HL=Total length.
Length within logical RAM bank.

Copy the end address of the previous entry into the new entry

LD L,(IX+$10)
LD H,(IX+$11)
LD A,(IX+$12)
LD BC,$FFEC

End address within logical RAM bank.

End logical RAM bank.
-20 bytes (20 bytes is the size of a catalogue
entry).

Save Bytes to RAM Disk

L1DAC:

SPECTRUM 128 ROM o DISASSEMBLY

ADD IX,BC
LD (IX+$0A),L
LD (IX+$0B),H
LD (IX+$0C),A
RET

LDAB

ORC

RET Z

PUSH HL

LD DE,$C000
EX DE,HL

SBC HL,DE
JR Z,L1DD5
JR C,L1DD5

Source is below $C000

PUSH HL

SBC HL,BC
JRNC,L1DCC

Source spans across $C000

LD H,B
LDL,.C

POP BC
ORA

SBC HL,BC
EX (SP),HL
LD DE,$C000
PUSH DE

JR L1DF4

Address of next catalogue entry.
Start address within logical RAM bank.

Start logical RAM bank.

Check whether a data length of zero was
requested.

Ignore if so since all bytes already saved.
Save the source address.

DE=The start of the upper RAM bank.
HL=The start of the RAM bank. DE=Source
address.

HL=RAM bank start - Source address.
Jump ahead if saving bytes from $C000.
Jump ahead if saving bytes from an address
above $C000.

HL=Distance below $C000 (RAM bank start -
Source address).

Jump if requested bytes are all below $C000.

HL=Requested length.
BC=Distance below $C000.

HL=Bytes occupying upper RAM bank.
Stack it. HL=Source address.
Start of upper RAM bank.

Jump forward.

Source fits completely below upper RAM bank (less than $C000)

L1DCC:

POP HL

Forget the 'distance below $C000' count.

SPECTRUM 128 ROM o DISASSEMBLY

POP HL
LD DE,$0000
PUSH DE
PUSH DE
JR L1DF4

HL=Source address.
Remaining bytes to transfer.

Stack dummy Start of upper RAM bank.
Jump forward.

Source fits completely within upper RAM bank (greater than or equal $C000)

L1DDS5: LD H,B
LDL,C
LD DE,$0020
ORA
SBC HL,DE

JR C,L1DE4
Source spans transfer buffer

EX (SP),HL
LD B,D

LD C,E

JR L1DE9

Source fits completely within transfer buffer

L1DE4: POP HL
LD DE,$0000
PUSH DE

Transfer a block

L1DEQ: PUSH BC
LD DE,STRIP1
LDIR
POP BC
PUSH HL
LD HL,STRIP1
L1DF4: LD A,$04

CALL L1C64
LD E,(IX+$10)
LD D,(IX+$11)

LD A,(IX+$12)
CALL L1C64

HL=Requested length.
DE=Length of buffer.

HL=Requested length-Length of buffer = Buffer
overspill.
Jump if requested length will fit within the buffer.

Stack buffer overspill. HL=$0000.

BC=Buffer length.
Jump forward.

HL=Destination address.
Remaining bytes to transfer.
Stack 'transfer buffer in use' flag.

Stack the length.

$5B98. Transfer buffer.

Transfer bytes.

BC=Length.

HL=New source address.

$5B98. Transfer buffer.

Page in logical RAM bank 4 (physical RAM bank
7).

Fetch the address from the current logical RAM
bank.

Logical RAM bank.

Page in appropriate logical RAM bank.

SPECTRUM 128 ROM o DISASSEMBLY

L1EO5: LDI Transfer a byte from the file to the required RAM
disk location or transfer buffer.
LD A,D
ORE Has DE been incremented to $0000?
JR Z,L1E24 Jump if end of RAM bank reached.
L1EOB: LD AB
ORC
JP NZ,L1E05 Repeat until all bytes transferred.
LD A,$04 Page in logical RAM bank 4 (physical RAM bank
7).
CALL L1C64

LD (IX+$10),E
LD (IX+$11),D

Store the next RAM bank source address.

LD A,$05 Page in logical RAM bank 5 (physical RAM bank
0).

CALL L1C64

POP HL HL=Source address.

POP BC BC=Length.

JR LIDAC Re-enter this routine to transfer another block.

The end of a RAM bank has been reached so switch to the next bank

L1E24: LD A,$04 Page in logical RAM bank 4 (physical RAM bank
7).
CALL L1C64
INC (IX+$12) Increment to the new logical RAM bank.
LD A,(IX+$12) Fetch the new logical RAM bank.
LD DE,$C000 The start of the RAM disk
CALL L1C64 Page in next RAM bank.
JR L1EOB Jump back to transfer another block.

Load Bytes from RAM Disk

Used for loading file header and data.

Entry: IX=RAM disk catalogue entry address. IX+$10-IX+$12 points to the next address to fetch
from the file.

HL=Destination address.
BC=Requested length.

L1E37: LDAB Check whether a data length of zero was
requested.
ORC
RET Z Ignore if so since all bytes already loaded.
PUSH HL Save the destination address.

LD DE,$C000 DE=The start of the upper RAM bank.

SPECTRUM 128 ROM o DISASSEMBLY

EX DE,HL

SBC HL,DE
JR Z,L1E67
JR C,L1E67

Destination is below $C000

L1E45:

PUSH HL

SBC HL,BC
JR NC,L1E5C

Code will span across $C000

LD H,B
LDL,.C

POP BC
ORA

SBC HL,BC
EX (SP),HL
LD DE,$0000
PUSH DE

LD DE,$C000
PUSH DE

EX DE,HL

JR L1E8O

HL=The start of the RAM bank. DE=Destination
address.

HL=RAM bank start - Destination address.
Jump if destination is $C000.

Jump if destination is above $C000.

HL=Distance below $C000 (RAM bank start -
Destination address).

Jump if requested bytes all fit below $C000.

HL=Requested length.
BC=Distance below $C000.

HL=Bytes destined for upper RAM bank.
Stack it. HL=Destination address.
Remaining bytes to transfer.

Start of upper RAM bank.

HL=Start of upper RAM bank.
Jump forward.

Code fits completely below upper RAM bank (less than $C000)

L1E5SC:

POP HL
POP HL

LD DE,$0000
PUSH DE
PUSH DE
PUSH DE
EX DE,HL
JRLIE8O

Forget the 'distance below $C000' count.
HL=Destination address.
Remaining bytes to transfer.

Stack dummy Start of upper RAM bank.

HL=$0000, DE=Destination address.
Jump forward.

Code destined for upper RAM bank (greater than or equal to $C000)

L1EG7:

LD H,B
LDL,C

LD DE,$0020
ORA

HL=Requested length.
DE=Length of buffer.

SPECTRUM 128 ROM o DISASSEMBLY

SBC HL,DE

JR C,L1E76

Code will span transfer buffer

EX (SP),HL
LD B,D
LDC,E

JR LIE7B

Code will all fit within transfer buffer

L1E76:

L1E7B:

Transfer a block

L1ES8O:

POP HL

LD DE,$0000
PUSH DE
PUSH BC
PUSH HL

LD DE,STRIP1

LD A,$04

CALL L1C64
LD L,(IX+$10)
LD H,(IX+$11)
LD A,(IX+$12)
CALL L1C64

HL=Requested length-Length of buffer = Buffer
overspill.
Jump if requested length will fit within the buffer.

Stack buffer overspill. HL=$0000.

BC=Buffer length.
Jump forward.

HL=Destination address.
Remaining bytes to transfer.
Stack 'transfer buffer in use' flag.
Stack the length.

Stack destination address.
$5B98. Transfer buffer.

Page in logical RAM bank 4 (physical RAM bank
7).

RAM bank address.

Logical RAM bank.
Page in appropriate logical RAM bank.

Enter a loop to transfer BC bytes, either to required destination or to the transfer buffer

L1E91:

L1E97:

LDI

LD AH

ORL

JR Z,L1EBC
LDAB
ORC

JP NZ,L1E91
LD A,$04

CALL L1C64
LD (IX+$10),L
LD (IX+$11),H

Transfer a byte from the file to the required
location or transfer buffer.

Has HL been incremented to $0000?

Jump if end of RAM bank reached.

Repeat until all bytes transferred.
Page in logical RAM bank 4 (physical RAM bank
7).

Store the next RAM bank destination address.

SPECTRUM 128 ROM o DISASSEMBLY

LD A,$05

CALL L1C64

POP DE

POP BC

LD HL,STRIP1

LDAB

ORC

JR Z,L1EB7

LDIR
L1EB7: EX DE,HL

POP BC

JP L1E37

Page in logical RAM bank 5 (physical RAM bank
0).

DE=Destination address.
BC=Length.
$5B98. Transfer buffer.

All bytes transferred?

Jump forward if so.

Transfer code in buffer to the required address.
HL=New destination address.

BC=Remaining bytes to transfer.

Re-enter this routine to transfer another block.

The end of a RAM bank has been reached so switch to the next bank

L1EBC: LD A,$04

CALL L1C64
INC (IX+$12)
LD A,(IX+$12)
LD HL,$C000
CALL L1C64
JR L1E97

Page in logical RAM bank 4 (physical RAM bank
7).

Increment to the new logical RAM bank.
Fetch the new logical RAM bank.

The start of the RAM disk.

Page in next logical RAM bank.

Jump back to transfer another block.

Transfer Bytes to RAM Bank 4 — Vector Table Entry

This routine can be used to transfer bytes from the current RAM bank into logical RAM bank 4.
It is not used in this ROM and is a remnant of the original Spanish Spectrum 128 ROM 0.
Entry: HL=Source address in conventional RAM.

DE=Destination address in logical RAM bank 4 (physical RAM bank 7).

BC=Number of bytes to save.

L1ECF: PUSH AF
LD A,(BANK_M)

PUSH AF
PUSH HL

PUSH DE

PUSH BC

LD IX,N_STR1+3
LD (IX+$10),E

LD (IX+$11),D

Save AF.

$5B5C. Fetch current physical RAM bank
configuration.

Save it.

Save source address.

Save destination address.

Save length.

$5B6A.

Store destination address as the current address
pointer.

SPECTRUM 128 ROM o DISASSEMBLY

LD (IX+$12),$04

CALL L1DAC
Entered here by load vector routine

L1EES: LD A,$05

CALL L1C64
POP BC
POP DE
POP HL
ADD HL,BC
EX DE,HL

ADD HL,BC
EX DE,HL

POP AF
LD BC,$7FFD
DI

OUT (C),A

LD (BANK_M),A
El

LD BC,$0000
POP AF

RET

Destination is in logical RAM bank 4 (physical
RAM bank 7).
Store bytes to RAM disk.

Page in logical RAM bank 5 (physical RAM bank
0).

Get length.

Get destination address.

Get source address.

HL=Address after end of source.

DE=Address after end of source. HL=Destination
address.

HL=Address after end of destination.
HL=Address after end of source. DE=Address
after end of destination.

Get original RAM bank configuration.

Disable interrupts whilst paging.

$5B5C.

Re-enable interrupts.

Signal all bytes loaded/saved.
Restore AF.

Transfer Bytes from RAM Bank 4 — Vector Table Entry

This routine can be used to transfer bytes from logical RAM bank 4 into the current RAM bank.
It is not used in this ROM and is a remnant of the original Spanish Spectrum 128 ROM 0.
Entry: HL=Source address in logical RAM bank 4 (physical RAM bank 7).

DE=Destination address in current RAM bank.

BC=Number of bytes to load.

L1F04: PUSH AF
LD A,(BANK_M)

PUSH AF
PUSH HL
PUSH DE
PUSH BC
LD IX,N_STR1+3

Save AF.

$5B5C. Fetch current physical RAM bank
configuration.

Save it.

Save source address.

Save destination address.

Save length.

$5B6A.

SPECTRUM 128 ROM o DISASSEMBLY

LD (IX+$10),L Store source address as the current address
pointer.

LD (IX+$11),H

LD (IX+$12),$04 Source is in logical RAM bank 4 (physical RAM
bank 7).

EX DE,HL HL=Destination address.

CALL L1E37 Load bytes from RAM disk.

JR L1EE8 Join the save vector routine above.

PAGING ROUTINES — PART 2

Use Normal RAM Configuration

Page in physical RAM bank 0, use normal stack and stack TARGET address.
Entry: HL=TARGET address.

L1F20: EX AF,AF' Save AF.
LD A,$00 Physical RAM bank 0.
DI Disable interrupts whilst paging.
CALL L1F3A Page in physical RAM bank 0.
POP AF AF=Address on stack when CALLed.
LD (TARGET),HL $5B58. Store HL.
LD HL,(OLDSP) $5B81. Fetch the old stack.
LD (OLDSP),SP $5B81. Save the current stack.
LD SP,HL Use the old stack.
El Re-enable interrupts.
LD HL,(TARGET) $5B58. Restore HL.
PUSH AF Re-stack the return address.
EX AF,AF' Get AF back.
RET

Select RAM Bank

Used twice by the ROM to select either physical RAM bank 0 or physical RAM bank 7.
However, it could in theory also be used to set other paging settings.
Entry: A=RAM bank number.

L1F3A: PUSH BC Save BC
LD BC,$7FFD
OUT (C),A Perform requested paging.
LD (BANK_M),A $5B5C.

POP BC Restore BC.

SPECTRUM 128 ROM o DISASSEMBLY

RET

Use Workspace RAM Configuration

Page in physical RAM bank 7, use workspace stack and stack TARGET address.
Entry: HL=TARGET address.

L1F45: EX AF,AF' Save A.
DI Disable interrupts whilst paging.
POP AF Fetch return address.

LD (TARGET),HL
LD HL,(OLDSP)
LD (OLDSP),SP

$5B58. Store HL.
$5B81. Fetch the old stack.
$5B81. Save the current stack.

LD SP,HL Use the old stack.
LD HL,(TARGET) $5B58. Restore HL.
PUSH AF Stack return address.
LD A,$07 RAM bank 7.

CALL L1F3A Page in RAM bank 7.
El Re-enable interrupts.
EX AF,AF' Restore A.

RET

RAM DISK COMMAND ROUTINES — PART 4

Erase a RAM Disk File

N_STR1 contains the name of the file to erase.

L1F5F: CALL L1D12 Find entry in RAM disk area, returning IX pointing
to catalogue entry (leaves logical RAM bank 4
paged in).

JR NZ,L1F68 Jump ahead if it was found. [Could have saved 3
bytes by using JP Z,$1D3E (ROM 0)]
CALL LO5AC Produce error report.

DEFB $23 "h File does not exist"

L1F68: LD L,(IX+$0D) AHL=Length of file.
LD H,(IX+$0E)
LD A,(IX+$0F) Bit 7 of A will be 0 indicating to delete rather than
add.
CALL L1CF3 Free up this amount of space.
PUSH IY Preserve current value of IY.

LD IY,(SFNEXT) $5B83. 1Y points to next free catalogue entry.

SPECTRUM 128 ROM o DISASSEMBLY

LD BC,$FFEC

ADD IX,BC
LD L,(IY+$0A)
LD H,(IY+$0B)
LD A,(IY+$0C)
POP IY

LD E,(IX+$0A)
LD D,(IX+$0B)
LD B,(IX+$0C)
ORA

SBC HL,DE
SBC AB

RLH

RLH

SRA A

RR H

SRA A

RR H

LD BC,$0014
ADD IX,BC
LD (IX+$10),L
LD (IX+$11),H
LD (IX+$12),A
LD BC,$FFEC
ADD IX,BC
LD L,(IX+$0A)
LD H,(IX+$0B)
LD D,(IX+$0C)
LD BC,$0014
ADD IX,BC
LD AD

CALL L1C64
LD A,(BANK_M)
LD E,A

LD BC,$7FFD
LD A,$07

DI

OUT (C),A
EXX
LD L,(IX+$0A)

LD H,(IX+$0B)
LD D,(IX+$0C)
LD AD

BC=-20 (20 bytes is the size of a catalogue
entry).

IX points to the next catalogue entry
AHL=First spare byte in RAM disk file area.

Restore 1Y to normal value.

BDE=Start of address of next RAM disk file entry.

HL=Length of all files to be moved.

20 bytes is the size of a catalogue entry.
IX=Catalogue entry to delete.

Store file length in the 'deleted' catalogue entry.

-20 (20 bytes is the size of a catalogue entry).
IX=Next catalogue entry.
DHL=Start address of next RAM disk file entry.

20 bytes is the size of a catalogue entry.

IX points to catalogue entry to delete.

Page in logical RAM bank for start address of
entry to delete.

$5B5C.
Save current RAM bank configuration in E.
Select physical RAM bank 7.

Disable interrupts whilst performing paging
operations.

Page in selected RAM bank.

DHL'=Start address of next RAM disk file entry.
DHL=Start of address of RAM disk file entry to
delete.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L1C64

LD A,(BANK_M)
LD E,A

LD BC,$7FFD
EXX

Page in logical RAM bank for file entry (will
update BANK_M).

$5B5C.

Get RAM bank configuration for the file in E.

DHL=Start address of next RAM disk file entry.

At this point we have the registers and alternate registers pointing to the actual bytes in the RAM disk
for the file to be deleted and the next file, with length bytes of the catalogue entry for the file to be
deleted containing the length of bytes for all subsequent files that need to be moved down in memory.
A loop is entered to move all of these bytes where the delete file began.

DHL holds the address of the byte to be moved.

E contains the value which should be OUTed to $5B5C to page in the relevant RAM page.

L1FEA:

L200D:

LD A,$07
DI

OUT (C),A

LD A,(IX+$10)
SUB $01

LD (IX+$10),A
JR NC,L200D
LD A,(IX+$11)
SUB $01

LD (IX+$11),A
JR NC,L200D
LD A,(IX+$12)
SUB $01

LD (IX+$12),A
JR C,L203E
OUT (C).E

LD A,(HL)
INC L

JR NZ,L2024
INC H

JR NZ,L2024
EX AF,AF'
INC D

LD AD
CALL L1C64

LD A,(BANK_M)
LD E,A
LD HL,$C000

EX AF,AF'

Select physical RAM bank 7.

Disable interrupts whilst performing paging
operations.

Page in selected RAM bank.

Decrement end address.

If no carry then the decrement is finished.
Otherwise decrement the middle byte.

If no carry then the decrement is finished.
Otherwise decrement the highest byte.

Jump forward if finished moving the file.

Page in RAM bank containing the next file.
Get the byte from the next file.

Increment DHL.

If not zero then the increment is finished.
Otherwise increment the middle byte.

If not zero then the increment is finished.
Save the byte read from the next file.
Advance to next logical RAM bank for the next
file.

Page in next logical RAM bank for next file entry
(will update BANK_M).

$5B5C.

Get RAM bank configuration for the next file in E.
The next file continues at the beginning of the
next RAM bank.

Retrieve the byte read from the next file.

SPECTRUM 128 ROM o DISASSEMBLY

L2024: EXX
DI

OUT (C).E
LD (HL),A
INC L

JR NZ,L203B
INC H

JR NZ,L203B
INC D

LD AD
CALL L1C64

LD A,(BANK_M)
LD E,A

LD HL,$C000
L203B: EXX

JR L1FEA

The file has been moved

L203E: LD A,$04
CALL L1C64
LD A,$00
LD HL,$0014
L2048: CALL L1CF3

LD E,(IX+$0D)
LD D,(IX+$0E)
LD C,(IX+$0F)
LD AD

RLCA

RLC

RLCA

RLC

LD AD

AND $3F

LDD,A

PUSH IX
L2061: PUSH DE

LD DE,$FFEC

ADD IX,DE

DHL=Address of file being deleted.

Disable interrupts whilst performing paging
operations.

Page in next RAM bank containing the next file.
Store the byte taken from the next file.
Increment DHL.

If not zero then the increment is finished.
Otherwise increment the middle byte.

If not zero then the increment is finished.
Advance to next logical RAM bank for the file
being deleted.

Page in next logical RAM bank for file being
deleted entry (will update BANK_M).

$5B5C.

Get RAM bank configuration for the file being
deleted in E.

The file being deleted continues at the beginning
of the next RAM bank.

DHL=Address of byte in next file. DHL'=Address
of byte in file being deleted.

Page in logical RAM bank 4 (physical RAM bank
7).

AHL=20 bytes is the size of a catalogue entry.
Delete a catalogue entry.

CDE=File length of file entry to delete.

C=RAM bank.

Mask off upper bits to leave length in this bank
(range 0-16383).

DE=Length in this bank.

Save address of catalogue entry to delete.

-20 (20 bytes is the size of a catalogue entry).
Point to next catalogue entry.

L207C:

L2099:

SPECTRUM 128 ROM o DISASSEMBLY

POP DE
LD L,(IX+$0A)
LD H,(IX+$0B)
LD A,(IX+$0C)
ORA

SBC HL,DE
SUBC

BIT 6,H

JR NZ,L207C
SET 6,H

DEC A

LD (IX+$0A),L
LD (IX+$0B),H
LD (IX+$0C),A
LD L,(IX+$10)
LD H,(IX+$11)
LD A,(IX+$12)
ORA

SBC HL,DE
SUBC

BIT 6,H

JR NZ,L2099
SET 6,H

DEC A

LD (IX+$10),L
LD (IX+$11),H
LD (IX+$12),A
PUSH IX

POP HL
PUSH DE

LD DE,(SFNEXT)
ORA

SBC HL,DE
POP DE

JR NZ,L2061
LD DE,(SFNEXT)

POP HL
PUSH HL
ORA

SBC HL,DE
LD B,H
LDC,.L

POP HL
PUSH HL

LD DE,$0014
ADD HL,DE

DE=Length in this bank.

AHL=File start address.
Will move into next RAM bank?
Jump if same RAM bank.

New address in next RAM bank.
Next RAM bank.

Save new start address of file.

Fetch end address of file.

Will move into next RAM bank?
Jump if same RAM bank.

New address in next RAM bank.
Next RAM bank.

Save new end address of file.
HL=Address of next catalogue entry.
$5B83.

End of catalogue reached?
DE=Length in this bank.

Jump if not to move next entry.
$5B83. Start address of the next available

catalogue entry.

HL=Start address of catalogue entry to delete.

BC=Length of catalogue entries to move.

HL=Start address of catalogue entry to delete.
20 bytes is the size of a catalogue entry.
HL=Start address of previous catalogue entry.

Print RAM Disk Catalogue

SPECTRUM 128 ROM o DISASSEMBLY

EX DE,HL
POP HL
DEC DE
DEC HL
LDDR

LD HL,(SFNEXT)

LD DE,$0014
ADD HL,DE

LD (SFNEXT),HL

RET

DE=Start address of previous catalogue entry.
HL=Start address of catalogue entry to delete.
DE=End address of catalogue entry to delete.
HL=End address of next catalogue entry.
Move all catalogue entries.

$5B83. Start address of the next available
catalogue entry.

20 bytes is the size of a catalogue entry.

$5B83. Store the new location of the next
available catalogue entry.

This routine prints catalogue filenames in alphabetically order.
It does this by repeatedly looping through the catalogue to find the next ‘highest' name.

L20D2:

L20DA:

L20E1:

LD A,$04
CALL L1C64
LD HL,L2121

LD BC,L212B
LD IX,$EBEC
CALL LO5D6
PUSH IX

EX (SP),HL

LD DE,(SFNEXT)

ORA

SBC HL,DE
POP HL
JRZ,L2111
LD D,H
LDE,L
PUSH HL
PUSH BC
CALL L1C8A
POP BC
POP HL

JR NC,L210A

LD D,B
LDEC
PUSH HL
PUSH BC

Page in logical RAM bank 4

(physical RAM bank 7)

HL points to ten $00 bytes, the initial comparison
filename.

BC point to ten $FF bytes.

IX points to first catalogue entry.

Check for BREAK.

Save address of catalogue entry.

HL points to current catalogue entry. Top of stack
points to ten $00 data.

$5B83. Find address of next free catalogue entry.

Have we reached end of catalogue?
Fetch address of catalogue entry.
Jump ahead if end of catalogue reached.

DE=Current catalogue entry.
Compare current filename (initially ten $00 bytes).
Jump if current catalogue name is 'above' the

previous.

DE=Last filename

SPECTRUM 128 ROM o DISASSEMBLY

CALL L1C8A

POP BC
POP HL
JR C,L210A

PUSH IX
POP BC

LD DE,$FFEC
ADD IX,DE
JR L20E1
PUSH HL

LD HL,L212B
ORA

SBC HL,BC
POP HL

RET Z

LD H,B
LDL,C

CALL L2135
JR L20DA

L210A:

L2111:

Compare current filename (initially ten $FF
bytes).

Jump if current catalogue name is 'below' the
previous.

BC=Address of current catalogue entry name.
-20 (20 bytes is the size of a catalogue entry).
Point to next catalogue entry.

Check next filename.

HL points to current catalogue entry.

Address of highest theoretical filename data.

Was a new filename to print found?
Return if all filenames printed.
HL=Address of current catalogue entry name.

Print the catalogue entry.
Repeat for next filename.

Print Catalogue Filename Data

L2121: DEFB $00, $00, $00, $00,
$00

DEFB $00, $00, $00, $00,
$00

DEFB $FF, $FF, $FF, $FF,
$FF

DEFB $FF, $FF, $FF, $FF,
$FF

Lowest theoretical filename.

L212B: Highest theoretical filename.

Print Single Catalogue Entry

L2135: PUSH HL Save address of filename.
PUSH BC
POP HL [No need to transfer BC to HL since they already
have the same value].
LD DE,N_STR1 $5B67. Copy the filename to N_STR1 so that it
LD BC,$000A is visible when this RAM bank is paged out.

LDIR

L2152:

SPECTRUM 128 ROM o DISASSEMBLY

LD A,$05

CALL L1C64

LD HL,(OLDSP)
LD (OLDSP),SP
LD SP,HL

LD HL,N_STR1

LD B,$0A

LD A,(HL)

PUSH HL

PUSH BC

RST 28H

DEFW PRINT_A_1
POP BC

POP HL

INC HL

DJINZ L2152

LD A,$0D

RST 28H

DEFW PRINT_A_1
RST 28H

DEFW TEMPS

LD HL,(OLDSP)
LD (OLDSP),SP
LD SP,HL
LD A,$04

CALL L1C64
POP HL
RET

Page in logical RAM bank 5 (physical RAM bank
0).

$5B81.

$5B81. Save temporary stack.

Use original stack.

$5B67. HL points to filename.

10 characters to print.

Print each character of the filename.

$0010.

Print a newline character.
$0010.

$0D4D. Copy permanent colours to temporary
colours.

$5B81.

$5B81. Save original stack.

Switch back to temporary stack.

Page in logical RAM bank 4 (physical RAM bank
7).

HL=Address of filename.

BASIC LINE AND COMMAND INTERPRETATION

ROUTINES — PART 4

LPRINT Routine

L2174:

LD A,$03
JR L217A

Printer channel.
Jump ahead.

SPECTRUM 128 ROM o DISASSEMBLY

PRINT Routine

L2178:
L217A:

L2182:

LD A,$02

RST 28H

DEFW SYNTAX_Z
JR Z,L2182

RST 28H

DEFW CHAN_OPEN
RST 28H

DEFW TEMPS
RST 28H

DEFW PRINT_2
CALL L18A1

RET

INPUT Routine

This routine allows for values entered from the keyboard to be assigned to variables. It is also possible
to have print items embedded in the INPUT statement and these items are printed in the lower part

of the display.

L218C:

L2199:

RST 28H

DEFW SYNTAX_Z
JR Z,L2199

LD A$01

RST 28H

DEFW CHAN_OPEN
RST 28H

DEFW CLS_LOWER

LD (IY+$02),$01

RST 28H

Main screen channel.

$2530.
Jump forward if syntax is being checked.

$1601.
$0D4D.

$1FDF. Delegate handling to ROM 1.
"C Nonsense in BASIC" during syntax checking if
not at end of line or statement.

$2530.
Jump forward if syntax is being checked.
Open channel 'K'.

$1601.

Clear the lower part of the display.

$OD6E. [BUG - This call will re-select channel 'S'
and so should have been called prior to opening
channel 'K'. It is a direct copy of the code that
appears in the standard Spectrum ROM (and
ROM 1). It is debatable whether it is better to
reproduce the bug so as to ensure that the INPUT
routine operates the same in 128K mode as it
does in 48K mode. Credit: Geoff Wearmouth]
TV_FLAG. Signal that the lower screen is being
handled. [Not a bug as has been reported
elsewhere. The confusion seems to have arisen
due to the incorrect system variable being
originally mentioned in the Spectrum ROM
Disassembly by Logan and O'Hara]

SPECTRUM 128 ROM o DISASSEMBLY

DEFW IN_ITEM_1 $20C1. Call the subroutine to deal with the INPUT
items.

CALL L18A1 Move on to the next statement if checking syntax.

RST 28H

DEFW INPUT_1+$000A $20A0. Delegate handling to ROM 1.

RET

COPY Routine

L21A7: JP LO8FO Jump to new COPY routine.
NEW Routine
L21AA: DI

JP LO19D Re-initialise the machine.

CIRCLE Routine

This routine draws an approximation to the circle with centre co-ordinates X and Y and radius Z. These
numbers are rounded to the nearest integer before use.

Thus Z must be less than 87.5, even when (X,Y) is in the centre of the screen.

The method used is to draw a series of arcs approximated by straight lines.

L21AE: RST 18H Get character from BASIC line.
CP' $2C. Check for second parameter.
JR NZ,L21EB Jump ahead (for error C) if not.
RST 20H Advance pointer into BASIC line.
RST 28H Get parameter.
DEFW EXPT_1NUM $1C82. Radius to calculator stack.
CALL L18A1 Move to consider next statement if checking

syntax.

RST 28H
DEFW CIRCLE+$000D $232D. Delegate handling to ROM 1.
RET

DRAW Routine

This routine is entered with the co-ordinates of a point X0, YO0, say, in COORDS. If only two parameters
X, Y are given with the DRAW command, it draws an approximation to a straight line from the point
X0, YO to X0+X, YO+Y.

SPECTRUM 128 ROM o DISASSEMBLY

If a third parameter G is given, it draws an approximation to a circular arc from X0, YO to X0+X, YO+Y
turning anti-clockwise through an angle G radians.

L21BE: RST 18H Get current character.
CP' $2C.
JR Z,L21CA Jump if there is a third parameter.
CALL L18A1 Error C during syntax checking if not at end of
line/statement.
RST 28H
DEFW LINE_DRAW $2477. Delegate handling to ROM 1.
RET
L21CA: RST 20H Get the next character.
RST 28H
DEFW EXPT_1NUM $1C82. Angle to calculator stack.
CALL L18A1 Error C during syntax checking if not at end of
line/statement.
RST 28H
DEFW DR_3_PRMS+$0007 $2394. Delegate handling to ROM 1.
RET
DIM Routine

This routine establishes new arrays in the variables area. The routine starts by searching the existing
variables area to determine whether there is an existing array with the same name. If such an array is
found then it is 'reclaimed’ before the new array is established. A new array will have all its elements
set to zero if it is a numeric array, or to 'spaces' if it is an array of strings.

L21D5: RST 28H Search to see if the array already exists.

DEFW LOOK_VARS $28B2.

JR NZ,L21EB Jump if array variable not found.

RST 28H

DEFW SYNTAX_Z $2530.

JR NZ,L21E7 Jump ahead during syntax checking.

RES 6,C Test the syntax for string arrays as if they were
numeric.

RST 28H

DEFW STK_VAR $2996. Check the syntax of the parenthesised
expression.

CALL L18A1 Error when checking syntax unless at end of line/
statement.

An 'existing array' is reclaimed.

L21E7: RST 28H
DEFW D_RUN $2C15. Delegate handling to ROM 1.

SPECTRUM 128 ROM o DISASSEMBLY

RET

Error Report C — Nonsense in BASIC

L21EB: CALL LO5AC Produce error report.
DEFB $0B "C Nonsense in BASIC"

Clear Screen Routine

Clear screen if it is not already clear.

L21EF: BIT 0,(1Y+$30) FLAGS2. Is the screen clear?
RET Z Return if it is.
RST 28H
DEFW CL_ALL $ODAF. Otherwise clear the whole display.
RET

Evaluate Numeric Expression

This routine is called when a numerical expression is typed directly into the editor or calculator.
A numeric expression is any that begins with '(', - or '+, or is one of the function keywords, e.g. ABS,
SIN, etc, or is the name of a numeric variable.

L21F8: LD HL,$FFFE Aline in the editing area is considered as line '-2".
LD ($5C45),HL PPC. Signal no current line number.

Check the syntax of the BASIC line

RES 7,(1Y+$01) Indicate 'syntax checking' mode.

CALL L228E Point to start of the BASIC command line.
RST 28H

DEFW SCANNING $24FB. Evaluate the command line.

BIT 6,(1Y+3$01) Is it a numeric value?

JR Z,L223A Jump to produce an error if a string result.
RST 18H Get current character.

CP $0D Is it the end of the line?

JR NZ,L223A Jump if not to produce an error if not.

The BASIC line has passed syntax checking so now execute it

SET 7,(IY+$01) If so, indicate 'execution' mode.

L223A:

L223E:

L2264:

SPECTRUM 128 ROM o DISASSEMBLY

CALL L228E
LD HL,L0321

LD (SYNRET),HL
RST 28H

DEFW SCANNING
BIT 6,(1Y+$01)

JR Z,L223A

LD DE,LASTV

LD HL,($5C65)

LD BC,$0005
ORA

SBC HL,BC

LDIR

JP L223E

CALL LOSAC
DEFB $19

LD A,$0D

CALL L226F

LD BC,$0001

RST 28H

DEFW BC_SPACES
LD ($5C5B),HL
PUSH HL

LD HL,($5C51)
PUSH HL

LD A $FF

RST 28H

DEFW CHAN_OPEN
RST 28H

DEFW PRINT_FP

POP HL
RST 28H
DEFW CHAN_FLAG

POP DE
LD HL,($5C5B)
AND A

SBC HL,DE
LD A,(DE)

CALL L226F
INC DE
DEC HL

LD AH

Point to start of the BASIC command line.
Set up the error handler routine address.
$5B8B.

$24FB. Evaluate the command line.

Is it a numeric value?

Jump to produce an error if a string result.
$5B8D. DE points to last calculator value.
STKEND.

The length of the floating point value.

HL points to value on top of calculator stack.

Copy the value in the workspace to the top of the

calculator stack.

[Could have saved 1 byte by using a JR
instruction]

Produce error report.

"Q Parameter error"

Make it appear that 'Enter' has been pressed.
Process key press.

$0030. Create a byte in the workspace.
K_CUR. Address of the cursor.

Save it.

CURCHL. Current channel information.
Save it.

Channel 'R', the workspace.

$1601.

$2DE3. Print a floating point number to the
workspace.
Get the current channel information address.

$1615. Set appropriate flags back for the old
channel.

DE=Address of the old cursor position.
K_CUR. Address of the cursor.

HL=Length of floating point number.
Fetch the character and make it appear to have
been typed.

Process the key press.

Decrement floating point number character count.

SPECTRUM 128 ROM o DISASSEMBLY

ORL
JR NZ,L2264
RET

Process Key Press

L226F: PUSH HL
PUSH DE

CALL L1F45

LD HL,$ECOD
RES 3,(HL)
PUSH AF

LD A,$02
RST 28H
DEFW CHAN_OPEN
POP AF
CALL L2669
LD HL,$ECOD
RES 3,(HL)
CALL L1F20

POP DE

POP HL
RET

Find Start of BASIC Command

Paint to the start of a typed in BASIC command
and return first character in A.

L228E: LD HL,($5C59)

DEC HL
LD ($5C5D),HL

RST 20H
RET

Is LET Command?

Repeat for all characters.

Save registers.

Use Workspace RAM configuration (physical
RAM bank 7).

Editor flags.

Reset 'line altered' flag

Main screen
$1601.

Process key press.

Editor flags.

Reset 'line altered' flag

Use Normal RAM Configuration (physical RAM
bank 0).

Restore registers.

E_LINE. Get the address of command being
typed in.

CH_ADD. Store it as the address of next
character to be interpreted.
Get the next character.

A typed in command resides in the editing workspace.

SPECTRUM 128 ROM o DISASSEMBLY

This function tests whether the text is a single LET command.
Exit: Zero flag set if a single LET command.

L2297:

L22A0:

CALL L228E
CP $F1

RET NZ

LD HL,($5C5D)
LD A,(HL)
INC HL

CP $0D

RET Z

cp

JR NZ,L22A0
ORA

RET

Is Operator Character?

Exit: Zero flag set if character is an operator.

L22AB:

L22AF:

Found

Not found

L22B9:

LD B,A
LD HL,L22BD
LD A,(HL)
INC HL

ORA

JR Z,L22B9
CPB

JR NZ,L22AF

LDAB
RET

OR $FF
LDAB
RET

Point to start of typed in command.
Isit'LET'?

Return if not with zero flag reset.
CH_ADD. HL points to next character.
Fetch next character.

Has end of line been found?

Return if so with zero flag set.

$3A. Has start of new statement been found?
Loop back if not.

Return zero flag reset indicating a multi-statement
LET command.

Save B.

Start of operator token table.

Fetch character from the table.
Advance to next entry.

End of table?

Jump if end of table reached.

Found required character?

Jump if not to try next character in table.

Restore character to A.
Return with zero flag set to indicate an operator.

Reset zero flag to indicate not an operator.
Restore character to A.

SPECTRUM 128 ROM o DISASSEMBLY

Operator Tokens Table

L22BD: DEFB $2B, $2D, $2A EE
DEFB $2F, $5E, $3D N,
DEFB $3E, $3C, $C7 S k=t
DEFB $C8, $C9, $C5 >=' '<>' 'OR'
DEFB $C6 'AND’
DEFB $00 End marker.

Is Function Character?

Exit: Zero set if a function token.

L22CB: CP $A5 'RND'. (first 48K token)
JR C,L22DD Jump ahead if not a token with zero flag reset.
CP $C4 '‘BIN'".
JR NC,L22DD Jump ahead if not a function token.
CP $AC '‘AT'.
JR Z,L22DD Jump ahead if not a function token.
CP $AD 'TAB'.
JR Z,L22DD Jump ahead if not a function token.
CPA Return zero flag set if a function token.
RET

L22DD: CP $A5 Return zero flag set if a function token.
RET

Is Numeric or Function Expression?

Exit: Zero flag set if a numeric or function expression.

L22EOQ: LD B,A Fetch character code.
OR $20 Make lowercase.
CPa' $61. Is it 'a’ or above?
JR C,L22ED Jump ahead if not a letter.
CPY{ $7B. Is it below {'?
L22E9: JR NC,L22ED Jump ahead if not.
CPA Character is a letter so return
RET with zero flag set.
L22ED: LDAB Fetch character code.
cp $2E. Isit".'"?
RET Z Return zero flag set indicating numeric.

CALL L230A Is character a number?

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,L2307
L22F6: RST 20H

CALL L230A

JR Z,L22F6

CP"

RET Z

CP'E

RET Z

CP'e'

RET Z

JR L22AB
L2307: OR $FF

RET

Is Numeric Character?

Exit: Zero flag set if numeric character.

L230A: CP'O
JR C,L2314
Cp"
JR NC,L2314
CPA
RET

L2314: CP'O
RET

PLAY Routine

L2317: LD B,$00
RST 18H
L231A: PUSH BC
RST 28H
DEFW EXPT_EXP
POP BC
INC B
CPY
JR NZ,L2327
RST 20H
JR L231A
L2327: LDAB
CP $09

Jump ahead if not a number.

Get next character.

Is character a number?

Repeat for next character if numeric.
$2E. Isit".'?

Return zero flag set indicating numeric.
$45. Is it 'E'?

Return zero flag set indicating numeric.
$65. Is it 'e'?

Return zero flag set indicating numeric.
Jump to test for operator tokens.

Reset the zero flag to indicate non-alphanumeric.

$30. Is it below '0'?
Jump below '0'.
$3A. Is it below :'?
Jump above '9'

Set zero flag if numeric.
$30. This will cause zero flag to be reset.

String index.

Get string expression.

$2C. A ' indicates another string.

Jump ahead if no more.

Advance to the next character.

Loop back.

Check the index.

Maximum of 8 strings (to support synthesisers,
drum machines or sequencers).

SPECTRUM 128 ROM o DISASSEMBLY

JR C,L2330
CALL LO5AC
DEFB $2B

L2330: CALL L18A1
JP L0985

Produce error report.

"p (c) 1986 Sinclair Research Ltd" [BUG - This
should be "Parameter error". The Spanish 128
produces "p Bad parameter" but to save memory
perhaps the UK 128 was intended to use the
existing "Q Parameter error" and the change

of the error code byte here was overlooked. In
that case it would have had a value of $19. Note
that generation of this error when using the main
screen editor will result in a crash. Credit: Andrew
Owen]

Ensure end-of-statement or end-of-line.
Continue with PLAY code.

UNUSED ROUTINES — PART 1

There now follows 513 bytes of routines that are not used by the ROM, from $2336 (ROM 0) to $2536

(ROM 0).

They are remnants of the original Spanish 128's ROM code, although surprisingly they appear in a

different order within that ROM.

Return to Editor
[Never called by this ROM]

L2336: LD HL,TSTACK
LD (OLDSP),HL
CALL L1F45

JP L25CB

BC=HL-DE, Swap HL and DE

Exit: BC=HL-DE.
DE=HL, HL=DE.
[Never called by this ROM]

L2342: AND A
SBC HL,DE
LD B,H
LDC,.L
ADD HL,DE
EX DE,HL

$5BFF.

$5B81.

Use Workspace RAM configuration (physical
RAM bank 7).

Jump ahead to the Editor.

BC=HL-DE.

HL=DE, DE=HL.

SPECTRUM 128 ROM o DISASSEMBLY

RET

Create Room for 1 Byte

Creates a single byte in the workspace, or automatically produces an error ‘4" if not.
[Never called by this ROM]

L234A: LD BC,$0001 Request 1 byte.

PUSH HL

PUSH DE

CALL L2358 Test whether there is space. If it fails this will
cause the error

POP DE handler in ROM 0 to be called. If MAKE_ROOM
were called directly and

POP HL and out of memory condition detected then the
ROM 1 error handler would

RST 28H be called instead.

DEFW MAKE_ROOM $1655. The memory check passed so safely
make the room.

RET

Room for BC Bytes?

Test whether there is room for the specified number of bytes in the spare memory, producing error "4
Out of memory" if not. This routine is very similar to that at $3F66 with the exception that this routine
assumes Y points at the system variables.

Entry: BC=Number of bytes required.

Exit: Returns if the room requested is available else an error '4" is produced.

[Called by the routine at $234A (ROM 0), which is itself never called by this ROM]

L2358: LD HL,($5C65) STKEND.
ADD HL,BC Would adding the specified number of bytes
overflow the RAM area?
JR C,L2368 Jump to produce an error if so.
EX DE,HL DE=New end address.
LD HL,$0082 Would there be at least 130 bytes at the top of
RAM?
ADD HL,DE
JR C,L2368 Jump to produce an error if not.
SBC HL,SP If the stack is lower in memory, would there still
be enough room?
RET C Return if there would.
L2368: LD (IY+$00),$03 Signal error "4 Out of Memory".
JP L0321 Jump to error handler routine.

SPECTRUM 128 ROM o DISASSEMBLY

HL = A*32
[Called by routines at $2383 (ROM 0) and $23B8 (ROM 0), which are themselves never called by
this ROM]

L236F: ADD A A A*2.

ADD AA A*4. Then multiply by 8 in following routine.
HL = A*8
[Called by the routine at $23E1 (ROM 0), which ultimately is itself never called by this ROM]
L2371: LDLA

LD H,$00

ADD HL,HL A*2.

ADD HL,HL A*4.,

ADD HL,HL A*8.

RET Return HL=A*8.

Find Amount of Free Space

Exit: Carry flag set if no more space, else HL holds the amount of free space.
[Never called by this ROM]

L2378: LD HL,$0000
ADD HL,SP HL=SP.
LD DE,($5C65) STKEND.
ORA
SBC HL,DE Effectively SP-STKEND, i.e. the amount of
available space.
RET

Print Screen Buffer Row

Prints row from the screen buffer to the screen.
Entry: A=Row number.

[Never called by this ROM]

L2384: RES 0,(1Y-$39) KSTATE+1. Signal do not invert attribute value.
[IY+$3B on the Spanish 128]
CALL L236F HL=A*32. Number of bytes prior to the requested

row.

SPECTRUM 128 ROM o DISASSEMBLY

PUSH HL Save offset to requested row to print.

LD DE,($FF24) Fetch address of screen buffer.

ADD HL,DE Point to row entry.

LD D,H

LDE,L DE=Address of row entry.

EX (SP),HL Stack address of row entry. HL=Offset to
requested row to print.

PUSH HL Save offset to requested row to print.

PUSH DE Save address of row entry.

LD DE,$5800 Attributes file.

ADD HL,DE Point to start of corresponding row in attributes
file.

EX DE,HL DE=Start address of corresponding row in
attributes file.

POP HL HL=Address of row entry.

LD BC,$0020 32 columns.

LD A,($5C8F) ATTR_T. Fetch the temporary colours.

CALL L249B Set the colours for the 32 columns in this row,
processing any colour control codes from the print
string.

POP HL HL=COffset to requested row to print.

LD AH

LD H,$00 Calculate corresponding display file address.

ADD AA

ADD AA

ADD AA

ADD A,$40

LDD,A

LD E,H

ADD HL,DE

EX DE,HL DE=Display file address.

POP HL HL=Offset to requested row to print.

LD B,$20 32 columns.

JP L23E1 Print one row to the display file.

Blank Screen Buffer Content

Sets the specified number of screen buffer positions from the specified row to $FF.
Entry: A=Row number.
BC=Number of bytes to set.

[Never called by this ROM]

L23B8: LD D,$FF The character to set the screen buffer contents to.
CALL L236F HL=A*32. Offset to the specified row.
LD A,D

SPECTRUM 128 ROM o DISASSEMBLY

LD DE,($FF24) Fetch the address of the screen buffer.

ADD HL,DE HL=Address of first column in the requested row.

LD E,L

LD D,H

INC DE DE=Address of second column in the requested
row.

LD (HL),A Store the character.

DEC BC

LDIR Repeat for all remaining bytes required.

RET

Print Screen Buffer to Display File
[Never called by this ROM]

L23CB: CALL L2488 Set attributes file from screen buffer.
LD DE,$4000 DE=First third of display file.
LD HL,($FF24) Fetch address of screen buffer.
LD B,E Display 256 characters.
CALL L23E1 Display string.
LD D,$48 Middle third of display file.
CALL L23E1 Display string.
LD D,$50 Last third of display file.
LD B,$CO Display 192 characters.

Print Screen Buffer Characters to Display File

Displays ASCII characters, UDGs, graphic characters or two special symbols in the display file, but
does not alter the attributes file. Character code $FE is used to represent the error marker bug symbol
and the character code $FF is used to represent a null, which is displayed as a space.
Entry: DE=Display file address.

HL=Points to string to print.

B=Number of characters to print.
[Used by routine at $23CB (ROM 0) and called by the routine at $2383 (ROM 0), both of which are
themselves never called by this ROM]

L23E1: LD A,(HL) Fetch the character.
PUSH HL Save string pointer.
PUSH DE Save display file address.
CP $FE Was if $FE (bug) or $FF (null)?
JR C,L23EC Jump ahead if not.
SUB $FE Reduce range to $00-$01.

JR L2422 Jump ahead to show symbol.

SPECTRUM 128 ROM o DISASSEMBLY

Comes here if character code if below $FE

L23EC: CP $20
JR NC,L23F7

Comes here if a control character

LD HL,L2527
AND A

EX AF,AF'
JR L242B

L23F7: CP $80
JR NC,L2409

Comes here if an ASCII character

CALL L2371
LD DE,($5C36)
ADD HL,DE
POP DE

CALL $FF28

JR L2450
Comes here if a graphic character or UDG

L2409: CP $90
JR NC,L2411

Comes here if a graphic character

SUB $7F
JR L2422

Comes here if a UDG

L2411: SUB $90
CALL L2371
POP DE
CALL L1F20

PUSH DE

Is it a control character?
Jump ahead if not.

Graphic for a 'G' (not a normal G though). Used to
indicate embedded colour control codes.

Clear the carry flag to indicate no need to switch
back to RAM bank 7.

Save the flag.

Jump ahead to display the symbol.

Is it a graphic character or UDG?

Jump ahead if so.

HL=A*8.

CHARS.

Point to the character bit pattern.

Fetch the display file address.

Copy character into display file (via RAM
Routine). Can't use routine at $242C (ROM 0)
since it does not perform a simple return.
Continue with next character.

Is it a graphic character?
Jump ahead if not.

Reduce range to $01-$10.
Jump ahead to display the symbol.

Reduce range to $00-$6D.

HL=A*8.

Fetch display file address.

Use Normal RAM Configuration (RAM bank 0) to
allow access to character bit patterns.

Save display file address.

SPECTRUM 128 ROM o DISASSEMBLY

LD DE,($5C7B) UDG. Fetch address of UDGs.

SCF Set carry flag to indicate need to switch back to
RAM bank 7.

JR L2429 Jump ahead to locate character bit pattern and

display the symbol.

Come here if (HL) was $FE or $FF, or with a graphic character.
At this point A=$00 if (HL) was $FE indicating a bug symbol, or $01 if (HL) was $FF indicating a null,
or A=$01-$10 if a graphic character.

L2422: LD DE,L252F Start address of the graphic character bitmap
table.
CALL L2371 HL=A*8 -> $0000 or $0008.
AND A Clear carry flag to indicate no need to switch back
to RAM bank 7.
L2429: EX AF,AF' Save switch bank indication flag.
ADD HL,DE Point to the symbol bit pattern data.
L242B: POP DE Fetch display file address. Drop through into

routine below.

Copy A Character « RAM Routine »

Routine copied to RAM at $FF36-$FF55 by subroutine at $246F (ROM 0).
Also used in ROM from above routine.
This routine copies 8 bytes from HL to DE. It increments HL and D after each byte, restoring D
afterwards.
It is used to copy a character into the display file.
Entry: HL=Character data.
DE=Display file address.

[Called by a routine that is itself never called by this ROM]

L242C: LD C,D Save D.
LD A,(HL)
LD (DE),A Copy byte 1.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 2.
INC HL
INC D
LD A,(HL)
LD (DE),A Copy byte 3.
INC HL
INC D
LD A,(HL)

SPECTRUM 128 ROM o DISASSEMBLY

LD (DE),A Copy byte 4.
INC HL

INC D

LD A,(HL)

LD (DE),A Copy byte 5.
INC HL

INC D

LD A,(HL)

LD (DE),A Copy byte 6.
INC HL

INC D

LD A,(HL)

LD (DE),A Copy byte 7.
INC HL

INC D

LD A,(HL)

LD (DE),A Copy byte 8.
LD D,C Restore D. « Last byte copied to RAM »

When the above routine is used in ROM, it drops through to here.

L244cC: EX AF,AF' Need to switch back to RAM bank 77?
CALL C,L1F45 If so then switch to use Workspace RAM
configuration (physical RAM bank 7).
L2450: POP HL Fetch address of string data.
INC HL Move to next character.
INC DE Advance to next display file column.
DJNZ L23E1 Repeat for all requested characters.
RET

Toggle ROMs 1 « RAM Routine »

Routine copied to RAM at $FF28-$FF35 by subroutine at $246F (ROM 0).
This routine toggles to the other ROM than the one held in BANK_M.
Entry: A'= Current paging configuration.

[Called by a routine that is itself never called by this ROM]

L2456: PUSH BC Save BC
DI Disable interrupts whilst paging.
LD BC,$7FFD
LD A,(BANK_M) $5B5C. Fetch current paging configuration.
XOR $10 Toggle ROMs.
OuT (C),A Perform paging.

El Re-enable interrupts.

SPECTRUM 128 ROM o DISASSEMBLY

EX AF,AF' Save the new configuration in A'. « Last byte
copied to RAM »

Toggle ROMs 2 « RAM Routine »

Routine copied to RAM at $FF56-$FF60 by subroutine at $246F (ROM 0).
This routine toggles to the other ROM than the one specified.

It is used to page back to the original configuration.

Entry: A'= Current paging configuration.

[Called by a routine that is itself never called by this ROM]

L2464: EX AF,AF' Retrieve current paging configuration.
DI Disable interrupts whilst paging.
LD C,$FD Restore Paging 1/O port number.
XOR $10 Toggle ROMs.
OUT (C),A Perform paging.
El Re-enable interrupts.
POP BC Restore BC.
RET « Last byte copied to RAM »

Construct 'Copy Character' Routine in RAM

This routine copies 3 sections of code into RAM to construct a single routine that can be used to copy
the bit pattern for a character into the display file.

Copy $2456-$2463 (ROM 0) to $FF28-$FF35 (14 bytes).

Copy $242C-$244B (ROM 0) to $FF36-$FF55 (32 bytes).

Copy $2464-$246E (ROM 0) to $FF56-$FF60 (11 bytes).

[Never called by this ROM]

L246F: LD HL,L2456 Point to the ‘page in other ROM' routine.
LD DE,$FF28 Destination RAM address.
LD BC,$000E
LDIR Copy the routine.
PUSH HL
LD HL,L242C Copy a character routine.
LD C,$20
LDIR Copy the routine.
POP HL HL=$2464 (ROM 0), which is the address of the
‘page back to original ROM' routine.
LD C,$0B
LDIR Copy the routine.

RET

SPECTRUM 128 ROM o DISASSEMBLY

Set Attributes File from Screen Buffer

This routine parses the screen buffer string contents looking for colour control codes and changing

the attributes file contents correspondingly.

[Called by the routine at $23CB (ROM 0), which is itself never called by this ROM]

L2488: RES 0,(1Y-$39)

LD DE,$5800
LD BC,$02C0
LD HL,($FF24)
LD A,($5C8D)
LD ($5C8F),A

KSTATE+1. Signal do not invert attribute value.

[Spanish 128 uses 1Y-$3B]

The start of the attributes file.

22 rows of 32 columns.

The address of the string to print.
ATTR_P.

ATTR_T. Use the permanent colours.

Set Attributes for a Screen Buffer Row

L249B: EX AF,AF'

The main loop returns here on each iteration

L249C: PUSH BC
LD A,(HL)
CP $FF
JR NZ,L24AA
LD A,($5C8D)
LD (DE),A
INC HL
INC DE
JR L2507

Not a blank character

L24AA: EX AF AF'
LD (DE),A
INC DE
EX AF AF'
INC HL
CP $15
JR NC,L2507
CP $10
JR C,L2507

Save the colour byte.

Save the number of characters.

Fetch a character from the buffer.

Is it blank?

Jump ahead if not.

ATTR_P. Get the default colour byte.
Store it in the attributes file.

Point to next screen buffer position.

Point to next attributes file position.

Jump ahead to handle the next character.

Get the colour byte.

Store it in the attributes file.

Point to the next attributes file position.
Save the colour byte.

Point to the next screen buffer position.
Is the string character OVER or above?
Jump if it is to handle the next character.
Is the string character below INK?

Jump if it is to handle the next character.

Screen buffer character is INK, PAPER, FLASH, BRIGHT or INVERSE.

SPECTRUM 128 ROM o DISASSEMBLY

DEC HL
JR NZ,L24C2

Point back to the previous screen buffer position.
Jump if not INK.

Screen character was INK so insert the new ink into the attribute byte.

L24C2:

INC HL
LD A,(HL)

LD CA
EX AF,AF'
AND $F8
JR L2505

CP $11
JR NZ,L24D1

Point to the next screen buffer position.

Fetch the ink colour from the next screen buffer
position.

and store it in C.

Get the colour byte.

Mask off the ink bits.

Jump ahead to store the new attribute value and
then to handle the next character.

Is the string character PAPER?

Jump ahead if not.

Screen character was PAPER so insert the new paper into the attribute byte.

L24D1:

INC HL
LD A,(HL)

ADD AA
ADD AA
ADD AA

LD CA

EX AF,AF'
AND $C7
JR L2505

CP $12
JR NZ,L24DE

Screen character was FLASH

L24DE:

INC HL
LD A,(HL)

RRCA

LD CA
EX AF,AF'
AND $7F
JR L2505

CP $13
JR NZ,L24EC

Point to the next screen buffer position.
Fetch the paper colour from the next screen
buffer position.

Multiple by 8 so that ink colour become paper
colour.

Get the colour byte.

Mask off the paper bits.

Jump ahead to store the new attribute value and
then to handle the next character.

Is the string character FLASH?

Jump ahead if not.

Point to the next screen buffer position.

Fetch the flash status from the next screen buffer
position.

Shift the flash bit into bit 0.

Get the colour byte.

Mask off the flash bit.

Jump ahead to store the new attribute value and
then to handle the next character.

Is the string character BRIGHT?

Jump ahead if not.

SPECTRUM 128 ROM o DISASSEMBLY

Screen character was BRIGHT

L24EC:

INC HL
LD A,(HL)

RRCA
RRCA

LD CA
EX AF,AF'
AND $BF
JR L2505

CP $14
INC HL
JR NZ,L2507

Screen character was INVERSE

L2505:

L2507:

LD C,(HL)
LD A,($5C01)

XOR C
RRA

JR NC,L2507
LD A,$01
XOR (IY-$39)
LD ($5C01),A
EX AF,AF'
CALL L2513
ORC

EX AF,AF'
POP BC

DEC BC
LDAB

ORC

JP NZ,L249C
EX AF,AF'

LD ($5C8F) A
RET

Point to the next screen buffer position.
Fetch the bright status from the next screen buffer
position.

Shift the bright bit into bit 0.

Get the colour byte.

Mask off the bright bit.

Jump ahead to store the new attribute value and
then to handle the next character.

Is the string character INVERSE?

Point to the next screen buffer position.

Jump ahead if not to handle the next character.

Fetch the inverse status from the next screen
buffer position.

KSTATE+1. Fetch inverting status (Bit O is O for
non-inverting, 1 for inverting).

Invert status.

Shift status into the carry flag.

Jump if not inverting to handle the next character.
Signal inverting is active.

KSTATE+1. Toggle the status.

KSTATE+1. Store the new status.

Get the colour byte.

Swap ink and paper in the colour byte.
Combine the old and new colour values.

Save the new colour byte.

Fetch the number of characters.

Repeat for all characters.
Get colour byte.
ATTR_T. Make it the new temporary colour.

Swap Ink and Paper Attribute Bits
Entry: A=Attribute byte value.

Exit :

A=Attribute byte value with paper and ink bits swapped.

SPECTRUM 128 ROM o DISASSEMBLY

[Called by the routine at $2488 (ROM 0), which is itself never called by this ROM]

L2513: LD B,A Save the original colour byte.
AND $CO Keep only the flash and bright bits.
LDCA
LD AB
ADD AA Shift ink bits into paper bits.
ADD AA
ADD AA
AND $38 Keep only the paper bits.
ORC Combine with the flash and bright bits.
LD CA
LD AB Get the original colour byte.
RRA
RRA
RRA Shift the paper bits into the ink bits.
AND $07 Keep only the ink bits.
ORC Add with the paper, flash and bright bits.
RET

Character Data
Graphic control code indicator

L2527: DEFB $00
DEFB $3C
DEFB $62
DEFB $60
DEFB $6E
DEFB $62
DEFB $3E
DEFB $00

[eNeNeNeNoNoNe Nl
OORrRrRFPRRLRRFPROO
ORRFRPERPRELPELPFLRO
[N NeNeNoNeN o)
OrPOFrROORO
OrOFrROORO
ORrRFPEFPRORFROO
[eNeNeNeNoNeNe Nl
§§§§§§
XS X

Error marker

L252F: DEFB $00
DEFB $6C
DEFB $10
DEFB $54
DEFB $BA
DEFB $38
DEFB $54
DEFB $82

X X X
X XXX X

X X X

P OOPFRPrOOOOo
OPrPO0OO0OFroOr o
OOoOPFrPFPOORFrOo
oOrFPrFPFPPEFPOO
OOPFrPFPOORFrOo
OPrPOoOO0OFror o
P OORFrP,rOOOOo
[eNeoNeoNoNoNeoNoNo)

« End of Unused ROM Routines »

SPECTRUM 128 ROM o DISASSEMBLY

KEY ACTION TABLES

Editing Keys Action Table

Each editing key code maps to the appropriate handling routine.

This includes those keys which mirror the functionality of the add-on keypad; these are found by
trapping the keyword produced by the keystrokes in 48K mode.

[Surprisingly there is no attempt to produce an intelligible layout instead the first 16 keywords have
been used. Additionally the entries for DELETE and ENTER should probably come in the first six
entries for efficiency reasons.]

L2537: DEFB $15 Number of table entries.
DEFB $0B Key code: Cursor up.
DEFW L2A94 CURSOR-UP handler routine.
DEFB $0A Key code: Cursor Down.
DEFW L2AB5 CURSOR-DOWN handler routine.
DEFB $08 Key code: Cursor Left.
DEFW L2AD7 CURSOR-LEFT handler routine.
DEFB $09 Key code: Cursor Right.
DEFW L2AE3 CURSOR-RIGHT handler routine.
DEFB $AD Key code: Extend Mode + P.
DEFW L2A4F TEN-ROWS-UP handler routine.
DEFB $AC Key code: Symbol Shift + I.
DEFW L2A25 TEN-ROWS-DOWN handler routine.
DEFB $AF Key code: Extend Mode + I.
DEFW L29D4 WORD-LEFT handler routine.
DEFB $AE Key code: Extend Mode + Shift + J.
DEFW L29E1 WORD-RIGHT handler routine.
DEFB $A6 Key code: Extend Mode + N, or Graph + W.
DEFW L2983 TOP-OF-PROGRAM handler routine.
DEFB $A5 Key code: Extend Mode + T, or Graph + V.
DEFW L29AB END-OF-PROGRAM handler routine.
DEFB $A8 Key code: Extend Mode Symbol Shift + 2, or
Graph Y.
DEFW L2A87 START-OF-LINE handler routine.
DEFB $A7 Key code: Extend Mode + M, or Graph + X.
DEFW L2A7A END-OF-LINE handler routine.
DEFB $AA Key code: Extend Mode + Shift + K.
DEFW L291B DELETE-RIGHT handler routine.
DEFB $0C Key code: Delete.
DEFW L292B DELETE handler routine.
DEFB $B3 Key code: Extend Mode + W.
DEFW L3017 DELETE-WORD-RIGHT handler routine.
DEFB $B4 Key code: Extend Mode + E.

DEFW L2FBC

DELETE-WORD-LEFT handler routine.

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $B0 Key code: Extend Mode + J.

DEFW L3072 DELETE-TO-END-OF-LINE handler routine.

DEFB $B1 Key code: Extend Mode + K.

DEFW L303E DELETE-TO-START-OF-LINE handler routine.

DEFB $0D Key code: Enter.

DEFW L2944 ENTER handler routine.

DEFB $A9 Key code: Extend Mode + Symbol Shift + 8, or
Graph + Z.

DEFW L269B TOGGLE handler routine.

DEFB $07 Key code: Edit.

DEFW L2704 MENU handler routine.

Menu Keys Action Table

Each menu key code maps to the appropriate handling routine.

L2577: DEFB $04 Number of entries.
DEFB $0B Key code: Cursor up.
DEFW L272E MENU-UP handler routine.
DEFB $0A Key code: Cursor down.
DEFW L2731 MENU-DOWN handler routine.
DEFB $07 Key code: Edit.
DEFW L2717 MENU-SELECT handler routine.
DEFB $0D Key code: Enter.
DEFW L2717 MENU-SELECT handler routine.

MENU ROUTINES — PART 3

Initialise Mode Settings

Called before Main menu displayed.

L2584: CALL L28BE Reset Cursor Position.
LD HL,$0000 No top line.
LD ($FC9A),HL Line number at top of screen.
LD A,$82 Signal waiting for key press, and menu is
displayed.
LD ($ECOD),A Store the Editor flags.
LD HL,$0000 No current line number.
LD ($5C49),HL E_PPC. Current line number.
CALL L35BC Reset indentation settings.

CALL L365E Reset to 'L' Mode

SPECTRUM 128 ROM o DISASSEMBLY

RET

Show Main Menu

L259F:

L25AD:

LD HL,TSTACK
LD (OLDSP),HL
CALL L1F45

LD A,$02

RST 28H
DEFW CHAN_OPEN
LD HL,L2744
LD ($F6EA),HL
LD HL,L2754
LD ($F6EC),HL
PUSH HL

LD HL,$ECOD
SET 1,(HL)
RES 4,(HL)
DEC HL

LD (HL),$00
POP HL

CALL L36A8
JP L2653

[Could have saved one byte by using JP $365E
(ROM 0)]

$5BFF.

$5B81.

Use Workspace RAM configuration (physical
RAM bank 7).

Select main screen.

$1601.

Jump table for Main Menu.

Store current menu jump table address.
The Main Menu text.

Store current menu text table address.
Store address of menu on stack.

Editor flags.

Indicate 'menu displayed'.

Signal return to main menu.

Current menu index.

Select top entry.

Retrieve address of menu.

Display menu and highlight first item.
Jump ahead to enter the main key waiting and
processing loop.

EDITOR ROUTINES — PART 2

Return to Editor / Calculator / Menu from Error

L25CB:

LD IX,$FD6C
LD HL,TSTACK
LD (OLDSP),HL
CALL L1F45

LD A,$02

RST 28H

DEFW CHAN_OPEN
CALL L3668

LD HL,$5C3B

Point IX at editing settings information.
$5BFF.

$5B81.

Use Workspace RAM configuration (physical
RAM bank 7).

$1601. Select main screen.
Reset 'L' mode.
FLAGS.

SPECTRUM 128 ROM o DISASSEMBLY

L25E3: BIT 5,(HL)
JR Z,L25E3
LD HL,$ECOD
RES 3,(HL)
BIT 6,(HL)
JR NZ,L2604

LD A,(3ECOE)
CP $04

JR Z,L2601
CP $00

JP NZ,L28C7

Edit menu Print mode

CALL L3848
JR L2604
Calculator mode
L2601: CALL L384D

Return to the Editor

Has a key been pressed?

Wait for a key press.

Editor flags.

Signal line has not been altered.

Is editing area the lower screen?

If so then skip printing a banner and jump ahead
to return to the Editor.

Fetch mode.

Calculator mode?

Jump ahead if so.

Edit Menu mode?

Jump if not to re-display Main menu.

Clear screen and print "128 BASIC" in the banner
line.
Jump ahead to return to the Editor.

Clear screen and print "Calculator" in the banner
line.

Either as the result of a re-listing, an error or from completing the Edit Menu Print option.

[BUG - Occurs only with ZX Interface 1 attached and a BASIC line such as 1000 OPEN #4, "X" (the
line number must be greater than 999). This produces the error message "Invalid device expression,
1000:1" but the message is too long to fit on a single line. When using the lower screen for editing,
spurious effects happen to the bottom lines. When using the full screen editor, a crash occurs. Credit:
Toni Baker, ZX Computing Monthly] [The bug is caused by system variable DF_SZ being increased
to 3 as a result of the error message spilling onto an extra line. The error can be resolved by inserting
a LD (IY+$31),$02 instruction at $2604 (ROM 0). Credit: Paul Farrow]

L2604: CALL L30D6
CALL L3222
LD A,(3ECOE)

CP $04
JR Z,L2653

Calculator mode

Reset Below-Screen Line Edit Buffer settings to
their default values.

Reset Above-Screen Line Edit Buffer settings to
their default values.

Fetch the mode.

Calculator mode?

Jump ahead if not to wait for a key press.

No program exists

L262A:
L262D:

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,($5C49)
LD AH

ORL

JR NZ,L262D
LD HL,($5C53)
LD BC,($5C4B)
AND A

SBC HL,BC

JR NZ,L262A

LD HL,$0000
LD ($EC08),HL
LD HL,($EC08)
CALL L1F20

RST 28H

DEFW LINE_ADDR

RST 28H

DEFW LINE_NO
CALL L1F45

LD ($5C49),DE
LD HL,$ECOD
BIT 5,(HL)

JR NZ,L2653
LD HL,$0000
LD ($ECO6),HL

CALL L152F
CALL L29F2

CALL L2944

Main Waiting Loop

Enter a loop to wait for a key press. Handles key presses for menus, the Calculator and the Editor.

L2653:

LD SP,TSTACK
CALL L3668
CALL L367F

E_PPC. Fetch current line number.

Is there a current line number?

Jump ahead if so.

PROG. Address of start of BASIC program.
VARS. Address of start of variables area.

HL=Length of program.
Jump if a program exists.

Set no line number last edited.

Fetch line number of last edited line.

Use Normal RAM Configuration (physical RAM
bank 0).

Find address of line number held in HL, or the
next line if it does not exist.

$196E. Return address in HL.

Find line number for specified address, and return
in DE.

$1695. Fetch the line number for the line found.
Use Workspace RAM configuration (physical
RAM bank 7).

E_PPC. Save the current line number.

Editor flags.

Process the BASIC line?

Jump ahead if calculator mode.

Signal no editable characters in the line prior to
the cursor.

Relist the BASIC program.

Set attribute at editing position so as to show the
cursor.

Call the ENTER handler routine.

$5BFF. Use temporary stack.

Reset 'L' mode.

Wait for a key. [Note that it is possible to change
CAPS LOCK mode whilst on a menu]

SPECTRUM 128 ROM o DISASSEMBLY

PUSH AF Save key code.

LD A,($5C39) PIP. Tone of keyboard click.
CALL L26EC Produce a key click noise.
POP AF Retrieve key code.

CALL L2669 Process the key press.

JR L2653 Wait for another key.

Process Key Press
Handle key presses for the menus and the Editor.
Entry: A=Key code.

Zero flag set if a menu is being displayed.

L2669: LD HL,$ECOD Editor flags.
BIT 1,(HL) Is a menu is displayed?
PUSH AF Save key code and flags.
LD HL,L2577 Use menu keys lookup table.
JR NZ,L2677 Jump if menu is being displayed.
LD HL,L2537 Use editing keys lookup table.
L2677: CALL L3FCE Find and call the action handler for this key press.
JR NZ,L2681 Jump ahead if no match found.
CALL NC,L26E7 If required then produce error beep.
POP AF Restore key code.
RET

No action defined for key code

L2681: POP AF Restore key code and flags.
JR Z,L.2689 Jump if menu is not being displayed.

A menu is being displayed, so just ignore key press

XOR A Select 'L' mode.
LD ($5C41),A MODE.
RET

A menu is not being displayed

L2689: LD HL,$ECOD Editor flags.
BIT 0,(HL) Is the Screen Line Edit Buffer is full?
JR Z,L2694 Jump if not to process the key code.

The buffer is full so ignore the key press

L2694:

TOGGLE Key Handler Routine

SPECTRUM 128 ROM o DISASSEMBLY

CALL L26E7
RET

CP $A3
JR NC,L2653

JP L28F1

Produce error beep.

[Could have save a byte by using JP $26E7
(ROM 0)]

Was it a supported function key code?

Ignore by jumping back to wait for another

key. [BUG - This should be RET NC since it
was called from the loop at $2653 (ROM 0).
Repeatedly pressing an unsupported key will
result in a stack memory leak and eventual
overflow. Credit: John Steven (+3), Paul Farrow
(128)]

Jump forward to handle the character key press.

Toggle between editing in the lower and upper screen areas.

Also used by the editing menu SCREEN option.

L269B:

L26B6:
L26B9:

LD A,($ECOE)
CP $04
RET Z

CALL L1630
LD HL,$ECOD
RES 3,(HL)
LD A,(HL)
XOR $40

LD (HL),A
AND $40

JR Z,L26B6

CALL L26BB
JR L26B9
CALL L26CE
SCF

RET

Select Lower Screen

Set the lower screen as the editing area.

L26BB:

CALL L3881
LD HL,$ECOD
SET 6,(HL)

Fetch mode.

Calculator mode?

Return if so (TOGGLE has no effect in Calculator
mode).

Clear Editing Display.

Editor flags.

Reset 'line altered' flag.

Toggle screen editing area flag.

Jump forward if the editing area is now the upper
area.

Set the lower area as the current editing area.
Jump forward.

Set the upper area as the current editing area.
Signal do not produce an error beep.

Clear lower editing area display.
Editor flags.
Signal using lower screen.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2E2D Reset to lower screen.

CALL L3A88 Set default lower screen editing cursor settings.
CALL L28DF Set default lower screen editing settings.

JR L26D9 Jump ahead to continue.

Select Upper Screen

Set the upper screen as the editing area.

L26CE: LD HL,$ECOD Editor flags.
RES 6,(HL) Signal using main screen.
CALL L28BE Reset Cursor Position.
CALL L3848 Clear screen and print the "128 BASIC" banner
line.
L26D9: LD HL,($FC9A) Line number at top of screen.
LD AH
ORL Is there a line?
CALL NZ,L334A If there is then get the address of BASIC line for
this line number.
CALL L152F Relist the BASIC program.
JP L29F2 Set attribute at editing position so as to show the

cursor, and return.

Produce Error Beep

This is the entry point to produce the error beep, e.g. when trying to cursor up or down past the BASIC
program.

It produces a different tone and duration from the error beep of 48K mode. The change is pitch is due
to the SRL A instruction at $26EA (ROM 0), and the change in duration is due to the instruction at
$26F1 (ROM 0) which loads HL with $0C80 as opposed to $1A90 which is used when in 48K mode.
The key click and key repeat sounds are produced by entering at $26EC (ROM 0) but with A holding
the value of system variable PIP. This produces the same tone as 48K mode but is of a much longer
duration due to HL being loaded with $0C80 as opposed to the value of $00C8 used in 48K mode.
The Spanish 128 uses the same key click tone and duration in 128K mode as it does in 48K mode,
leading to speculation that the Spectrum 128 (and subsequent models) should have done the same
and hence suffer from a bug. However, there is no reason why this should be the case, and it can
easily be imagined that the error beep note duration of 48K mode would quickly become very irritating
when in 128K mode where it is likely to occur far more often. Hence the reason for its shorter duration.
The reason for the longer key click is less clear, unless it was to save memory by using a single
routine. However, it would only have required an additional 3 bytes to set HL independently for key
clicks, which is not a great deal considering there is 1/2K of unused routines at $2336 (ROM 0). Since
the INPUT command is handled by ROM 1, it produces key clicks at the 48K mode duration even
when executed from 128 BASIC mode.

SPECTRUM 128 ROM o DISASSEMBLY

L26E7: LD A,($5C38) RASP.
SRL A Divide by 2.

This entry point is called to produce the key click tone. In 48K mode, the key click sound uses an HL
value of $00C8 and so is 16 times shorter than in 128K mode.

L26EC: PUSH IX
LD D,$00 Pitch.
LD E,A
LD HL,$0C80 Duration.
L26F4: RST 28H
DEFW BEEPER $03B5. Produce a tone.
POP IX
RET

Produce Success Beep

L26FA: PUSH IX
LD DE,$0030 Frequency*Time.
LD HL,$0300 Duration.
JR L26F4 Jump to produce the tone.

MENU ROUTINES — PART 4

Menu Key Press Handler Routines

Menu Key Press Handler — MENU

This is executed when the EDIT key is pressed, either from within a menu or from the BASIC editor.

L2704: CALL L29EC Remove cursor, restoring old attribute.
LD HL,$ECOD HL points to Editor flags.
SET 1,(HL) Signal 'menu is being displayed'.
DEC HL HL=$ECOC.
LD (HL),$00 Set 'current menu item' as the top item.
L270F: LD HL,($F6EC) Address of text for current menu.
CALL L36A8 Display menu and highlight first item.
SCF Signal do not produce an error beep.

RET

SPECTRUM 128 ROM o DISASSEMBLY

Menu Key Press Handler — SELECT

L2717: LD HL,$ECOD HL points to Editor flags.
RES 1,(HL) Clear 'displaying menu' flag.
DEC HL HL=$ECOC.
LD A,(HL) A=Current menu option index.
LD HL,($F6EA) HL points to jump table for current menu.
PUSH HL
PUSH AF
CALL L373E Restore menu screen area.
POP AF
POP HL
CALL L3FCE Call the item in the jump table corresponding to
the currently selected menu item.
JP L29F2 Set attribute at editing position so as to show the

cursor, and return.

Menu Key Press Handler — CURSOR UP

L272E: SCF Signal move up.
JR L2732 Jump ahead to continue.

Menu Key Press Handler — CURSOR DOWN

L2731: AND A Signal moving down.
L2732: LD HL,$ECOC
LD A,(HL) Fetch current menu index.
PUSH HL Save it.
LD HL,($F6EC) Address of text for current menu.
CALL C,L37A7 Call if moving up.
CALL NC,L37B6 Call if moving down.
POP HL HL=Address of current menu index store.
LD (HL),A Store the new menu index.

Comes here to complete handling of Menu cursor up and down. Also as the handler routines for Edit
Menu return to 128 BASIC option and Calculator menu return to Calculator option, which simply make
a return.

L2742: SCF
RET

SPECTRUM 128 ROM o DISASSEMBLY

Menu Tables

Main Menu

Jump table for the main 128K menu, referenced at $25AD (ROM 0).

L2744:

DEFB $05
DEFB $00
DEFW L2831
DEFB $01
DEFW L286C
DEFB $02
DEFW L2885
DEFB $03
DEFW L1B47
DEFB $04
DEFW L2816

Text for the main 128K menu

L2754:

L275E:

L2769:

L2772:

L2784:

Edit Menu

DEFB $06

DEFM "128 "

DEFB $FF

DEFM "Tape Loade"
DEFB 'r'+$80
DEFM "128 BASI"
DEFB 'C'+$80
DEFM "Calculato"
DEFB 'r'+$80
DEFM "48 BASI"
DEFB 'C'+$80
DEFM "Tape Teste"
DEFB 'r'+$80

DEFB ' '+$80

Jump table for the Edit menu

L2790:

DEFB $05
DEFB $00
DEFW L2742
DEFB $01

Number of entries.

Tape Loader option handler.
128 BASIC option handler.
Calculator option handler.
48 BASIC option handler.

Tape Tester option handler.

Number of entries.
Menu title.

$A0. End marker.

Number of entries.

(Return to) 128 BASIC option handler.

SPECTRUM 128 ROM o DISASSEMBLY

DEFW L2851
DEFB $02
DEFW L2811
DEFB $03
DEFW L2862
DEFB $04
DEFW L281C

Text for the Edit menu
L27A0: DEFB $06

DEFM "Options "
DEFB $FF

DEFM "128 BASI"

DEFB 'C'+$80

DEFM "Renumbe"

DEFB 'r'+$80
DEFM "Scree"
DEFB 'n'+$80
DEFM "Prin"
DEFB 't'+$80
DEFM "Exi"
DEFB 't'+$80
DEFB ' '+$80

Calculator Menu

Jump table for the Calculator menu

L27CB: DEFB $02
DEFB $00
DEFW L2742
DEFB $01
DEFW L281C

Text for the Calculator menu
L27D2: DEFB 03

DEFM "Options "
DEFB $FF

DEFM "Calculato"

DEFB 'r'+$80
DEFM "Exi"

DEFB 't'+$80
DEFB ' '+$80

Renumber option handler.
Screen option handler.
Print option handler.

Exit option handler.

Number of entries.

$A0. End marker.

Number of entries.
(Return to) Calculator option handler.

Exit option handler.

Number of entries.

$A0. End marker.

SPECTRUM 128 ROM o DISASSEMBLY

Tape Loader Text

L27EB: DEFB $16, $01, $00
DEFB $10, $00

DEFB $11, $07

DEFB $13, $00

DEFM "To cancel - press
BREAK twic"

DEFB 'e'+$80

Menu Handler Routines

Edit Menu — Screen Option

L2811: CALL L269B

JR L2874

AT 1,0
INK O
PAPER 7
BRIGHT 1

Toggle between editing in the lower and upper
screen areas.
Jump ahead.

Main Menu — Tape Tester Option

L2816: CALL L3857

CALL L3BE9

Clear screen and print the "Tape Tester" in the
banner.

Run the tape tester, exiting via the 'Exit' option
menu handler.

Edit Menu / Calculator Menu — Exit Option

L281C: LD HL,$ECOD
RES 6,(HL)
CALL L28BE
LD B,$00

LD D,$17
CALL L3B5E

CALL L1F20

JP L259F

Editor flags.

Indicate main screen editing.

Reset Cursor Position.

Top row to clear.

Bottom row to clear.

Clear specified display rows.

Use Normal RAM Configuration (physical RAM
bank 0).

Jump back to show the menu.

SPECTRUM 128 ROM o DISASSEMBLY

Main Menu — Tape Loader Option

L2831:

Edit Menu — Renumber Option

L2851:

Edit Menu — Print Option

L2862:

CALL L3852

LD HL,$5C3C
SET 0,(HL)
LD DE,L27EB

CALL LO57D
RES 0,(HL)
SET 6,(HL)

LD A,$07
LD ($ECOE),A

LD BC,$0000

CALL L372B
JP L1AF1

CALL L3888

CALL NC,L26E7

LD HL,$0000
LD ($5C49),HL
LD ($EC08),HL
JR L2865

CALL L1B14

Clear screen and print "Tape Loader" in the
banner line.

TVFLAG.

Signal using lower screen area.

Point to message "To cancel - press BREAK
twice".

Print the text.

Signal using main screen area.

[This bit is unused in the 48K Spectrum and

only ever set in 128K mode via the Tape Loader
option. It is never subsequently tested or reset.

It may have been the intention to use this to
indicate that the screen requires clearing after
loading to remove the "Tape Loader" banner and
the lower screen message "To cancel - press
BREAK twice"]

Tape Loader mode.

[Redundant since call to $1AF1 (ROM 0) will set it
to $FF]

Perform 'Print AT 0,0;".
Run the tape loader.

Run the renumber routine.

If not successful then produce error beep if
required.

There is no current line number.

E_PPC. Current line number.

Temporary E_PPC used by BASIC Editor.

Jump ahead to display the "128 BASIC" banner if
required, set the menu mode and return.

Perform an LLIST.

SPECTRUM 128 ROM o DISASSEMBLY

Edit Menu - Renumber option joins here

L2865: LD HL,$ECOD
BIT 6,(HL)
JR NZ,L2874
L286C: LD HL,$5C3C
RES 0,(HL)
CALL L3848

Edit Menu - Screen option joins here

L2874 LD HL,$ECOD
RES 5,(HL)
RES 4,(HL)
LD A,$00

LD HL,L2790
LD DE,L27A0
JR L28B1

Editor flags.

Using lower editing screen?

Jump ahead if so.

TVFLAG.

Allow leading space.

Clear screen and print the "128 BASIC" banner
line.

Editor flags.

Signal not to process the BASIC line.

Signal return to main menu.

Select Edit menu mode. [Could have saved 1
byte by using XOR A]

Edit Menu jump table.

Edit Menu text table.

Store the new mode and menu details.

Main Menu — Calculator Option

L2885: LD HL,$ECOD
SET 5,(HL)
SET 4,(HL)
RES 6,(HL)
CALL L28BE
CALL L384D

LD A,$04

LD ($ECOE),A
LD HL,$0000
LD ($5C49),HL
CALL L152F
LD BC,$0000
LDAB

CALL L29F8
LD A $04

LD HL,L27CB
LD DE,L27D2

Edit Menu - Print option joins here

Editor flags.

Signal to process the BASIC line.
Signal return to calculator.

Signal editing are is the main screen.
Reset cursor position.

Clear screen and print "Calculator" in the banner
line.

Set calculator mode.

Store mode.

No current line number.

E_PPC. Store current line number.
Relist the BASIC program.

B=Row. C=Column. Top left of screen.
Preferred column.

Store editing position and print cursor.
Select calculator mode.

Calculator Menu jump table

Calculator Menu text table

SPECTRUM 128 ROM o DISASSEMBLY

L28B1: LD ($ECOE),A
LD ($FBEA),HL
LD ($F6EC),DE
JP L2604

Store mode.

Store address of current menu jump table.
Store address of current menu text.
Return to the Editor.

EDITOR ROUTINES — PART 3

Reset Cursor Position

L28BE: CALL L2E1F
CALL L3A7TF
JP L28E8

Return to Main Menu

L28C7: LD B,$00
LD D,$17
CALL L3B5E
JP L25AD

Reset to main screen.
Set default main screen editing cursor details.
Set default main screen editing settings.

Top row of editing area.
Bottom row of editing area.
Clear specified display rows.
Jump to show Main menu.

Main Screen Error Cursor Settings

Main screen editing cursor settings.
Gets copied to $F6EE.

L28D1: DEFB $06
DEFB $00
DEFB $00
DEFB $00
DEFB $04
DEFB $10
DEFB $14

Number of bytes in table.

$FBEE = Cursor position - row 0.

$F6EF = Cursor position - column 0.

$F6F0 = Cursor position - column 0 preferred.
$F6F1 = Top row before scrolling up.

$F6F2 = Bottom row before scrolling down.
$F6F3 = Number of rows in the editing area.

Lower Screen Good Cursor Settings

Lower screen editing cursor settings.

Gets copied to $F6EE.

SPECTRUM 128 ROM o DISASSEMBLY

L28D8: DEFB $06 Number of bytes in table.
DEFB $00 $FBEE = Cursor position - row 0.
DEFB $00 $FBEF = Cursor position - column 0.
DEFB $00 $F6FO0 = Cursor position - column 0 preferred.
DEFB $00 $F6F1 = Top row before scrolling up.
DEFB $01 $F6F2 = Bottom row before scrolling down.
DEFB $01 $F6F3 = Number of rows in the editing area.

Initialise Lower Screen Editing Settings
Used when selecting lower screen. Copies 6 bytes from $28D9 (ROM 0) to $F6EE.

L28DF: LD HL,L28D8 Default lower screen editing information.
LD DE,$F6EE Editing information stores.
JP L3FBA Copy bytes.

Initialise Main Screen Editing Settings
Used when selecting main screen. Copies 6 bytes from $28D2 (ROM 0) to $F6EE.

L28ES8: LD HL,L28D1 Default main screen editing information.
LD DE,$F6EE Editing information stores.
JP L3FBA Copy bytes.

Handle Key Press Character Code

This routine handles a character typed at the keyboard, inserting it into the Screen Line Edit Buffer
as appropriate.
Entry: A=Key press character code.

L28F1: LD HL,$ECOD Editor flags.

ORA Clear carry flag. [Redundant instruction since
carry flag return state never checked]

ORA [Redundant instruction]

BIT 0,(HL) Is the Screen Line Edit Buffer is full?

JP NZ,L29F2 Jump if it is to set attribute at editing position so
as to show the cursor, and return.

RES 7,(HL) Signal got a key press.

SET 3,(HL) Signal current line has been altered.

PUSH HL Save address of the flags.

PUSH AF Save key code.

CALL L29EC Remove cursor, restoring old attribute.

POP AF

SPECTRUM 128 ROM o DISASSEMBLY

PUSH AF Get and save key code.

CALL L2E81 Insert the character into the Screen Line Edit
Buffer.

POP AF Get key code.

LD AB B=Current cursor column position.

CALL L2B78 Find next Screen Line Edit Buffer editable
position to right, moving to next row if necessary.

POP HL Get address of the flags.

SET 7,(HL) Signal wait for a key.

JP NC,L29F2 Jump if new position not available to set cursor
attribute at existing editing position, and return.

LD AB A=New cursor column position.

JP C,L29F8 Jump if new position is editable to store editing

position and print cursor. [This only needs to be
JP $29F8 (ROM 0), thereby saving 3 bytes, since
a branch to $29F2 (ROM 0) would have been
taken above if the carry flag was reset]

JP L29F2 Set attribute at editing position so as to show the
cursor, and return.

DELETE-RIGHT Key Handler Routine

Delete a character to the right. An error beep is not produced if there is nothing to delete.
Symbol:

DEL
—

Exit: Carry flag set to indicate not to produce an error beep.

L291B: LD HL,$ECOD HL points to Editor flags.

SET 3,(HL) Indicate 'line altered'.

CALL L29EC Remove cursor, restoring old attribute. Exit with
C=row, B=column.

CALL L2F12 Delete character to the right, shifting subsequent
rows as required.

SCF Signal do not produce an error beep.

LDAB A=The new cursor editing position.

JP L29F8 Store editing position and print cursor, and then
return.

DELETE Key Handler Routine

Delete a character to the left. An error beep is not produced if there is nothing to delete.
Symbol:

DEL
-

SPECTRUM 128 ROM o DISASSEMBLY

Exit: Carry flag set to indicate not to produce an error beep.

L292B: LD HL,$ECOD HL points to Editor flags.

RES 0,(HL) Signal that the Screen Line Edit Buffer is not full.

SET 3,(HL) Indicate 'line altered'.

CALL L29EC Remove cursor, restoring old attribute. Exit with
C=row, B=column.

CALL L2B5B Select previous column position (Returns carry
flag set if editable).

CCF Signal do not produce an error beep if not
editable.

JP C,L29F2 Jump if not editable to set attribute at editing
position so as to show the cursor, and return.

CALL L2F12 Delete character to the right, shifting subsequent
rows as required.

SCF Signal do not produce an error beep.

LDAB A=The new cursor editing position.

JP L29F8 Store editing position and print cursor, and then
return.

ENTER Key Handler Routine

This routine handles ENTER being pressed. If not on a BASIC line then it does nothing. If on an
unaltered BASIC line then insert a blank row after it and move the cursor to it. If on an altered BASIC
line then attempt to enter it into the BASIC program, otherwise return to produce an error beep.

Exit: Carry flag reset to indicate to produce an error beep.

L2944: CALL L29EC Remove cursor, restoring old attribute.

PUSH AF Save preferred column number.

CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.

PUSH BC Stack current editing position.

LD B,$00 Column 0.

CALL L2E41 Is this a blank row? i.e. Find editable position on
this row to the right, returning column number in
B.

POP BC Retrieve current editing position.

JR C,L295E Jump ahead if editable position found, i.e. not a
blank row.

No editable characters on the row, i.e. a blank row

LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
LD A,(HL) Fetch the flag byte.

SPECTRUM 128 ROM o DISASSEMBLY

CPL Invert it.
AND $09 Keep the 'first row' and 'last row' flags.
JR Z,L297A Jump if both flags were set indicating not on a
BASIC line.
On a BASIC line
L295E: LD A,($ECOD) Editor flags.
BIT 3,A Has the current line been altered?
JR Z,L296A Jump ahead if not.

The current BASIC line has been altered

CALL L2C8E Enter line into program.
JR NC,L297F Jump if syntax error to produce an error beep.
L296A: CALL L2C4C Find end of the current BASIC line in the Screen

Line Edit Buffer, scrolling up rows as required.
Returns column number into B.

CALL L2B78 Find address of end position in current BASIC
line. Returns address into HL.
CALL L2ECE Insert a blank line in the Screen Line Edit Buffer,

shifting subsequent rows down.

Display the cursor on the first column of the next row

LD B,$00 First column.

POP AF A=Preferred column number.

SCF Signal do not produce an error beep.

JP L29F8 Store editing position and print cursor, and then
return.

Cursor is on a blank row, which is not part of a BASIC line

L297A: POP AF Discard stacked item.
SCF Signal do not produce an error beep.
JP L29F2 Set attribute at current editing position so as to

show the cursor, and return.
A syntax error occurred so return signalling to produce an error beep
L297F: POP AF Discard stacked item.

JP L29F2 Set attribute at current editing position so as to
show the cursor, and return.

SPECTRUM 128 ROM o DISASSEMBLY

TOP-OF-PROGRAM Key Handler Routine

Move to the first row of the first line of the BASIC program. An error beep is not produced if there

is no program.

Symbol:

I

Exit: Carry flag set to indicate not to produce an error beep.

L2983:

Editor mode

LD A,(3ECOE)
CP $04
RET Z

CALL L29EC
LD HL,$0000
CALL L1F20

RST 28H

DEFW LINE_ADDR
RST 28H

DEFW LINE_NO
CALL L1F45

LD ($5C49),DE
LD A,$OF
CALL L3A96
CALL L152F
SCF

JP L29F2

Fetch mode.
Calculator mode?
Exit if so.

Remove cursor, restoring old attribute.

The first possible line number.

Use Normal RAM Configuration (physical RAM
bank 0).

Find address of line number 0, or the next line if it
does not exist.

$196E. Return address in HL.

Find line number for specified address, and return
in DE.

$1695. DE=Address of first line in the BASIC
program.

Use Workspace RAM configuration (physical
RAM bank 7).

E_PPC. Store the current line number.

Paper 1, Ink 7 - Blue.

Set the cursor colour.

Relist the BASIC program.

Signal do not produce an error beep.

Set attribute at editing position so as to show the
cursor, and return.

END-OF-PROGRAM Key Handler Routine

Move to the last row of the bottom line of the BASIC program. An error beep is not produced if there

is no program.

Symbol:

i

Exit: Carry flag set to indicate not to produce an error beep.

L29AB:

Editor mode

SPECTRUM 128 ROM o DISASSEMBLY

LD A,($ECOE)
CP $04
RET Z

CALL L29EC
LD HL,$270F
CALL L1F20

RST 28H

DEFW LINE_ADDR
EX DE,HL
RST 28H

DEFW LINE_NO
CALL L1F45

LD ($5C49),DE
LD A,$OF
CALL L3A96
CALL L152F
SCF

JP L29F2

Fetch mode.
Calculator mode?
Exit if so.

Remove cursor, restoring old attribute.

The last possible line number, 9999.

Use Normal RAM Configuration (physical RAM
bank 0).

Find address of line number 9999, or the previous
line if it does not exist.

$196E. Return address in HL.

DE=Address of last line number.

Find line number for specified address, and return
in DE.

$1695. DE=Address of last line in the BASIC
program.

Use Workspace RAM configuration (physical
RAM bank 7).

E_PPC. Store the current line number.

Paper 1, Ink 7 - Blue.

Set the cursor colour.

Relist the BASIC program.

Signal do not produce an error beep.

Set attribute at editing position so as to show the
cursor, and return.

WORD-LEFT Key Handler Routine

This routine moves to the start of the current word that the cursor is on, or if it is on the first character
of a word then it moves to the start of the previous word. If there is no word to move to then signal
to produce an error beep.

Symbol:

-
-

Exit: Carry flag reset to indicate to produce an error beep.

L29D4:

CALL L29EC
CALL L2BEA
JP NC,L29F2

LDAB

Remove cursor, restoring old attribute.

Find start of the current word to the left.

Jump if no word to the left to restore cursor
attribute at current editing position, and return.
[Could have saved 4 bytes by joining the routine
below, i.e. JR $29E7]

A=New cursor column number. Carry flag is set
indicating not to produce an error beep.

SPECTRUM 128 ROM o DISASSEMBLY

JP L29F8

Store editing position and print cursor, and then
return.

WORD-RIGHT Key Handler Routine

This routine moves to the start of the next word. If there is no word to move to then signal to produce

an error beep.
Symbol:

—
—>

Exit: Carry flag reset to indicate to produce an error beep.

L29E1: CALL L29EC
CALL L2C09
JR NC,L29F2
LDAB

JR L29F8

Remove Cursor

Remove cursor, restoring old attribute.

Find start of the current word to the right.

Jump if no word to the right to restore cursor
attribute at current editing position, and return.
A=The new cursor editing column number. Carry
is set indicating not to produce an error beep.
Store editing position and print cursor, and then
return.

Remove editing cursor colour from current position.

Exit: C=row number.
B=Column number.

L29EC: CALL L2A07

JP L364F

Show Cursor

Set editing cursor colour at current position.

Exit: C=row number.
B=Column number.

L29F2: CALL L2A07

JP L3640

Get current cursor position (C=row, B=column,
A=preferred column).
Restore previous colour to character square

Get current cursor position (C=row, B=column,
A=preferred column).

Set editing position character square to cursor
colour to show it. [Could have saved 1 byte

by using a JR instruction to join the end of the
routine below]

SPECTRUM 128 ROM o DISASSEMBLY

Display Cursor

Set editing cursor position and colour and then show it.
Entry: C=Row number.

B=Column number.

A=Preferred column number.

L29F8: CALL L2A11 Store new editing position.
PUSH AF
PUSH BC
LD A,$0F Paper 1, Ink 7 - Blue.
CALL L3A96 Store new cursor colour.
POP BC
POP AF
JP L3640 Set editing position character square to cursor

colour to show it.

Fetch Cursor Position

Returns the three bytes of the cursor position.
Exit : C=Row number.

B=Column number

A=Preferred column number.

L2A07: LD HL,$F6EE Editing info.
LD C,(HL) Row number.
INC HL
LD B,(HL) Column number.
INC HL
LD A,(HL) Preferred column number.
INC HL
RET

Store Cursor Position

Store new editing cursor position.
Entry: C=Row number.
B=Column number.
A=Preferred column number.

L2A11: LD HL,$F6EE Editing information.
LD (HL),C Row number.

SPECTRUM 128 ROM o DISASSEMBLY

INC HL

LD (HL),B Column number.

INC HL

LD (HL),A Preferred column number.
RET

Get Current Character from Screen Line Edit Buffer

L2A1A: PUSH HL

CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.

LD H,$00 [Could have saved 2 bytes by calling the unused
routine at $2E7B (ROM 0)]

LDL,B

ADD HL,DE Point to the column position within the row.

LD A,(HL) Get character at this position.

POP HL

RET

TEN-ROWS-DOWN Key Handler Routine

Move down 10 rows within the BASIC program, attempting to place the cursor as close to the preferred
column number as possible.

An error beep is produced if there is not 10 rows below.

Symbol:

"

Exit: Carry flag reset to indicate to produce an error beep.

L2A25: CALL L29EC Remove cursor, restoring old attribute.

LD E,A E=Preferred column.

LD D,$0A The ten lines to move down.

L2A2B: PUSH DE

CALL L2B30 Move down to the next row, shifting rows up as
appropriate. If moving onto a new BASIC line
then

POP DE insert the previous BASIC line into the BASIC
program if it has been altered. Returns new row
number in C.

JR NC,L29F2 Jump if there was no row below to set attribute
at editing position so as to show the cursor, and
return.

LD AE A=Preferred column.

CALL L2A11 Store cursor editing position.

SPECTRUM 128 ROM o DISASSEMBLY

LD B,E
CALL L2AF9

JR NC,L2A42

DECD

JR NZ,L2A2B
LD AE

JR C,L29F8

B=Preferred column.

Find closest Screen Line Edit Buffer editable
position to the right else to the left, returning
column number in B.

Jump if no editable position found on the row, i.e.
a blank row.

Decrement row counter.

Repeat to move down to the next row.
A=Preferred column.

Jump if editable row exists to store editing
position and print cursor, and then return.
[Redundant check of the carry flag, should just be
JR $29F8 (ROM 0)]

A blank row was found below, must be at the end of the BASIC program

L2A42: PUSH DE
CALL L2BOB
POP DE
LD B,E
CALL L2AF9

LD AE
ORA

JR L29F8

Move back up to the previous row.

B=Preferred column.

Find closest Screen Line Edit Buffer editable
position to the right else to the left, returning
column number in B.

A=Preferred column.

Carry will be reset indicating to produce an error
beep.

Store editing position and print cursor, and then
return.

TEN-ROWS-UP Key Handler Routine

Move up 10 rows within the BASIC program, attempting to place the cursor as close to the preferred

column number as possible.

An error beep is produced if there is not 10 rows above.

Symbol:

il

Exit: Carry flag reset to indicate to produce an error beep.

L2A4F: CALL L29EC
LD E,A
LD D,$0A
L2A55: PUSH DE
CALL L2BOB

Remove cursor, restoring old attribute.
E=Preferred column.
The ten lines to move up.

Move up to the previous row, shifting rows down
as appropriate. If moving onto a new BASIC line
then

SPECTRUM 128 ROM o DISASSEMBLY

POP DE

JR NC,L29F2

LD AE
CALL L2A11
LD B,E
CALL L2B02

JR NC,L2A6D

DECD

JR NZ,L2A55
LD AE

JP C,L29F8

insert the previous BASIC line into the BASIC
program if it has been altered.

Jump if there was no row above to set cursor
attribute colour at existing editing position, and
return.

A=Preferred column.

Store cursor editing position.

B=Preferred column.

Find closest Screen Line Edit Buffer editable
position to the left else right, return column
number in B.

Jump if no editable positions were found in the
row, i.e. it is a blank row.

Decrement row counter.

Repeat to move up to the previous row.
A=Preferred column.

Jump if editable row exists to store editing
position and print cursor, and then return.
[Redundant check of the carry flag, should just be
JP $29F8 (ROM 0)]

A blank row was found above, must be at the start of the BASIC program [???? Can this ever be

the case?]

L2A6D:

PUSH AF
CALL L2B30

LD B,$00
CALL L2BD4
POP AF

JP L29F8

Save the preferred column number and the flags.
Move back down to the next row. Returns new
row number in C.

Column 0.

Find editable position in the Screen Line Edit
Buffer row to the right, return column position in
B.

A=Preferred column. Carry will be reset indicating
to produce an error beep.

Store editing position and print cursor, and then
return.

END-OF-LINE Key Handler Routine

Move to the end of the current BASIC line. An error beep is produced if there is no characters in the

current BASIC line.
Symbol:

=

Exit: Carry flag reset to indicate to produce an error beep and set not to produce an error beep.

L2A7A:

CALL L29EC

Remove cursor, restoring old attribute.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2C4C Find the end of the current BASIC line in the
Screen Line Edit Buffer.

JP NC,L29F2 Jump if a blank row to set attribute at existing
editing position so as to show the cursor, and
return.

LD AB A=The new cursor editing column number. Carry
is set indicating not to produce an error beep.

JP L29F8 Store editing position and print cursor, and then
return.

START-OF-LINE Key Handler Routine

Move to the start of the current BASIC line. An error beep is produced if there is no characters in
the current BASIC line.
Symbol:

=

Exit: Carry flag reset to indicate to produce an error beep.

L2A87: CALL L29EC Remove cursor, restoring old attribute.

CALL L2C31 Find the start of the current BASIC line in the
Screen Line Edit Buffer.

JP NC,L29F2 Jump if a blank row to set attribute at existing
editing position so as to show the cursor, and
return.

LDAB A=The new cursor editing position. Carry is set
indicating not to produce an error beep.

JP L29F8 Store editing position and print cursor, and then
return.

CURSOR-UP Key Handler Routine

Move up 1 row, attempting to place the cursor as close to the preferred column number as possible.
An error beep is produced if there is no row above.
Exit: Carry flag reset to indicate to produce an error beep.

L2A94: CALL L29EC Remove cursor, restoring old attribute.
LD E,A E=Preferred column.
PUSH DE
CALL L2B0OB Move up to the previous row, shifting rows down
as appropriate. If moving onto a new BASIC line
then
POP DE insert the previous BASIC line into the BASIC

program if it has been altered.

SPECTRUM 128 ROM o DISASSEMBLY

JP NC,L29F2

LD B,E
CALL L2B02

LD AE
JP C,L29F8

Jump if there was no row above to set cursor
attribute colour at existing editing position, and
return.

B=Preferred column.

Find closest Screen Line Edit Buffer editable
position to the left else right, return column
number in B.

A=Preferred column.

Jump if an editable position was found to store
editing position and print cursor, and then return.

A blank row was found above, must be at the start of the BASIC program [???? Can this ever be

the case?]

PUSH AF
CALL L2B30

LD B,$00
CALL L2AF9

POP AF

JP L29F8

Save the preferred column number and the flags.
Move down to the next row, shifting rows up as
appropriate. Returns new row number in C.
Column 0.

Find closest Screen Line Edit Buffer editable
position to the right.

A=Preferred column. Carry flag is reset indicating
to produce an error beep.

Store editing position and print cursor, and then
return.

CURSOR-DOWN Key Handler Routine

Move down 1 row, attempting to place the cursor as close to the preferred column number as possible.
An error beep is produced if there is no row below.
Exit: Carry flag reset to indicate to produce an error beep.

L2ABS: CALL L29EC
LD EA
PUSH DE
CALL L2B30

POP DE

JP NC,L29F2

LD B,E

Remove cursor, restoring old attribute.
E=Preferred column.

Move down to the next row, shifting rows up as
appropriate. If moving onto a new BASIC line
then

insert the previous BASIC line into the BASIC
program if it has been altered. Returns new row
number in C.

Jump if there was no row below to set attribute
at editing position so as to show the cursor, and
return.

B=Preferred column.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2B02

LD AE
JP C,L29F8

Find closest Screen Line Edit Buffer editable
position to the left else right, return column
number in B.

A=Preferred column.

Jump if an editable position was found to store
editing position and print cursor, and then return.

A blank row was found above, must be at the start of the BASIC program [???? Can this ever be

the case?]

PUSH DE
CALL L2BOB

POP DE

LD B,E
CALL L2AF9

LD AE
ORA

JP L29F8

Save the preferred column.
Move up to the previous row, shifting rows down
as appropriate.

B=Preferred column.

Find closest Screen Line Edit Buffer editable
position to the right else to the left, returning
column number in B.

A=Preferred column.

Reset carry flag to indicate to produce an error
beep.

Store editing position and print cursor, and then
return.

CURSOR-LEFT Key Handler Routine

Move left 1 character, stopping if the start of the first row of the first BASIC line is reached.
An error beep is produced if there is no character to the left or no previous BASIC line to move to.
Exit: Carry flag reset to indicate to produce an error beep.

L2AD7: CALL L29EC

CALL L2B5B

JP C,L29F8

Remove cursor, restoring old attribute. Returns
with C=row, B=column.

Find next Screen Line Edit Buffer editable
position to left, wrapping to previous row as
necessary.

Jump if editable position found to store editing
position and print cursor, and then return.

A blank row was found above, must be at the start of the BASIC program

JP L29F2

Set cursor attribute at existing editing position,
and return. Carry flag is reset indicating to
produce an error beep.

SPECTRUM 128 ROM o DISASSEMBLY

CURSOR-RIGHT Key Handler Routine

Move right 1 character, stopping if the end of the last row of the last BASIC line is reached.
An error beep is produced if there is no character to the right or no next BASIC line to move to.
Exit: Carry flag reset to indicate to produce an error beep.

L2AES: CALL L29EC Remove cursor, restoring old attribute.

CALL L2B78 Find next Screen Line Edit Buffer editable
position to right, wrapping to next row if
necessary.

JP C,L29F8 Jump if editable position found to store editing

position and print cursor, and then return.

A blank row was found below, must be at the end of the BASIC program

PUSH AF Save the carry flag and preferred column number.

CALL L2B0OB Move up to the previous row, shifting rows down
as appropriate.

LD B,$1F Column 31.

CALL L2BDF Find the last editable column position searching

to the left, returning the column number in B.
(Returns carry flag set if there is one)

POP AF Carry flag is reset indicating to produce an error
beep.

JP L29F8 Store editing position and print cursor, and then
return.

Edit Buffer Routines — Part 1

Find Closest Screen Line Edit Buffer Editable Position to the
Right else Left

This routine searches the specified Screen Line Edit Buffer row from the specified column to the right
looking for the first editable position. If one cannot be found then a search is made to the left.
Entry: B=Column number.
Exit: Carry flag set if character at specified column is editable.
B=Number of closest editable column.
HL=Address of closest editable position.

L2AF9: PUSH DE
CALL L2BD4 Find Screen Line Edit Buffer editable position
from previous column (or current column if the

SPECTRUM 128 ROM o DISASSEMBLY

previous column does not exist) to the right,
return column position in B.

CALL NC,L2BDF If no editable character found then search to
the left for an editable character, return column
position in B.

POP DE

RET

Find Closest Screen Line Edit Buffer Editable Position to the
Left else Right

This routine searches the specified Screen Line Edit Buffer row from the specified column to the left
looking for the first editable position. If one cannot be found then a search is made to the right.
Entry: B=Column number.
Exit: Carry flag set if character at specified column is editable.

B=Number of closest editable column.

HL=Address of closest editable position.

L2B02: PUSH DE

CALL L2BDF Find Screen Line Edit Buffer editable position to
the left, returning column position in B.

CALL NC,L2BD4 If no editable character found then search
from previous column (or current column if the
previous column does not exist) to the right,
return column position in B.

POP DE

RET

Insert BASIC Line, Shift Edit Buffer Rows Down If Required and
Update Display File If Required

Called from the cursor up and down related key handlers. For example, when cursor up key is pressed
the current BASIC line may need to be inserted into the BASIC program if it has been altered. It may
also be necessary to shift all rows down should the upper scroll threshold be reached. If the cursor
was on a blank row between BASIC lines then it is necessary to shift all BASIC lines below it up, i.e.
remove the blank row.

Entry: C=Current cursor row number in the Screen Line Edit Buffer.
Exit: C=New cursor row number in the Screen Line Edit Buffer.
Carry flag set if a new row was moved to.

L2B0B: CALL L2C7C If current BASIC line has been altered and moved
off of then insert it into the program.

SPECTRUM 128 ROM o DISASSEMBLY

JR NC,L2B2F

PUSH BC
CALL L30B4

LD B,$00
CALL L2E41

CALL NC,L2F80

POP BC

LD HL,$F6F1
LD A,(HL)
CcPC

JR C,L2B2D

Jump if BASIC line was not inserted. [Could have
saved 1 byte by using RET NC]

Save the new cursor row and column numbers.
DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Column 0.

Is this a blank row? i.e. Find editable position on
this row to the right, returning column number in
B.

If no editable position found then the cursor is on
a blank row so shift all BASIC lines below it up to
close the gap.

Retrieve the new cursor row and column
numbers.

Point to the editing area information.

Fetch the upper scroll threshold.

Is it on the threshold?

Jump if on a row below the threshold.

The upper row threshold for triggering scrolling the screen has been reached so proceed to scroll

down one row

The edit buffer rows were not shifted down

L2B2D:

L2B2F:

PUSH BC
CALL L166F

POP BC
RET C

LDAC
ORA
RET Z
DECC
SCF
RET

Save the new cursor row and column numbers.
Shift all edit buffer rows down, and update display
file if required.

Return if edit buffer rows were shifted.

On the top row of the editing area?

Return with carry flag reset if on the top row.
Move onto the previous row.
Signal a new row was moved to.

Insert BASIC Line, Shift Edit Buffer Rows Up If Required and

Update Display File If Required

Called from the cursor up and down related key handlers. For example, when cursor down key is
pressed the current BASIC line may need to be inserted into the BASIC program if it has been altered.
It may also be necessary to shift all rows up should the lower scroll threshold be reached. If the cursor
was on a blank row between BASIC lines then it is necessary to shift all BASIC lines below it up, i.e.
remove the blank row.

SPECTRUM 128 ROM o DISASSEMBLY

Entry: C=Current cursor row number in the Screen Line Edit Buffer.

Exit: C=New cursor row number in the Screen

Carry flag set if a new row was moved to.

L2B30: PUSH BC

CALL L30B4
LD B,$00
CALL L2E41

POP BC

JR C,L2B3F

JP L2F80
L2B3F: CALL L2C68

JR NC,L2B5A

The BASIC line was not inserted into the program.
number, A=New cursor preferred column number

LD HL,$F6F1
INC HL

LD A,C
CP (HL)
JR C,L2B58

Line Edit Buffer.

Save row number.

DE=Start address in Screen Line Edit Buffer of
row held in C, i.e. the new cursor row.

Column 0.

Is this a blank row? i.e. Find editable position on
this row to the right, returning column number in
B.

Get row number.

Jump if editable position found, i.e. the row exists.
[Could have saved 2 bytes by using JP NC,$2F80
(ROM 0)]

Cursor is on a blank row so shift all BASIC lines
below it up to close the gap.

Insert the BASIC Line into the BASIC program if
the line has been altered.

Jump if the line was inserted into the program.
[Could have saved 1 byte by using RET NC]

C=New cursor row number, B=New cursor column

Point to the editing area information.

Point to the ‘Bottom Row Scroll Threshold' value.
[Could have saved 1 byte by using LD HL,$F6F2]
Fetch the new cursor row number.

Is it on the lower scroll threshold?

Jump if on a row above the threshold.

The lower row threshold for triggering scrolling the screen has been reached so proceed to scroll up

one row

PUSH BC
PUSH HL
CALL L1639

POP HL

POP BC
RETC

The edit buffer rows were not shifted up

Save the new cursor row and column numbers.
Save the editing area information address.
Shift all edit buffer rows up, and update display
file if required.

Return if edit buffer rows were shifted.

SPECTRUM 128 ROM o DISASSEMBLY

INC HL Point to the 'Number of Rows in the Editing Area'
value.

LD A,(HL) A=Number of rows in the editing area.

CPC On the last row of the editing area?

RET Z Return with carry flag reset if on the bottom row.
L2B58: INC C Move onto the next row.

SCF Signal a new row was moved to.
L2B5A: RET

Find Next Screen Line Edit Buffer Editable Position to Left,
Wrapping Above if Required

This routine searches to the left to see if an editable position exists. If there is no editable position
available to the left on the current row then the previous row is examined from the last column position.
Entry: B=Column number.

Carry flag reset.
Exit: Carry flag set if a position to the 'left' exists.

B=Number of new editable position.

HL=Address of new editable position.

L2B5B: LD D,A Save the key code character.
DECB Back one column position.
JP M,L2B66 Jump if already at beginning of row.
LD E,B E=Column number.
CALL L2BDF Find Screen Line Edit Buffer editable position to
the left, returning column position in B.
LD AE A=Column number.
RET C Return if the new column is editable, i.e. the

cursor can be moved within this row.

Wrap above to the previous row

L2B66: PUSH DE E=Store the column number.

CALL L2B0OB Move up to the previous row, shifting rows down
as appropriate. If moving onto a new BASIC line
then

POP DE insert the previous BASIC line into the BASIC
program if it has been altered.

LD AE A=Column number.

RET NC Return if there was no row above.

A row above exists

LD B,$1F Column 31.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2BDF Find the last editable column position searching
to the left, returning the column number in B.
(Returns carry flag set if there is one)

LD AB A=Column number of the closest editable
position.
RET C Return if an editable position was found, i.e. the

cursor can be moved.

Return column 0

LD AD Restore the key code character.
LD B,$00 Set column position 0.
RET [BUG - This should really ensure the carry flag is

reset to signal that no editable position to the left
exists, e.g. by using OR A. Fortunately, the carry
flag is always reset when this routine is called and
so the bug is harmless. Credit: Paul Farrow]

Find Next Screen Line Edit Buffer Editable Position to Right,
Wrapping Below if Required

This routine searches to the right to see if an editable position exists. If there is no editable position
available to the right on the current row then the next row is examined from the first column position.
The routine is also called when a character key has been pressed and in this case if the cursor moves
to the next row then a blank row is inserted and all affected rows are shifted down.
Entry: B=Column number.
C=Row number.
Exit: Carry flag set if a position to the 'right' exists.
B=Number of closest editable column, i.e. new column number.
A=New column position, i.e. preferred column number or indentation column number.
HL=Address of the new editable position.

L2B78: LDD,A Save the key code character.
INC B Advance to the next column position.
LD A,$1F Column 31.
CPB
JR C,L2B85 Jump if reached end of row.

New position is within the row

LD E,B E=New column number.

CALL L2BD4 Find Screen Line Edit Buffer editable position
from previous column to the right, returning
column position in B.

SPECTRUM 128 ROM o DISASSEMBLY

LD AE
RET C

Need to wrap below to the next row

L2B85: DEC B
PUSH BC
PUSH HL
LD HL,$ECOD
BIT 7,(HL)
JR NZ,L2BCO

A=New column number.
Return if the new column is editable, i.e. the
cursor can be moved within this row.

B=0Original column position.

Save original column and row numbers.
HL=Address of the new editable position.
Editor flags.

Got a key press?

Jump if not.

A key is being pressed so need to insert a new row

CALL L30B4

LD HL,$0020
ADD HL,DE
LD A,(HL)
BIT 1,A

JR NZ,L2BCO

DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Point to the flag byte for the current row.
Does the BASIC line row span onto another row?

Jump if so to test the next row (it could just be the
cursor).

The BASIC line row does not span onto another row, i.e. cursor at end of line

SET 1,(HL)
RES 3,(HL)

LD HL,$0023
ADD HL,DE
EX DE,HL

POP HL
POP BC
PUSH AF
CALL L2B30

POP AF
CALL L30B4

LD HL,$0023
ADD HL,DE

Signal that the row spans onto another row, i.e. a
new blank row containing the cursor.

Signal that the row is not the last row of the
BASIC line.

Point to the next row.

DE=Address of the next row. [Redundant
calculation as never used. Could have saved 5
bytes]

HL=Address of the new editable position.
B=Original column number. C=Row number.
Save flag byte for the previous row.

Move down to the next row, shifting rows up as
appropriate. Returns new row number in C.
Retrieve flag byte for the previous row.
DE=Start address in Screen Line Edit Buffer of
the new row, as specified in C.

HL=Address of the row after the new row.

SPECTRUM 128 ROM o DISASSEMBLY

EX DE,HL DE=Address of the row after the new row.
HL=Address of the new row.

RES 0,A Signal 'not the start row of the BASIC line'.

SET 3,A Signal 'end row of the BASIC line'.

CALL L2ED3 Insert a blank row into the Screen Edit Buffer at

row specified by C, shifting rows down.

[BUG - When typing a line that spills over onto a new row, the new row needs to be indented. However,
instead of the newly inserted row being indented, it is the row after it that gets indented. The indentation
occurs within the Screen Line Edit Buffer and is not immediately reflected in the display file. When
the newly typed line is executed or inserted into the program area, the Screen Line Edit Buffer gets
refreshed and hence the effect of the bug is never normally seen. The bug can be fixed by inserting
the following instructions. Credit: Paul Farrow.

LD HL,$FFDD -35.

ADD HL,DE

EX DE,HL DE=Points to the start of the previous row.]

CALL L35F4 Indent the row by setting the appropriate number
of null characters in the current Screen Line Edit
Buffer row.

LDAB A=First column after indentation.

SCF Signal not to produce an error beep.

RET

Wrap below to the next row. Either a key was not being pressed, or a key was being pressed and the
BASIC line spans onto a row below (which could contain the cursor only)

L2BCO: POP HL HL=Address of the new editable position.

POP BC B=Original column position.

PUSH DE E=New column number.

CALL L2B30 Move down to the next row, shifting rows up as
appropriate. If moving onto a new BASIC line
then

POP DE insert the previous BASIC line into the BASIC
program if it has been altered. Returns new row
number in C.

LD AB A=Original column position.

RET NC Return if there was no row below.

A row below exists

LD B,$00 Column 0.

CALL L2BD4 Find Screen Line Edit Buffer editable position to
the right, returning column position in B.

LD AB A=New column position.

SPECTRUM 128 ROM o DISASSEMBLY

RET C Return if an editable position was found, i.e. the
cursor can be moved.

Return column 0

LD AE A=Preferred column number.
LD B,$00 Column 0.
RET Return with carry flag reset.

Find Screen Line Edit Buffer Editable Position from Previous
Column to the Right

This routine finds the first editable character position in the specified Screen Line Edit Buffer row from
the previous column to the right.
It first checks the current column, then the previous column and then the columns to the right. The
column containing the first non-null character encountered is returned.
Entry: B=Column number to start searching from.

C=Row number.
Exit: Carry flag set if an editable character was found.

B=Number of closest editable column.

L2BD4: PUSH DE Save registers.

PUSH HL

CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.

CALL L2E41 Find editable position on this row from the
previous column to the right, returning column
number in B.

JP L2C65 Restore registers and return. [Could have saved a

byte by using JR $2C07 (ROM 0)]

Find Screen Line Edit Buffer Editable Position to the Left

This routine finds the first editable character position in the Screen Line Edit Buffer row from the
current column to the left.
It first checks the current column and returns this if it contains an editable character. Otherwise it
searches the columns to the left and if an editable character is found then it returns the column to
the right of it.
Entry: B=Column number to start searching from.

C=Row number.
Exit: Carry flag set if an editable character was found.

B=Number of the column after the editable position.

SPECTRUM 128 ROM o DISASSEMBLY

L2BDF: PUSH DE Save registers.
PUSH HL
CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.
CALL L2E63 Find editable position from current column to the
left, returning the column number in B.
JP L2C65 Restore registers and return. [Could have saved a

byte by using JR $2C07 (ROM 0)]

Find Start of Word to Left in Screen Line Edit Buffer

This routine searches for the start of the current word to the left within the current Screen Line Edit
Buffer.
Itis called from the WORD-LEFT key handler routine.
Entry: C=Row number.
Exit: Carry flag set if word to the left is found.
B=Column position of the found word.

L2BEA: PUSH DE Save registers.
PUSH HL

Search towards the left of this row until a space or start of line is found

L2BEC: CALL L2B5B Find next Screen Line Edit Buffer editable
position to left, moving to next row if necessary.
JR NC,L2C07 Jump if not editable, i.e. at start of line.
L2BF1: CALL L2A1A Get character at new position.
CP"' $20. Is it a space?
JR Z,L2BEC Jump back if it is, until a non-space or start of line
is found.

Search towards the left of this row until the start of the word or start of the line is found

L2BF8: CALL L2B5B Find next Screen Line Edit Buffer editable
position to left, moving to next row if necessary.
JR NC,L2C07 Jump if not editable, i.e. at start of line.
CALL L2A1A Get character at new position.
CcP" $20. Is it a space?
JR NZ,L2BF8 Jump back if it is not, until a space or start of line
is found.

A space prior to the word was found

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2B78 Find next Screen Line Edit Buffer editable
position to right to start of the word, moving to
next row if necessary. [Returns carry flag set
since the character will exist]

L2C07: JR L2C65 Jump forward to restore registers and return.

Find Start of Word to Right in Screen Line Edit Buffer

This routine searches for the start of the current word to the right within the current Screen Line Edit
Buffer.
Itis called from the WORD-RIGHT key handler routine.
Entry: C=Row number.
Exit: Carry flag set if word to the right is found.
B=Column position of the found word.

L2C09: PUSH DE Save registers.
PUSH HL

Search towards the right of this row until a space or end of line is found

L2CO0B: CALL L2B78 Find next Screen Line Edit Buffer editable
position to right, moving to next row if necessary.
JR NC,L2C2B Jump if none editable, i.e. at end of line.
CALL L2A1A Get character at new position.
CP"' $20. Is it a space?
JR Nz,L2C0B Jump back if it is not, until a space or end of line
is found.

Search towards the right of this row until the start of a new word or end of the line is found

L2C17: CALL L2B78 Find next Screen Line Edit Buffer editable

position to right, moving to next row if necessary.

JR NC,L2C2B Jump if none editable, i.e. at end of line.

CALL L2E41 Find editable position on this row from the
previous column to the right, returning column
number in B.

JR NC,L2C2B Jump if none editable, i.e. at start of next line.

CALL L2A1A Get character at new position.

CP"' $20. Is it a space?

JR Z,L2C17 Loop back until a non-space is found, i.e. start of
a word.

Start of new word found

SPECTRUM 128 ROM o DISASSEMBLY

SCF
JR L2C65

End of line or start of next line was found

L2C2B: CALL NC,L2B5B

ORA

JR L2C65

Indicate cursor position can be moved.
Jump forward to restore registers and return.

If no word on this row then find next Screen Line
Edit Buffer editable position to left, moving to
previous row if necessary thereby restoring the
row number to its original value. [Carry flag is
always reset by here so the test on the flag is
unnecessary]

Clear carry flag to indicate cursor position can not
be moved.

Jump forward to restore registers and return.

Find Start of Current BASIC Line in Screen Line Edit Buffer

This routine searches for the start of the BASIC line, wrapping to the previous rows as necessary.
Itis called from the START-OF-LINE key handler routine.

Entry: C=Row number.
Exit: Carry flag set if row is not blank.
B=New cursor column.

L2C31: PUSH DE
PUSH HL

L2C33: CALL L30B4
LD HL,$0020
ADD HL,DE

BIT 0,(HL)
JR NZ,L2C45

Not on the first row of the BASIC line

CALL L2BOB

JR C,L2C33

JR L2C65

Save registers.

DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Point to flag byte of next row.
On first row of the BASIC line?
Jump if on the first row of the BASIC line.

Move up to the previous row, shifting rows down
as appropriate. If moving onto a new BASIC
line then insert the previous BASIC line into the
BASIC program if it has been altered.

Jump back if still on the same BASIC line, i.e.
was not on first row of the BASIC line.

Jump forward to restore registers and return.

On the first row of the BASIC line, so find the starting column

SPECTRUM 128 ROM o DISASSEMBLY

L2C45: LD B,$00 Column 0.

CALL L2BD4 Find Screen Line Edit Buffer editable position to
the right, return column position in B. (Returns
carry flag reset if blank row)

JR L2C65 Jump forward to restore registers and return.

Find End of Current BASIC Line in Screen Line Edit Buffer

This routine searches for the end of the BASIC line, wrapping to the next rows as necessary.
Itis called from the END-OF-LINE key handler routine.
Entry: C=Row number.
Exit: Carry flag set if row is not blank.
B=New cursor column.

L2C4cC: PUSH DE Save registers.
PUSH HL
L2C4E: CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.
LD HL,$0020
ADD HL,DE Point to flag byte of next row.
BIT 3,(HL) On last row of the BASIC line?
JR NZ,L2C60 Jump if on the last row of the BASIC line.

Not on the last row of the BASIC line

CALL L2B30 Move down to the next row, shifting rows up
as appropriate. If moving onto a new BASIC
line then insert the previous BASIC line into the
BASIC program if it has been altered. Returns
new row number in C.

JR C,L2C4E Jump back if still on the same BASIC line, i.e.
was not on last row of the BASIC line.
JR L2C65 Jump forward to restore registers and return.

On the last row of the BASIC line, so find the last column

L2C60: LD B,$1F Column 31.
CALL L2BDF Find the last editable column position searching
to the left, returning the column number in B.
(Returns carry flag reset if blank row)
L2C65: POP HL Restore registers.
POP DE
RET

SPECTRUM 128 ROM o DISASSEMBLY

Insert BASIC Line into Program if Altered

L2C68: LD A,($ECOD)
BIT 3.A
SCF
RET Z
CALL L30B4

LD HL,$0020
ADD HL,DE
BIT 3,(HL)
SCF

RET Z

JR L2C8E

Editor flags.

Has the current line been altered?

Signal line not inserted into BASIC program.
Return if it has not.

DE=Start address in Screen Line Edit Buffer of
the row specified in C.

HL points to the flag byte for the row.

Is this the end of the BASIC line?

Signal line not inserted into BASIC program.
Return if it is not.

Insert line into BASIC program.

Insert Line into BASIC Program If Altered and the First Row of

the Line

L2C7C: LD A,($ECOD)
BIT 3,A
SCF
RET Z
CALL L30B4

LD HL,$0020
ADD HL,DE
BIT 0,(HL)
SCF

RET Z

Editor flags.

Has current line been altered?

Signal success.

Return if it has not.

DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Point to the flag byte for the row.

Is this the first row of the BASIC line?
Signal success.

Return if it is not.

Insert Line into BASIC Program

This routine parses a line and if valid will insert it into the BASIC program. If in calculator mode then
the line is not inserted into the BASIC program. If a syntax error is found then the location to show

the error marker is determined.
Entry: C=Row number.

Exit: Carry flag reset if a syntax error.

Carry flag set if the BASIC line was inserted successfully, and C=Cursor row number,
B=Cursor column number, A=Preferred cursor column number.

SPECTRUM 128 ROM o DISASSEMBLY

L2C8E: LD A,$02

Signal on first row of BASIC line.

Find the start address of the row in the Screen Line Edit Buffer

L2C90: CALL L30B4
LD HL,$0020
ADD HL,DE
BIT 0,(HL)
JR NZ,L2CA3
DEC C

JP P,L2C90

First row of the BASIC line is above the screen

LD C,$00
LD A$01

DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Point to the flag byte for the row.

First row of the BASIC line?

Jump ahead if so.

Move to previous row.

Jump back until found the first row of the BASIC
line or the top of the screen.

Row 0.
Signal first row of BASIC line above screen.

DE=Start address of the first row of the BASIC line
HL=Address of the flag byte for the first row of the BASIC line

L2CA3: LD HL,$EC00
LD DE,$EC03
OR $80

LD (HL),A

LD (DE),A
INC HL

INC DE

LD A,$00

LD (HL),A

LD (DE),A

INC HL

INC DE
LDAC

LD (HL),A

LD (DE),A

LD HL,$0000
LD ($ECO6),HL
CALL L335F

CALL L3C67

BASIC line insertion flags.
BASIC line insertion error flags.
Signal location of cursor not yet found.

[Could have saved 1 byte by using XOR A]
Starting column number of the first visible row of
the BASIC line being entered.

Fetch the row number of the first visible row of the
BASIC line being entered.

Store the start row number of the first visible row
of the BASIC line being entered.

No editable characters in the line prior to the
cursor.

Copy 'Insert Keyword Representation Into
Keyword Construction Buffer' routine to RAM.
Tokenize the typed BASIC line.

SPECTRUM 128 ROM o DISASSEMBLY

PUSH IX
CALL L1F20

CALL LO26B
CALL L1F45

POP IX
LD A,($5C3A)
INC A

JR NZ,L2CEF
LD HL,$ECOD
RES 3,(HL)
CALL L365E

LD A,(3ECOE)
CP $04

CALL NZ,L152F

CALL L26FA
CALL L2A07

SCF

RET

A syntax error occurred

L2CEF:

LD HL,$EC00
LD DE,$EC03
LD A,(DE)
RES 7,A

LD (HL),A

INC HL
INC DE
LD A,(DE)
LD (HL),A
INC HL
INC DE
LD A,(DE)
LD (HL),A

CALL L3C63

JR C,L2D0A

IX=Address of cursor settings.

Use Normal RAM Configuration (physical RAM
bank 0).

Syntax check/execute the command line.

Use Workspace RAM configuration (physical
RAM bank 7).

IX=Address of cursor settings.

ERR_NR. Fetch error code.

Was an error code set?

Jump ahead if so.

Editor flags.

Signal line has not been altered.

Reset to 'L' Mode.

Fetch mode.

Calculator mode?

If not calculator mode then relist the BASIC
program.

Produce success beep.

Get current cursor position (C=Row, B=Column,
A=Preferred column).

Set the carry flag to signal that that BASIC line
was inserted successfully.

BASIC line insertion flags.

BASIC line insertion error flags.

Fetch the BASIC line insertion error flags.
Signal location of cursor found.

Update the BASIC line insertion flags with the
error flags.

Restore the initial column number, i.e. column 0.

Restore the initial row number, i.e. row number
of the first visible row of the BASIC line being
entered.

Locate the position to insert the error marker into
the typed BASIC line.

Jump if the error marker was found.

SPECTRUM 128 ROM o DISASSEMBLY

Assume the error maker is at the same position as the cursor

LD BC,($ECO06) Fetch the number of editable characters in the
line prior to the cursor within the Screen Line Edit
Buffer.

The position of the error marker within the typed BASIC line has been determined. Now shift the cursor
to the corresponding position on the screen.

L2DO0A: LD HL,($ECO06) Fetch the number of editable characters in the
line prior to the cursor within the Screen Line Edit
Buffer.
ORA
SBC HL,BC HL=Difference between the cursor and the error

marker positions (negative if the error marker is
after the cursor).

PUSH AF Save the flags.

PUSH HL HL=Difference between the cursor and error
marker.

CALL L2A07 Get current cursor position, returning C=row
number, B=column number, A=preferred column
number.

POP HL HL=Difference between the cursor and error
marker.

POP AF Restore the flags.

JR C,L2D2A Jump if error marker is after the cursor position.

JR Z,L2D45 Jump if cursor is at the same location as the error
marker.

The error marker is before the cursor position. Move the cursor back until it is at the same position
as the error marker.

L2D1B: PUSH HL Save the number of positions to move.

LD AB B=Cursor column number.

CALL L2B5B Find previous editable position to the left in the
Screen Line Edit Buffer, moving to previous row if
necessary.

POP HL Retrieve the number of positions to move.

JR NC,L2D45 Jump if no previous editable position exists.

DEC HL Decrement the number of positions to move.

LD AH

OR L

JR NZ,L2D1B Jump back if the cursor position requires further
moving.

JR L2D45 Jump ahead to continue.

SPECTRUM 128 ROM o DISASSEMBLY

The error marker is after the cursor position. Move the cursor back until it is at the same position as
the error marker.

L2D2A: PUSH HL Save the number of positions that the error
marker is before the cursor. This will be a
negative number is the cursor is after the error

marker.
L2D2B: LD HL,$ECOD Editor flags.
RES 7,(HL) Signal ‘'got a key press'. Used in routine at $2B78

(ROM 0) to indicate that a new character has
caused the need to shift the cursor position.

POP HL Retrieve the negative difference in the cursor and
error marker positions.

EX DE,HL DE=Negative difference in the cursor and error
marker positions.

LD HL,$0000 Make the negative difference a positive number
by subtracting it from O.

ORA

SBC HL,DE HL=Positive difference in the cursor and error
marker positions.

L2D38: PUSH HL Save the number of positions to move.

LD AB B=Cursor column number.

CALL L2B78 Find next editable position to the right in the
Screen Line Edit Buffer, moving to next row if
necessary.

POP HL Retrieve the number of positions to move.

JR NC,L2D45 Jump if no next editable position exists.

DEC HL Decrement the number of positions to move.

LD AH

ORL

JR NZ,L.2D38 Jump back if the cursor position requires further
moving.

The cursor position is at the location of the error marker position

L2D45: LD HL,$ECOD Editor flags.
SET 7,(HL) Set 'waiting for key press' flag.

[BUG - When moving the cursor up or down, an attempt is made to place the cursor at the same
column position that it had on the previous row (the preferred column). If this is not possible then
the cursor is placed at the end of the row. However, it is the intention that the preferred column is
still remembered and hence an attempt is made to place the cursor at this column whenever it is
subsequently moved. However, a bug at this point in the ROM causes the preferred column position for
the cursor to be overwritten with random data. If the cursor was moved from its original position into its
error position then the preferred column gets set to zero and the next up or down cursor movement will
cause the cursor marker to jump to the left-hand side of the screen. However, if the cursor remained

SPECTRUM 128 ROM o DISASSEMBLY

in the same position then the preferred column gets set to a random value and so on the next up or
down cursor movement the cursor marker can jump to a random position on the screen. The bug can
can reproduced by typing a line that is just longer than one row, pressing enter twice and then cursor
down. The cursor marker will probably jump somewhere in the middle of the screen. Press an arrow
again and the computer may even crash. Credit: lan Collier (+3), Andrew Owen (128)] [The bug can
be fixed by pre-loading the A register with the current preferred column number. Credit: Paul Farrow.

LD A,($F6FO0) Fetch the preferred column position.]

CALL L2A11 Store cursor editing position.

LD A,$17 Paper 2, Ink 7 - Red.

CALL L3A96 Set the cursor colour to show the position of the
error.

ORA Reset the carry flag to signal that a syntax error
occurred.

RET

Fetch Next Character from BASIC Line to Insert

This routine fetches a character from the BASIC line being inserted. The line may span above or below
the screen, and so the character is retrieved from the appropriate buffer.
Exit : A=Character fetched from the current position, or 'Enter" if end of line found.

L2D54: LD HL,$EC00 Point to the ‘insert BASIC line' details.
BIT 7,(HL) Has the column with the cursor been found?
JR Z,L2D62 Jump if it has been found.
LD HL,($ECO06)
INC HL Increment the count of the number of editable

characters in the BASIC line up to the cursor.
LD ($ECO06),HL

L2D62: LD HL,$ECO00 Point to the 'insert BASIC line' details.
LD A,(HL) Fetch flags.
INC HL
LD B,(HL) Fetch the column number of the character being
examined.
INC HL
LD C,(HL) Fetch the row number of the character being
examined.
PUSH HL
AND $0F Extract the status code.
Register A:

Bit 0: 1=First row of the BASIC line off top of screen.
Bit 1: 1=0On first row of the BASIC line.
Bit 2: 1=Using lower screen and only first row of the BASIC line visible.

SPECTRUM 128 ROM o DISASSEMBLY

Bit 3: 1=At end of last row of the BASIC line (always 0 at this point).

LD HL,L2D85 Jump table to select appropriate handling routine.
CALL L3FCE Call handler routine.

Register L:

$01 - A character was returned from the Above-Screen Line Edit Buffer row.
$02 - A character was returned from the Screen Line Edit Buffer row.

$04 - A character was returned from the Below-Screen Line Edit Buffer row.
$08 - At the end of the last row of the BASIC line.

Register A holds the character fetched or 'Enter' if at the end of the BASIC line.

LD E,L E=Return status.

POP HL

JR Z,L2D79 Jump if no match found.

LD A,$0D A='Enter' character.

L2D79: LD (HL),C Save the next character position row to examine.

DEC HL

LD (HL),B Save the next character position column to
examine.

DEC HL

PUSH AF Save the character.

LD A,(HL) Fetch the current status flags.

AND $FO Keep the upper nibble.

ORE Update the location flags that indicate where to
obtain the next character from.

LD (HL),A Store the status flags.

POP AF Retrieve the character.

RET

Fetch Next Character Jump Table

Jump to one of three handling routines when fetching the next character from the BASIC line to insert.

L2D85: DEFB $03 Number of table entries.
DEFB $02 On first row of the BASIC line.
DEFW L2DAC
DEFB $04 Using lower screen and only first row of the
BASIC line visible.
DEFW L2DE9
DEFB $01 First row of the BASIC line off top of screen.

DEFW L2D8F

SPECTRUM 128 ROM o DISASSEMBLY

Fetch Character from the Current Row of the BASIC Line in the

Screen Line Edit Buffer

Fetch character from the current row of the BASIC line in the Screen Line Edit Buffer, skipping nulls

until the end of the BASIC line is found.

Entry:
Exit :

L2D8F:

L2D92:

C=Row number.

L=$01 - A character was returned from the Above-Screen Line Edit Buffer row, with A

holding the character.

$02 - A character was returned from the Screen Line Edit Buffer row, with A holding the

character.

$04 - A character was returned from the Below-Screen Line Edit Buffer row, with A holding

the character.

$08 - At the end of the last row of the BASIC line, with A holding an 'Enter’ character.
Zero flag set to indicate a match from the handler table was found.

Table entry point - First row of BASIC line off top of screen

CALL L32B7
CALL L2ECE
JR NC,L2D9E
CP $00

JR Z,L2D92

LD L,$01

RET

Find row address in Above-Screen Line Edit
Buffer, return in DE.

Fetch character from Above-Screen Line Edit
Buffer row.

Jump if end of row reached.

Is it a null character, i.e. not editable?

Jump back if so until character found or end of
row reached.

Signal a character was returned from the Above-
Screen Line Edit Buffer row, with A holding the
character.

Return with zero flag reset to indicate match
found.

End of row reached - no more editable characters in Above-Screen Line Edit Buffer row

L2D9E:

INC C
LD B,$00
LD HL,($F9DB)

Next row.

Column 0.

[BUG - This should be LD HL,$F9DB. The bug
manifests itself when Enter is pressed on an
edited BASIC line that goes off the top of the
screen and causes corruption to that line. The
bug at $30D0 (ROM 0) that sets default data for
the Below-Screen Line Edit Buffer implies that
originally there was the intention to have a pointer
into the next location to use within that buffer, and
So it seems to reasonable to assume the same
arrangement would have been intended for the
Above-Screen Line Edit Buffer. If that were the

SPECTRUM 128 ROM o DISASSEMBLY

LDAC
CP (HL)

JR C,L2D8F

case then the instruction here was intended to
fetch the next address within the Above-Screen
Line Edit Buffer. Credit: lan Collier (+3), Andrew
Owen (128)]

Fetch the row number.

Exceeded last row of Above-Screen Line Edit
Buffer?

Jump back if not exceeded last row the Above-
Screen Line Edit Buffer.

All characters from rows off top of screen fetched so continue onto the rows on screen [Note it is not
possible to have more than 20 rows off the top of the screen]

Table entry point - On visible row of BASIC line

LD B,$00
LD C,$00

Column 0.
Row 0. This is the first visible row of the BASIC
line on screen.

C=Row number of the first visible row of the BASIC line in the Screen Line Edit Buffer B=Starting
column number of the first visible row of the BASIC line in the Screen Line Edit Buffer

L2DAC:

PUSH HL

LD HL,$F6EE
LD A,(HL)
CPC

JR NZ,L2DBE

Save address of the table entry.

Point to the cursor position details.

Fetch the row number of the cursor.

Is cursor on the first visible row of the BASIC
line?

Jump if not.

Cursor on first visible row of the BASIC line in the Screen Line Edit Buffer.

L2DBE:
L2DBF:

INC HL
LD A,(HL)
CcPB

JR NZ,L2DBE
LD HL,$EC00
RES 7,(HL)

POP HL
CALL L30B4

CALL L2ECE

JR NC,L2DCE
CP $00

Fetch the column number of the cursor.

Reached the column with the cursor in the first
visible row of the BASIC line?

Jump if not.

BASIC line insertion flags.

Indicate that the column with the cursor has been
found.

Retrieve address of the table entry.

DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Fetch character from Screen Line Edit Buffer row
at column held in B, then increment B.

Jump if end of row reached.

Is the character a null, i.e. not editable?

SPECTRUM 128 ROM o DISASSEMBLY

JR Z,L2DAC Jump back if null to keep fetching characters
until a character is found or the end of the row is
reached.

A character in the current row of the BASIC line was found

LD L,$02 L=Signal a character was returned from the
Screen Line Edit Buffer row, with A holding the
character.

RET Return with zero flag reset to indicate match
found.

End of row reached - no editable characters in the Screen Line Edit Buffer row

L2DCE: LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
BIT 3,(HL) Is it the last row of the BASIC line?
JR Z,L.2DDB Jump if not.

On last row of the BASIC line and finished fetching characters from the line

LD L,$08 L=Signal at the end of the last row of the BASIC
line.

LD A,$0D A="Enter' character.

RET Return with zero flag reset to indicate match
found.

Not on the last row of the BASIC line so move to the beginning of the next, if it is on screen.

L2DDB: LD HL,$F6F3 Point to the 'top row scroll threshold' value.

INC C Next row of the BASIC line in the Screen Line
Edit Buffer.

LD A,(HL) Fetch the number of the last row in the Screen
Line Edit Buffer.

CPC Exceeded the upper scroll threshold?

LD B,$00 Column 0.

JR NC,L2DBF Jump back if not to retrieve the character from the
next row.

The upper row threshold for triggering scrolling the screen has been reached so proceed to scroll
up one line

LD B,$00 Column 0. [Redundant byte]
LD C,$01 Row 1. (Row 0 holds a copy of the last row visible
on screen)

SPECTRUM 128 ROM o DISASSEMBLY

Table entry point - Using lower screen and only top row of a multi-row BASIC line is visible

L2DES9: CALL L31C3
L2DEC: CALL L2ECE
JR NC,L2DF8

CP $00
JR Z,L2DEC

LD L,$04

RET

Find the address of the row specified by C in
Below-Screen Line Edit Buffer, into DE.

Fetch character from Below-Screen Line Edit
Buffer row, incrementing the column number.
Jump if end of row reached.

Is the character a null, i.e. not editable?

Jump back if null to keep fetching characters
until a character is found or the end of the row is
reached.

L=Signal a character was returned from the
Below-Screen Line Edit Buffer row, with A holding
the character.

Return with zero flag reset to indicate match
found.

End of row reached - no editable characters in the (below screen) Below-Screen Line Edit Buffer row

L2DF8: LD HL,$0020
ADD HL,DE
BIT 3,(HL)
JR NZ,L2E09
INC C
LD B,$00
LD A,($F6F5)

CPC

JR NC,L2DE9

Point to the flag byte for the row.

Is it the last row of the BASIC line?

Jump if so.

Next row.

Column 0.

Fetch number of rows in the Below-Screen Line
Edit Buffer.

Exceeded last line in Below-Screen Line Edit
Buffer?

Jump back if not to retrieve the character from the
next row.

All characters from rows off bottom of screen fetched so return an 'Enter' [Note it is not possible to
have more than 20 rows off the bottom of the screen]

L2E09: LD L,$08

LD A,$0D
RET

L=Signal at the end of the last row of the BASIC
line.

A="Enter' character.

Return with zero flag reset to indicate match
found.

Fetch Character from Edit Buffer Row

L2EOE: LD A $1F

Column 31.

SPECTRUM 128 ROM o DISASSEMBLY

CPB
CCF

RET NC
LDL,B

LD H,$00
ADD HL,DE
LD A,(HL)
INC B

SCF

RET

Upper Screen Rows Table
Copied to $EC15-$EC16.

L2E1B: DEFB $01
DEFB $14

Lower Screen Rows Table
Copied to $EC15-$EC16.

L2E1D: DEFB $01
DEFB $01

Reset to Main Screen

L2E1F: LD HL,$5C3C
RES 0,(HL)
LD HL,L2E1B
LD DE,$EC15

JP L3FBA

Reset to Lower Screen

L2E2D: LD HL,$5C3C
SET 0,(HL)
LD BC,$0000
CALL L372B

Is column
Return if B is greater than 31.
HL=Column number.

Fetch the character at the specified column.
Increment the column number.
Signal character fetched.

Number of bytes to copy.
Number of editing rows (20 for upper screen).

Number of bytes to copy.
Number of editing rows (1 for lower screen).

TVFLAG.

Signal using main screen.

Upper screen lines table.

Destination workspace variable. The number of
editing rows on screen.

Copy one byte from $2E1C (ROM 0) to $EC15

TVFLAG.
Signal using lower screen.

Perform 'PRINT AT 0,0;".

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,L2E1D Lower screen lines table.

LD DE,$EC15 Destination workspace variable. The number of
editing rows on screen.

JP L3FBA Copy one byte from $2E1E (ROM 0) to $EC15

Find Edit Buffer Editable Position from Previous Column to the
Right
This routine finds the first editable character position in the specified edit buffer row from the previous
column to the right.
It first checks the current column, then the previous column and then the columns to the right. The
column containing the first non-null character encountered is returned.
Entry: B =Column number to start searching from.

DE=Start of row in edit buffer.
Exit: Carry flag set if an editable character was found.

HL=Address of closest editable position.

B =Number of closest editable column.

L2E41: LD H,$00 [Could have saved 1 byte by calling routine at
$2E7B (ROM 0)]
LDL,B HL=Column number.
ADD HL,DE HL=Address in edit buffer of the specified column.
LD A,(HL) Fetch the contents.
CP $00 Is it a null character, i.e. end-of-line or past the
end-of-line?
SCF
RET Nz Return if this character is part of the edited line.
LD AB
ORA
JR Z,L2E5B Jump ahead if the first column.
PUSH HL Otherwise check the
DEC HL preceding byte
LD A,(HL) and if it is non-zero
CP $00 then return with
SCF HL pointing to the
POP HL first zero byte.
RET NZ
L2E56: LD A,(HL) Get the current character.
CP $00 Is it a null (i.e. end-of-line)?
SCF Signal position is editable.
RET Nz Return if this character is part of the edited line.
L2E5SB: INC HL Advance to the next position.
INC B Increment the column number.
LD AB

CP $1F Reached the end of the row?

SPECTRUM 128 ROM o DISASSEMBLY

JR C,L2E56 Jump back if more columns to check.
RET Return with carry flag reset if specified column
position does not exist.

Find Edit Buffer Editable Position to the Left

This routine finds the first editable character position in the specified edit buffer row from the current
column to the left.
It first checks the current column and returns this if it contains an editable character. Otherwise it
searches the columns to the left and if an editable character is found then it returns the column to
the right of it.
Entry: B =Column number to start searching from.

DE=Start of row in edit buffer.
Exit: Carry flag set if an editable character was found.

HL=Address of closest editable position.

B =Number of the column after the editable position.

L2E63: LD H,$00 [Could have saved 1 byte by calling routine at
$2E7B (ROM 0)]
LDL,B HL=Column number.
ADD HL,DE HL=Address in edit buffer of the specified column.
LD A,(HL) Fetch the contents.
CP $00 Is it a null character, i.e. end-of-line or past the
end-of-line?
SCF Signal position is editable.
RET Nz Return if an editable character was found.
L2E6C: LD A,(HL) Get the current character.
CP $00 Is it a null, i.e. non-editable?
JR NZ,L2E78 Jump if not.
LD AB At column 0?
ORA
RET Z Return if so.
DEC HL Next column position to test.
DECB Decrement column index number.
JR L2E6C Repeat test on previous column.
L2E78: INCB Advance to the column after the editable position.
SCF Signal position is editable.
RET

Fetch Edit Buffer Row Character

Entry: DE=Add of edit buffer row.
B =Column number.
Exit: A =Character at specified column.

SPECTRUM 128 ROM o DISASSEMBLY

[Not used by the ROM]

L2E7B: LD H,$00
LDL,B HL=Column number.
ADD HL,DE HL=Address in edit buffer of the specified column.
LD A,(HL) Get the current character.
RET

Insert Character into Screen Line Edit Buffer

Called when a non-action key is pressed. It inserts a character into the Screen Line Edit Buffer if
there is room.
Entry: A=Character code.

B=Cursor column position.

C=Cursor row position.

L2E81: LD HL,$ECOD Editor flags.

ORA Clear carry flag. [Redundant since carry flag
return state never checked]

BIT 0,(HL) Is the Screen Line Edit Buffer is full?

RET NZ Return if it is.

PUSH BC Save cursor position.

PUSH AF Save key code. [Redundant since $30B4 (ROM
0) preserves AF]

CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.

POP AF Get key code. [Redundant since $30B4 (ROM 0)

preserves AF]

Insert the character into the current row. If a spill from this row occurs then insert that character into
the start of the following row and shift all existing characters right by one. Repeat this process until
all rows have been shifted.

L2E8E: CALL L16AC Insert character into edit buffer row at current
cursor position, shifting the row right. Returns
carry flag reset. Zero flag will be set if byte shift
out of last column position was $00.

PUSH AF Save key code and flags.

EX DE,HL HL=Address of edit buffer row. DE=Address of
flags.

CALL L3604 Print a row of the edit buffer to the screen.

EX DE,HL DE=Address of edit buffer row. HL=Address of
flags.

POP AF Get key code and flags.

SPECTRUM 128 ROM o DISASSEMBLY

CCF

JR Z,L2ECC

Sets the carry flag since it was reset via the call to
$16AC (ROM 0). [Redundant since never tested]
Jump ahead to make a return if there was no spill
out from column 31, with the carry flag set.

There was a spill out from the current row, and so this character will need to be inserted as the first

character of the following row.

If this is the last row of the BASIC line then a new row will need to be inserted.

PUSH AF
LD B,$00
INCC

LD A,(3EC15)
CPC

JR C,L2EC8
The editing screen is not full

LD A,(HL)

LD EA
AND $D7

CP (HL)
LD (HL),A

LD AE
SET 1,(HL)
PUSH AF
CALL L30B4

POP AF
JR Z,L2EC2

Save key code.

First column in the next row.

Next row.

The number of editing rows on screen.

Has the bottom of the Screen Line Edit Buffer
been reached?

Jump ahead if so.

Fetch contents of flag byte for the row (byte after
the 32 columns).

E=0Id flags.

Mask off 'last row of BASIC line' flag. [Other bits
not used, could have used AND $F7]

Has the status changed?

Store the new flags, marking it as not the last
BASIC row.

A=Original flags byte for the row.

Signal that the row spans onto another row.
Save the flags.

DE=Start address in Screen Line Edit Buffer of
the following row, as specified in C.

Fetch the flags.

Jump if the character was not inserted into the
last row of the BASIC line.

The character was inserted into the last row of the BASIC line causing a spill of an existing character
into a new row, and therefore a new 'last' row needs to be inserted.

RES 0,A
CALL L2ED3
JR NC,L2ECC
CALL L35F4

POP AF

Signal not the first row of the BASIC line.

Insert a blank line into the Screen Edit Buffer.
Jump if the buffer is full to exit.

Indent the row by setting the appropriate number
of null characters in the current Screen Line Edit
Buffer row.

Get key code.

SPECTRUM 128 ROM o DISASSEMBLY

JR L2E8E Jump back to insert the character in the newly
inserted row. [Could have saved 2 bytes by using
JR $2EC5 (ROM 0)]

The character was not inserted into the last row of the BASIC line, so find the first editable position
on the following row, i.e.
skip over any indentation.

L2EC2: CALL L2E41 Find editable position on this row from the
previous column to the right, returning column
number in B.
POP AF Get key code.
JR L2E8E Jump back to insert the character into the first

editable position of next the row.

The Screen Edit Line Buffer is full and the character insertion requires shifting of all rows that are off
screen in the Below-Screen Line Edit Buffer.

L2ECS: POP AF Get key code.
CALL L316E Insert the character at the start of the Below-
Screen Line Edit Buffer, shifting all existing
characters to the right.

All paths join here

L2ECC: POP BC Retrieve cursor position.
RET

Insert Blank Row into Screen Edit Buffer, Shifting Rows Down

This routine inserts a blank row at the specified row, shifting affected rows down.
Entry: C=Row number to insert the row at.
Exit: Carry flag set to indicate edit buffer rows were shifted.

L2ECE: CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.
LD A,$09 Signal 'first row' and 'last row', indicating a new
blank row.

DE=Address of row within Screen Line Edit Buffer.
C=Row number to insert the row at.
A=Screen Line Edit Buffer row flags value.

L2ED3: PUSH BC Save registers.

SPECTRUM 128 ROM o DISASSEMBLY

PUSH DE

LD B,C

LD HL,L2EEF
LD CA
PUSH BC
CALL L1675

POP BC
LDAC
JR NC,L2EEC

Rows were shifted down

LD C,B
CALL L30B4

LD HL,$0020
ADD HL,DE
LD (HL),A
SCF

L2EEC: POP DE
POP BC
RET

Empty Edit Buffer Row Data

L2EEF: DEFB $00

DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00

B=Row number.
The empty row data.
C=Flags for the row.

Shift all Screen Line Edit Buffer rows down and
insert a new blank row, updating the display file if
required.

A=Flags for the row.
Jump if no edit buffer rows were shifted.

B=Row number, where the new blank row now is.
DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Point to the flag byte for the row.

Store the flag byte value for the row.
Signal edit buffer rows were shifted.
Restore registers.

32 null column markers, i.e. none of the columns
are editable.

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $00
DEFB $09

DEFW $0000

Flags: Bit 0: 1=The first row of the BASIC line.

Bit 1: 0=Does not span onto another row. Bit 2:
0=Not used (always 0). Bit 3: 1=The last row

of the BASIC line. Bit 4: 0=No associated line
number. Bit 5: 0=Not used (always 0). Bit 6:
0=Not used (always 0). Bit 7: 0=Not used (always
0).

There is no BASIC line number associated with
this edit row.

Delete a Character from a BASIC Line in the Screen Line Edit

Buffer

Delete a character at the specified position, shifting subsequent characters left as applicable.

Entry: B=Column number.
C=Row number.

L2F12: PUSH BC
CALL L30B4

PUSH BC

Save initial cursor row and column numbers.
DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Stack initial cursor row and column numbers
again.

Enter aloop to find the last row of the BASIC line or the end of the visible screen, whichever comes first

L2F17: LD HL,$0020
ADD HL,DE
BIT 1,(HL)

Point to the flag byte for this row.
Does the row span onto another row?

SPECTRUM 128 ROM o DISASSEMBLY

LD A,$00

JR Z,L2F31

The row spans onto another

INCC

LD HL,$0023
ADD HL,DE
EX DE,HL

LD A,(3EC15)
CPC
JR NC,L2F17

A null character will be inserted. [Could have
saved 1 byte by using XOR A and placing it
above the BIT 1,(HL) instruction]

Jump ahead if the row does not span onto
another row, i.e. the last row.

C=Advance to the next row.

DE points to the first character of the next row. HL
points to the first character of the current row.
A=Number of editing lines.

Has the end of the screen been reached?

Jump back if within screen range to find the last
row of the BASIC line.

The end of the screen has been reached without the end of the BASIC line having been reached

DECC
CALL L31C9

Point to last row on screen.
Shift all characters of the BASIC Line held within
the Below-Screen Line Edit Buffer.

Aloop is entered to shift all characters to the left, beginning with the last row of the BASIC line in the
Screen Line Edit Buffer and until the row that matches the current cursor position is reached.

L2F31: POP HL
L2F32: PUSH HL
CALL L30B4

POP HL
LD B,A
LDAC
CPL

LDAB
PUSH AF
JR NZ,L2F41

Fetch the initial cursor row and column numbers.
Stack initial cursor row and column numbers.
DE=Start address in Screen Line Edit Buffer of
the last row, as specified in C.

HL=lInitial cursor row and column numbers.
B=Character to insert.

A=Row number to delete from.

Deleting from the same row as the cursor is on
within the BASIC line?

A=Character to insert.

Save the flags status.

Jump if not deleting from the row containing the
cursor.

Deleting from the row matching the cursor position within the BASIC line, therefore only shift those

bytes after the cursor position

LD B,H

B=lInitial column number.

SPECTRUM 128 ROM o DISASSEMBLY

JR L2F4A

Jump ahead to continue, with zero flag set to
indicate deleting from the row contain the cursor.

Deleting on row after that matching the cursor position, therefore shift all editable characters within

the row
L2F41: PUSH AF
PUSH HL
LD B,$00
CALL L2E41

POP HL
POP AF

DE=Start address of Screen Line Edit Buffer row.
A=Character to shift into right of row.

B=The column to start shifting at.

C=Row number to start shifting from.

Save the character to insert.
Save initial cursor row and column numbers.

Find first editable position on this row searching
to the right, returning column number in B.
HL=Initial cursor row and column numbers.
A=Character to insert, and zero flag reset to
indicate not deleting from the row contain the
cursor.

Zero flag is set if deleting from the row matching the cursor position.

L2F4A: PUSH HL

LD HL,$F6F4
SET 0,(HL)
JR Z,L2F54
RES 0,(HL)

L2F54: CALL L16C1

PUSH AF

PUSH BC
PUSH DE
LD HL,$F6F4
BIT 0,(HL)

JR NZ,L2F6F
Deleting from a row after the cursor position

LD B,$00

HL=Initial cursor row and column numbers.
Deleting flags.

Signal deleting on the row matching the cursor
position.

Jump if deleting from the row matching the cursor
position.

Signal not deleting on the row matching the
cursor position.

Insert the character into the end of the edit buffer
row, shifting all columns left until the cursor
position is reached.

A=Character shifted out, and therefore to be
potentially shifted into the end of the previous
row.

B=New column number. C=Row number.
DE=Start address of row to delete from.

Deleting flags.

Deleting from the row matching the cursor
position?

Jump ahead if so.

Column 0.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2BD4 Is there an editable character on the row?
JR C,L2F6F Jump if there is.

Shifting the characters on this row has resulted in a blank row, so shift all rows below screen up to
remove this blank row

CALL L2F80 Shift up all BASIC line rows below to close the
gap.

POP DE DE=Start address of row to delete from.

POP BC B=New column number. C=Row number.

JR L2F74 Jump ahead.

There are characters remaining on the row following the shift so display this to the screen and then
continue to shift the remaining rows

L2F6F: POP HL HL=Start address of the row.
POP BC B=New column number. C=Row number.
CALL L3604 Print the row of the edit buffer to the screen, if
required.
L2F74: POP AF A=Character to insert.
DECC Previous row.
LD B,A B=Character to insert.
POP HL HL=Initial cursor row and column numbers.
POP AF Retrieve the flags status (zero flag set if deleting
from the row matching the cursor position).
LDAB A=Character to insert.
JP NZ,L2F32 Jump back if not deleting from the row matching

the cursor position, i.e. all rows after the cursor
have not yet been shifted.

[BUG - The 'line altered' flag is not cleared when an 'edited’ null line is entered. To reproduce the bug,
insert a couple of BASIC lines, type a character, delete it, and then cursor up or down onto a program
line. The line is considered to have been changed and so is processed as if it consists of characters.
Further, when cursor down is pressed to move to a BASIC line below, that line is deemed to have
changed and hence moving off from it causing that line to be re-inserted into the BASIC program.
Credit: lan Collier (+3), Paul Farrow (128)] [The fix for the bug is to check whether all characters have
been deleted from the line and if so to reset the 'line altered' flag. This would require the following
code to be inserted at this point. Credit: Paul Farrow. PUSH DE LD HL,$0020 ADD HL,DE ; Point
to the flag byte for this row. POP DE BIT 0,(HL) ; First row of BASIC line in addition to the last? JR
Z,SKIP_CLEAR ; Jump ahead if not. LD B,$00 CALL $2E41 (ROM 0) ; Is this a blank row? i.e. Find
editable position on this row to the right, returning column number in B. JR C,SKIP_CLEAR ; Jump if
a character exists on the line. LD HL,$ECOD RES 3,(HL) ; Signal that the current line has not been
altered. SKIP_CLEAR: XOR A ; Set the preferred column to 0.]

SCF [Redundant since never subsequently checked]
POP BC Retrieve initial cursor row and column numbers.

SPECTRUM 128 ROM o DISASSEMBLY

RET

Shift Rows Up to Close Blank Row in Screen Line Edit Buffer

The cursor is on a blank row but has been moved off of it. Therefore shift all BASIC lines below it up
S0 as to remove the blank row.
Entry: DE=Address of the row in the Screen Line Edit Buffer containing the cursor.

C =Row number in the Screen Line Edit Buffer containing the cursor.

Carry flag set if rows were shifted up, i.e. a row below existed.

L2F80: LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
LD A,(HL)
BIT 0,(HL) Is the cursor on a blank row (which is flagged as
the first row of a BASIC line)?
JR NZ,L2FB2 Jump ahead if it is. [Could have improved speed

by jumping to $2FB6 (ROM 0) since DE already
holds the start address of the row]

Cursor not on a blank row but is on its own row at the end of a multi-row BASIC line

PUSH AF Save the cursor row flag byte.

PUSH BC Save the cursor row number in C.

LD A,C Is the cursor on row 0?

ORA

JR NZ,L2FA4 Jump ahead if it is not, i.e. there is at least one
row above.

Cursor on row 0, hence a BASIC line must be off the top of the screen [???? Can this ever be the
case?]

PUSH BC Save the cursor row number.

LD HL,($FC9A) Line number at top of screen.

CALL L334A Find closest line number (or $0000 if no line).

LD ($FC9A),HL Line number at top of screen.

LD A,($F9DB) Fetch the number of rows of the BASIC line that
are in the Above-Screen Line Edit Buffer,

LDCA i.e. that are off the top of the screen.

DECC Decrement the row count, i.e. one less row off the
top of the screen.

CALL L32B7 DE=Address of row in Above-Screen Line Edit
Buffer.

POP BC Retrieve the cursor row number.

JR L2FA8 Jump ahead.

SPECTRUM 128 ROM o DISASSEMBLY

There is a row above so set this as the last row of the BASIC line

L2FAA4: DECC Previous row, i.e. the last row of the BASIC line
that contains editable characters.
CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the previous row.
L2FA8: POP BC Retrieve the cursor row number.
POP AF Retrieve the cursor row flag byte, which indicates
last row of BASIC line.
LD HL,$0020 Point to the flag byte for the previous row.
ADD HL,DE
RES 1,(HL) Signal that the previous row does not span onto
another row.
OR (HL) Keep the previous row's first BASIC row flag.
LD (HL),A Update the flag byte for the previous row.

Shift up all rows below the old cursor position within the Screen Line Edit Buffer and including the
Below-Screen Line Edit Buffer, and update the display file if required

L2FB2: LD B,C B=Row number in the Screen Line Edit Buffer.
CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.
CALL L30DF Shift up rows of the BASIC line in the Below-

Screen Line Edit Buffer, or insert the next line
BASIC line if buffer empty.

JP L1648 Shift Screen Line Edit Buffer rows up from row
specified by B and update the display file if
required. [Could have saved 3 bytes by replacing
the instructions CALL $30DF (ROM 0) / JP $1648
(ROM 0) with JP $1645 (ROM 0)]

DELETE-WORD-LEFT Key Handler Routine

This routine deletes to the start of the current word that the cursor is on, or if it is on the first character
of a word then it deletes to the start of the previous word. Since the function works by deleting one
character at a time, display file updates are disabled whilst the function is executing to prevent screen
flicker.

If there is no word to delete then an error beep is requested.

Symbol:

DEL

Exit: Carry flag reset to indicate to produce an error beep and set not to produce an error beep.

L2FBC: CALL L3084 Remove cursor attribute, disable display file
updates and get current cursor position. Exits with
HL pointing to the editing area information.

L2FBF:

A previous character exists and is editable

SPECTRUM 128 ROM o DISASSEMBLY

PUSH HL
CALL L3095

JR Z,L2FF7
CALL L2B5B

POP HL
JR NC,L2FF8

CALL L2A1A
PUSH AF
PUSH HL
CALL L2F12

POP HL
POP AF
CP $20
JR Z,L2FBF

Save address of the editing area information.
Does a previous character exist in the current
Screen Line Edit Buffer row?

Jump if at the start of the BASIC line to print all
rows.

Is previous column position editable? (Returns
carry flag set if editable)

Retrieve address of the editing area information.
Jump if not editable to print all rows.

Get character from current cursor position.

Save current character.

Save address of the editing area information.
Delete character to the right, shifting subsequent
rows as required.

Retrieve address of the editing area information.
Retrieve current character.

Is it a space?

Jump back if so to find the end of the last word.

The end of the word to delete has been found, so enter a loop to search for the start of the word

L2FD9:

PUSH HL
CALL L3095

JR Z,L2FF7
CALL L2B5B

POP HL
JR NC,L2FF8
CALL L2A1A
CP $20

JR Z,L2FF3

Character is not a space

PUSH HL
CALL L2F12

POP HL
JR L2FD9

Save address of the editing area information.
Does a previous character exist in the current
Screen Line Edit Buffer row?

Jump if at the start of a BASIC line to print all
rows.

Is previous column position editable? (Returns
carry flag set if editable)

Retrieve address of the editing area information.
Jump if not editable to print all rows.

Get character from current cursor position

Is it a space?

Jump if so.

Save address of the editing area information.
Delete character to the right, shifting subsequent
rows as required.

Retrieve address of the editing area information.
Jump back to delete next character until start of
the word found.

A space prior to a word has been found

L2FF3:

L2FF7:

SPECTRUM 128 ROM o DISASSEMBLY

PUSH HL
CALL L2B78

POP HL

Print all rows to the screen

L2FF8:

LDA,B
PUSH AF
PUSH HL

LD HL,$EEF5
RES 2,(HL)
LD A,(3EC15)

PUSH BC
LD B,$00
LDCA
CPA

CALL L1605

POP BC

LD HL,$ECOD
SET 3,(HL)
POP HL

Save address of the editing area information.
Find next Screen Line Edit Buffer editable
position to right, moving to next row if necessary.
Retrieve address of the editing area information.

Fetch the new end column number.
Save the flags status.
Save address of the editing area information.

Re-enable display file updates.

The number of editing rows on screen. [This
will end up being used as the alternate cursor
column]

Save the row and new column numbers.
B=Print from row 0.

C=Number of editing rows on screen.

Set the zero flag to signal not to change cursor
position settings.

Print all Screen Line Edit Buffer rows to the
display file.

Retrieve the row and new column numbers.
Editor flags.

Indicate current line has been altered.

Retrieve address of the editing area information.

[BUG - The preferred cursor column field gets corrupted with the number of editing rows on screen.
Credit: lan Collier (+3), Andrew Owen (128)] [The bug can be fixed by pre-loading the A register with
the current preferred column number. Credit: Paul Farrow.

LD A,($F6F0)

CALL L29F8
POP AF
RET

Fetch the preferred column position.]

Store editing position and print cursor.
Retrieve the flags status.

DELETE-WORD-RIGHT Key Handler Routine

This routine deletes to the start of the next word. Since the function works by deleting one character
at a time, display file updates are disabled whilst the function is executing to prevent screen flicker.
If there is no word to delete then an error beep is requested.

Symbol:

DEL
—

SPECTRUM 128 ROM o DISASSEMBLY

Exit: Carry flag set to indicate not to produce an error beep.

L3017:

L301A:

L302F:

CALL L3084

PUSH HL
CALL L2A1A
POP HL

CP $00

SCF

JR Z,L2FF8
PUSH AF
PUSH HL
CALL L2F12

POP HL
POP AF
CP $20
JR NZ,L301A

CALL L2A1A
CP $20

SCF

JR NZ,L2FF8
PUSH HL
CALL L2F12

POP HL
JR L302F

Remove cursor attribute, disable display file
updates and get current cursor position. Exits with
HL pointing to the editing area information.

Save address of the editing area information.
Get character from current cursor position.
Retrieve address of the editing area information.
Is it a null character, i.e. end of BASIC line?
Signal do not produce an error beep.

Jump if end of the BASIC line to print all rows.
Save the character.

Save address of the editing area information.
Delete character to the right, shifting subsequent
rows as required.

Retrieve address of the editing area information.
Retrieve the character.

Was the character a space?

Jump back if not to delete the next character until
the end of the word is found.

Get character from current cursor position.

Is it a space?

Signal do not produce an error beep.

Jump if not to print all rows.

Save address of the editing area information.
Delete character to the right, shifting subsequent
rows as required.

Retrieve address of the editing area information.
Jump back to delete all subsequent spaces until
the start of the next word or the end of the line is
found.

DELETE-TO-START-OF-LINE Key Handler Routine

Delete to the start of the current BASIC line. Since the function works by deleting one character at a
time, display file updates are disabled whilst the function is executing to prevent screen flicker.
An error beep is not produced if there is no characters in the current BASIC line.

Symbol:

DEL

Exit: Carry flag set to indicate not to produce an error beep.

L303E:

L3041:

Not in the first row of a BASIC line

SPECTRUM 128 ROM o DISASSEMBLY

CALL L3084
PUSH HL
CALL L30B4
LD HL,$0020
ADD HL,DE

BIT 0,(HL)
JR NZ,L3059

CALL L2B5B

JR NC,L306D
CALL L2F12

POP HL
JR L3041

PUSH HL

In the first row of the BASIC line

L3059:

L306D:
L306E:

LDAB

CP $00

JR Z,L306D
DECB
CALL L2A1A
INC B

CP $00

JR Z,L306D
DECB
CALL L2F12

JR L3059
POP HL

SCF
JP L2FF8

Remove cursor attribute, disable display file
updates and get current cursor position. Exits with
HL pointing to the editing area information.

Save address of the editing area information.
DE=Start address in Screen Line Edit Buffer of
the row specified in C.

Point to the flag byte for the row.
Is it the first row of the BASIC line?
Jump if so.

Is previous column position editable? (Returns
carry flag set if editable)

Jump if not editable since nothing to delete.
Delete character to the right, shifting subsequent
rows as required.

Retrieve address of the editing area information.
Jump back to delete next character until first row
of the BASIC line is found.

[Redundant byte]

Fetch the new end column number.

Is it at the start of the row?

Jump if so since nothing to delete.

Point to previous column.

Get character from current cursor position.

Point back to the new end column.

Is it a null character, i.e. not editable?

Jump if so since nothing to delete.

Point to previous column.

Delete character to the right, shifting subsequent
rows as required.

Jump back to delete the next character until the
start of the BASIC line is found.

Retrieve address of the editing area information.
Signal not to produce error beep.

Jump back to print all rows.

SPECTRUM 128 ROM o DISASSEMBLY

DELETE-TO-END-OF-LINE Key Handler Routine

Delete to the end of the current BASIC line. Since the function works by deleting one character at a
time, display file updates are disabled whilst the function is executing to prevent screen flicker.

An error beep is not produced if there is no characters in the current BASIC line.

Symbol:

DEL

Exit: Carry flag set to indicate not to produce an error beep.

L3072: CALL L3084 Remove cursor attribute, disable display file
updates and get current cursor position. Exits with
HL pointing to the editing area information.

L3075: CALL L2A1A Get character from current cursor position.
CP $00 Is it a null character, i.e. at end of BASIC line?
SCF Signal not to produce an error beep.
JR Z,L306E Jump if end of BASIC line to print all rows.
PUSH HL Save address of the editing area information.
CALL L2F12 Delete character to the right, shifting subsequent

rows as required.

POP HL Retrieve address of the editing area information.
JR L3075 Jump back to delete the next character until the

end of the BASIC line is found.

Remove Cursor Attribute and Disable Updating Display File

This routine is called by the DELETE key handler routines. Aside from removing the cursor from the
display, it prevents display file updates occurring whilst the delete functions are executing.

Exit: HL=Address of the editing area information.

A=Cursor column number preferred.

B=Cursor column number.

C=Cursor row number.

L3084: LD HL,$ECOD Editor flags.
RES 0,(HL) Signal that the Screen Line Edit Buffer is not full.
CALL L29EC Remove cursor, restoring old attribute.
LD HL,$EEF5
SET 2,(HL) Indicate not to print edit buffer rows, therefore
preventing intermediate screen updates.
LD HL,$F6F1 Point to the editing area information.

RET

SPECTRUM 128 ROM o DISASSEMBLY

Previous Character Exists in Screen Line Edit Buffer?

This routine tests the whether a previous character exists in the current BASIC line within the Screen
Line Edit Buffer.
Entry: C=Row number.
B=Column number.
Exit: Zero flag set if at start of the BASIC line (first column or leading null).

L3095: CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.
LD HL,$0020
ADD HL,DE HL=Address of the flag byte for this row.
BIT 0,(HL) Is this the first row of a BASIC line?
JR Z,L30AE Jump if not.

On first row of a BASIC line

LD AB Fetch the column number.
CP $00 At the start of the row?
JR Z,L30B2 Jump ahead if so.
DECB Move to the previous column.
CALL L2A1A Get current character from Screen Line Edit
Buffer.
INCB Move back to the original column.
CP $00 Does the position contain a null?
JR Z,L30B2 Jump if not.
L30AE: LD A,$01
ORA Reset the zero flag.
RET
L30B2: XOR A Set the zero flag.
RET

Find Row Address in Screen Line Edit Buffer

Find address in Screen Line Edit Buffer of specified row.
This routine calculates DE = $EC16 + $0023*C.

Entry: C=Row number.

Exit: DE=Address of edit row.

L30B4: LD HL,$EC16 Point to the Screen Line Edit Buffer.
L30B7: PUSH AF Save A.
LD AC A=Edit row number.

LD DE,$0023 35 bytes per row.

SPECTRUM 128 ROM o DISASSEMBLY

L30BC: ORA Row requested found?

JR Z,L30C3 Jump to exit if so.

ADD HL,DE Advance to next row.

DEC A

JR L30BC Jump to test if requested row found.
L30C3: EX DE,HL Transfer address to DE.

POP AF Restore A.

RET

Find Position within Screen Line Edit Buffer

Find the address of a specified row and column in the Screen Line Edit Buffer.
The routine calculates DE = $EC16 + $0023*C + B.
Entry: B=Column number.
C=Row number.
Exit: HL=Address of specified position.

[Not used by the ROM]

L30CE6: PUSH DE
CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the row specified in C.
LD H,$00
LDL,B
ADD HL,DE DE = $EC16 + $0023*C + B.
POP DE
RET

Below-Screen Line Edit Buffer Settings

This table holds the default values for the Below-Screen Line Edit Buffer settings starting at $F6F5. It
should only contain a table of 3 bytes to tie up with the space allocated within the Editor workspace
variables at $F6F5. As a result, the last 2 bytes will get copied into the Below-Screen Line Edit Buffer
itself. It appears that the word at $F6F6 is supposed to be a pointer to the next available or accessed
location within the buffer but this facility is never used. Therefore the table need only be 1 byte long,
in which case it would be more efficient for the routine at $30D6 (ROM 0) to simply set the byte at
$F6F5 directly.

L30DO0: DEFB $05 Number of bytes in table.
DEFB $00 $F6F5 = Number of rows held in the Below-
Screen Line Edit Buffer.
DEFW $0000 $F6F6/7. [BUG - These two bytes should not be

here and the table should only contain 3 bytes.
Credit: Paul Farrow]

SPECTRUM 128 ROM o DISASSEMBLY

DEFW $F6F8 $F6F8/9 = Points to next location within the
Below-Screen Line Edit Buffer.

Set Below-Screen Line Edit Buffer Settings

Sets the default values for the Below-Screen Line Edit Buffer settings.
Copy 5 bytes from $30D1-$30D5 (ROM 0) to $F6F5-$F6F9.

L30Dé6: LD HL,L30D0 Default Below-Screen Line Edit Buffer settings.
LD DE,$F6F5 Destination address.
JP L3FBA Copy bytes.

Shift Up Rows in Below-Screen Line Edit Buffer

Shifts up all rows in the Below-Screen Line Edit Buffer, or if empty then copies a BASIC line from the
program area into the Below-Screen Line Edit Buffer.
Exit: HL=Address of the Below-Screen Line Edit Buffer.

L30DF: PUSH BC Save BC.
PUSH DE Save DE.
LD HL,$F6F5 Point to the Below-Screen Line Edit Buffer details.
PUSH HL Save it.
LD A,(HL) A=Number of rows held in Below-Screen Line
Edit Buffer.
ORA Are there any rows below screen?
JR NZ,L3101 Jump if so.

There are no rows in the Below-Screen Line Edit Buffer

PUSH HL Save the address of the Below-Screen Line Edit
Buffer details.

CALL L335F Copy 'Insert Keyword Representation Into
Keyword Construction Buffer' routine into RAM.

LD HL,($F9D7) HL=Line number of the BASIC line in the program
area being edited.

CALL L3352 Create line number representation in the Keyword
Construction Buffer of the next BASIC line.

JR NC,L30F8 Jump if next line does not exist, with HL holding
$0000.

LD ($F9D7),HL Store the new line number.

L30F8: LD B,H
LDC,L BC=Line number of the next BASIC line, or last

BASIC line in the program.

SPECTRUM 128 ROM o DISASSEMBLY

POP HL Retrieve the address of the Below-Screen Line
Edit Buffer details.

CALL L32D6 Copy the BASIC line into the Below-Screen Line
Edit Buffer, or empty the first buffer row if the
BASIC line does not exist.

DECA Decrement the count of the number of rows held
in the Below-Screen Line Edit Buffer, i.e. assume
the rows have been shifted.

JR L3116 Jump forward.

There are rows in the Below-Screen Line Edit Buffer so shift all rows up

L3101: LD HL,$ECOD Editor flags.

RES 0,(HL) Signal that the Screen Line Edit Buffer is not full.

LD HL,$F6F8 Below-Screen Line Edit Buffer, the temporary
copy of line being edited.

LDD,H

LD E,L

LD BC,$0023 Move all rows in the Below-Screen Line Edit
Buffer up by one row.

ADD HL,BC

LD BC,$02BC 20 rows.

LDIR

DEC A Decrement the count of the number of rows held
in the Below-Screen Line Edit Buffer.

SCF [Redundant since never subsequently checked]

L3116: POP DE DE=Points to number of rows held in the Below-

Screen Line Edit Buffer.

LD (DE),A Update the number of rows held in the Below-
Screen Line Edit Buffer

LD HL,$F6F8 HL=Address of first row in the Below-Screen Line
Edit Buffer.

POP DE Restore DE.

POP BC Restore BC.

RET

Shift Down Rows in Below-Screen Line Edit Buffer

Shifts down all rows in the Below-Screen Line Edit Buffer, or the last Screen Line Edit Buffer row
contains a complete BASIC line then it empties the Below-Screen Line Edit Buffer.
Entry: DE=Start address in Screen Line Edit Buffer of the last editing row.
Exit: Carry flag reset to indicate Below-Screen Line Edit Buffer full.
A =Number of rows held in the Below-Screen Line Edit Buffer.
HL=Address of first row in the Below-Screen Line Edit Buffer.

L311E:

SPECTRUM 128 ROM o DISASSEMBLY

PUSH BC
PUSH DE

LD HL,$0020
ADD HL,DE
LD A,(HL)
CPL

AND $11

JR NZ,L313F

Save BC.
DE=Start address in Screen Line Edit Buffer of
the last editing row.

Point to the flag byte for the edit buffer row.
Fetch flag byte.
Invert bits.

Jump if not the first row of the BASIC line or no
associated line number stored.

First row of the BASIC line or an associated line number stored

L313D:

L313F:

PUSH HL
PUSH DE

INC HL
LD D,(HL)
INC HL

LD E,(HL)
PUSH DE
CALL L335F

POP HL
CALL L334A
JRNC,L313D
LD ($F9D7),HL
POP DE

POP HL

BIT 0,(HL)

LD HL,$F6F5
PUSH HL

JR Z,L314C

HL=Points at flag byte of the last Screen Line Edit
Buffer row.

DE=Address of the last Screen Line Edit Buffer
row.

DE=Corresponding BASIC line number.

Save it.

Copy 'Insert Keyword Representation Into
Keyword Construction Buffer' routine to RAM.
HL=Corresponding line number for last editing
row.

Find the closest line number.

Jump if line does not exist.

Store as the line number of the BASIC line being
edited.

DE=Address of the last Screen Line Edit Buffer
row.

HL=Points at flag byte of edit buffer row.

Is it the first row of the BASIC line?

Point to the Below-Screen Line Edit Buffer details.
Save the address of the Below-Screen Line Edit
Buffer details.

Jump if not the first row of the BASIC line.

The first row of the BASIC line, hence after the shift there will not be a row straggling off the bottom

of the screen

LD A,$00

SCF

Signal no rows held in the Below-Screen Line Edit
Buffer. [Could have saved 1 byte by using XOR
Al

Signal Below-Screen Line Edit Buffer is not full.

SPECTRUM 128 ROM o DISASSEMBLY

JR L3116

Not the first row the BASIC line

L314C:

LD A,(HL)

CP $14
JR Z,L3116

Store new flag.

Fetch the number of rows held in the Below-
Screen Line Edit Buffer.

Has the bottom of the buffer been reached?
Jump if so, with the carry flag reset to indicate the
buffer is full.

The Below-Screen Line Edit Buffer is not full so copy the last Screen Line Edit Buffer row into the top

‘visible' Below-Screen Line Edit Buffer row

LD BC,$0023
LD HL,$F6F8

EX DE,HL

LDIR

Length of an edit buffer row.

Address of the first row in the Below-Screen Line
Edit Buffer.

HL=Address of the last row in the Screen Line
Edit Buffer, DE=Address of the first row in the
Below-Screen Line Edit Buffer.

Copy the last Screen Line Edit Buffer row into the
first Below-Screen Line Edit Buffer row, i.e. the
‘visible' edit buffer row.

Copy all Below-Screen Line Edit Buffer rows down

LD HL,$F9D6
LD D,H
LDE,L

LD BC,$0023
ORA

SBC HL,BC
LD BC,$02BC

LDDR
INC A

SCF
JR L3116

DE=End of the last row in the Below-Screen Line
Edit Buffer.
Length of an edit buffer row.

HL=End of penultimate row in the Below-Screen
Line Edit Buffer.

Length of the Below-Screen Line Edit Buffer
minus one row.

Shift all the rows down by one.

Increment the number of rows held in the Below-
Screen Line Edit Buffer.

Signal Below-Screen Line Edit Buffer is not full.
Jump to store the number of rows held in the
Below-Screen Line Edit Buffer.

SPECTRUM 128 ROM o DISASSEMBLY

Insert Character into Below-Screen Line Edit Buffer

Called when a non-action key is pressed and rows of the BASIC line spans into the Below-Screen
Line Edit Buffer and therefore require shifting.
Entry: HL=Current row's flag byte.

A=Character code to insert at the start of the first row of the Below-Screen Line Edit Buffer.

L316E: PUSH BC Save registers.

PUSH DE

PUSH AF Save the character to insert.

LD B,$00 Column 0.

LD C,$01 Row 1.

PUSH HL Save address of the row's flag byte.

CALL L31C3 Find row address specified by C in the Below-
Screen Line Edit Buffer, into DE.

POP HL Retrieve address of the row's flag byte.

BIT 3,(HL) Is this the end row of the BASIC line?

RES 3,(HL) Indicate that it is no longer the end row of the
BASIC line.

JR NZ,L31A0 Jump if it was the end row of the BASIC line.

The row in the Below-Screen Line Edit Buffer is not the last row of the BASIC line.

Insert the character into the current row. If a spill from this row occurs then insert that character into
the start of the following row and shift all existing characters right by one. Repeat this process until
all rows have been shifted.

L3180: CALL L2E41 Find first editable position on this row from the
previous column to the right, returning column
number in B.

POP AF A=Character to insert.

L3184: CALL L16AC Insert character into the start of the edit buffer
row, shifting the row right. Returns carry flag
reset.

JR Z,L31BA Jump if the byte shifted out of the last column
position was $00, hence no more shifting
required.

The end character of the row has spilled out so it must be inserted as the first editable character of
the following row

PUSH AF Stack the character which needs to be inserted
into the next row.

LD B,$00 B=First column in the next row.

INC C C=Next row.

LDAC

SPECTRUM 128 ROM o DISASSEMBLY

CP $15

JR C,L31A0

Has the bottom row of the Below-Screen Line Edit
Buffer been reached, i.e. row 21?
Jump ahead if not.

The bottom row of the Below-Screen Line Edit Buffer has been reached

DEC HL
LD A,(HL)
INC HL
CP $00

JR Z,L31A0

Point to last character of the current row.

Get the character.

Point back to the flag byte of this row.

Is the character a null character? [Could have
saved 1 byte by using AND A]

Jump ahead if it is.

The Below-Screen Line Edit Buffer is completely full

PUSH HL
LD HL,$ECOD
SET 0,(HL)

POP HL
Check whether there is another row to shift

L31A0: BIT 1,(HL)
SET 1,(HL)
RES 3,(HL)
CALL L31C3

JR NZ,L3180

Save address of the flag byte.

Editor flags.

Signal that the Screen Line Edit Buffer (including
Below-Screen Line Edit Buffer) is full.
HL=Address of the flag byte.

Does the row span onto another row?

Signal that the row spans onto another row.
Signal not the last row of the BASIC line.

Find the address of the row specified by C in
Below-Screen Line Edit Buffer, into DE.

Jump back if spans onto another row to shift it
also.

All existing rows have now been shifted but a new row needs to be inserted

PUSH BC
PUSH DE

CALL L35E6
LD (HL),$08

POP DE
POP BC
CALL L35F4

POP AF
JR L3184

B=Column number. C=Row number.
DE=Start address of the row in the edit buffer.
Null all column positions in the edit buffer row.
Set the flag byte for the row to indicate it is the
last row of the BASIC line.

DE=Start address of the row in the edit buffer.
B=Column number. C=Row number.

Indent the row by setting the appropriate number
of null characters.

Get character to insert.

Jump back to insert it.

SPECTRUM 128 ROM o DISASSEMBLY

The shifting of all rows has completed

L31BA: LD AC Get the row number.
LD ($F6F5),A Store as the number of rows held within the
Below-Screen Line Edit Buffer.
SET 3,(HL) Mark this row as the last row of the BASIC line.
POP DE Restore registers.
POP BC
RET

Find Row Address in Below-Screen Line Edit Buffer

Find address in the Below-Screen Line Edit Buffer of specified row.
This routine calculates DE = $F6F8 + $0023*C.

Entry: C=Row number.

Exit: Address of edit row in DE.

L31C3: LD HL,$F6F8 Address of the Below-Screen Line Edit Buffer.
JP L30B7 Jump to find the row address and return.

Delete a Character from a BASIC Line in the Below-Screen Line
Edit Buffer

Delete a character at the specified position, shifting subsequent characters left as applicable.
Exit: A=Character shifted out of the top row of the Below-Screen Line Edit Buffer.

L31Co9: PUSH BC Save registers.

PUSH DE

LD HL,$ECOD Editor flags.

RES 0,(HL) Signal that the Screen Line Edit Buffer (including
Below-Screen Line Edit Buffer) is not full.

LD A,($F6F5) A=Number of rows held in the Below-Screen Line
Edit Buffer.

LD CA C=Number of rows held in the Below-Screen Line
Edit Buffer.

ORA Are there any rows in the Below-Screen Line Edit
Buffer?

LD A,$00 A null character.

JR Z,L321B Jump if there are no rows. [Redundant check

since this routine should never be called if there
are no rows in this buffer]

There is at least one row in the Below-Screen Line Edit Buffer

L31D9:

SPECTRUM 128 ROM o DISASSEMBLY

CALL L31C3
PUSH AF
LD B,$00
CALL L2E41

JR NC,L31F2

The row is not blank

DE=Address within a row of edit buffer.

POP AF

A=Character to shift into right of row.
B=The column to start shifting at.

CALL L16C1

PUSH AF

PUSH BC
LD B,$00
CALL L2E41

POP BC
JR C,L3216

Find the address of the last used row within
Below-Screen Line Edit Buffer, into DE.

Save the character to insert.

Start searching from column 0.

Find editable position on this row to the right,
returning column number in B.

Jump if no editable position found, i.e. a blank
row.

A=Character to insert.

Insert the character into the end of the edit buffer
row, shifting all columns left until the cursor
position is reached.

A=Character shifted out, zero flag set if the
shifted out character was a null ($00).

Save the row number.

Start searching from column 0.

Is this now a blank row? i.e. Find editable position
on this row to the right, returning column number
in B.

C=Row number.

Jump if editable position found.

The row is already blank or the result of the shift has caused it to become blank.

HL points to the last blank character in the row.

L31F2:

INC HL
LD A,(HL)
PUSH AF
PUSH BC
LDAC
CP $01

JR NZ,L3204

Point to the flag byte for the blank row.

Fetch the flag byte.

Save the flag byte for the blank row.

Save the row number.

Fetch the row number of this blank row.

Is this the first row in the Below-Screen Line Edit
Buffer?

Jump if not.

The first row in the Below-Screen Line Edit Buffer is empty and hence the BASIC line now fits
completely on screen, i.e. within the Screen Line Edit Buffer

SPECTRUM 128 ROM o DISASSEMBLY

LD A,($EC15) The number of editing rows on screen.

LDC,A C=Bottom row number in the Screen Line Edit
Buffer.

CALL L30B4 DE=Start address in Screen Line Edit Buffer of
the bottom row, as specified in C.

JR L3208 Jump ahead to continue.

The blank row is not the first row in the Below-Screen Line Edit Buffer, and hence there are further
rows above to be shifted

L3204: DECC Previous row within the Below-Screen Line Edit
Buffer.
CALL L31C3 Find the address of the row specified by C in
Below-Screen Line Edit Buffer, into DE.
L3208: POP BC Retrieve the row number.
POP AF A=Flag byte value for the blank row.
LD HL,$0020
ADD HL,DE Point to the flag byte for the row above.
RES 1,(HL) Signal that the row above does not span onto
another row.
OR (HL) Or in the flag bits from the blank row, essentially
this will retain the 'last row' bit.
LD (HL),A Update the flag byte for the row above.
LD HL,$F6F5 Point to the number of rows held in the Below-
Screen Line Edit Buffer.
DEC (HL) Decrement the row count.

Continue with the next row

L3216: POP AF Fetch the character shifted out from the current
row, ready for insertion into the row above.
DECC Previous row.
JR NZ,L31D9 Jump back if the character shifted out was not

null, i.e. more rows above to shift.

All rows in the Below-Screen Line Edit Buffer have been shifted

SCF [Redundant since never subsequently checked]
L321B: POP DE Restore registers.

POP BC

RET

Above-Screen Line Edit Buffer Settings
This table holds the default values for the Below-Screen Line Edit Buffer settings starting at $F9DB.

SPECTRUM 128 ROM o DISASSEMBLY

It appears that the word at $FODC is supposed to be a pointer to the next available or accessed
location within the buffer but this facility is never used. Therefore the table need only be 1 byte long,
in which case it would be more efficient for the routine at $3222 (ROM 0) to simply set the byte at
$FIDB directly.

L321E: DEFB $03 Number of bytes in table.
DEFB $00 $F9DB = Number of rows held in the Above-
Screen Line Edit Buffer.
DEFW $F9DE $FODC/D = Points to next available location

within the Above-Screen Line Edit Buffer.

Set Above-Screen Line Edit Buffer Settings

Sets the default values for the Above-Screen Line Edit Buffer settings.
Copy 3 bytes from $321F-$3221 (ROM 0) to $F9DB-$F9DD.

L3222: LD HL,L321E Default Above-Screen Line Edit Buffer settings.
LD DE,$F9DB Destination address.
JP L3FBA Copy bytes.

Shift Rows Down in the Above-Screen Line Edit Buffer

If Above-Screen Line Edit Buffer contains row then decrement the count, i.e. less rows off screen.

If the Above-Screen Line Edit Buffer is empty then load in the new BASIC line at the top of the screen.
Exit : HL=Address of next row to use within the Above-Screen Line Edit Buffer.

Carry flag reset if Above-Screen Line Edit Buffer is empty, i.e. no edit buffer rows were shifted.

L322B: PUSH BC Save registers.

PUSH DE

LD HL,$F9DB Point to the Above-Screen Line Edit Buffer
settings.

PUSH HL Save address of the Above-Screen Line Edit
Buffer settings.

LD A,(HL) Fetch number of rows of the BASIC line that are
off the top of the screen.

ORA Are there any rows off the top of the screen?

JR NZ,L3253 Jump if there are.

There are no rows of the BASIC line off the top of the screen so use the top line that is visible on screen

PUSH HL Save address of the Above-Screen Line Edit
Buffer settings.
CALL L335F Copy 'Insert Keyword Representation Into

Keyword Construction Buffer' routine to RAM.

L3244:

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,($FC9A)
CALL L334A

JR NC,L3244
LD ($FC9A),HL

LD B,H
LDC,.L
POP HL

INC HL
INC HL
INC HL

JR NC,L325D

HL=New line number at top of screen.

Verify the line number exists, or fetch the next line
number if not.

Jump if the line does not exist.

Store the line number found as the one at the top
of screen.

BC=New line number at top of screen.
HL=Address of the Above-Screen Line Edit Buffer
settings.

Point to the first row of the Above-Screen Line
Edit Buffer.
Jump if the line did not exist.

The line specified as the one at the top of the screen does exists [BUG - HL points to the start of the
first row of the Above-Screen Line Edit Buffer but it should point to the settings fields 3 bytes earlier
since the call to $32D6 (ROM 0) will advance HL by 3 bytes. The bug manifests itself when modifying a
BASIC line that spans off the top of the screen. It causes corruption to the line number, causing a new
BASIC line to be inserted rather than updating the line being edited. When editing lines with a high line
number, the corrupted line number can end up larger 9999 and hence the line is deemed invalid when
Enter is pressed to insert the line into the BASIC program. The effects of the bug are often masked
by the bug at $2DA1 (ROM 0) which performs LD HL,($F9DB) instead of LD HL,$F9DB and thereby
fails to detect when the end of the Above-Screen Line Edit Buffer has been reached. The bug can be
fixed by inserted three DEC HL instructions before the call to $32D6 (ROM 0). Credit: Paul Farrow]

CALL L32D6

DEC A

EX DE,HL

JR L325D

Copy the new BASIC line into the Above-Screen
Line Edit Buffer.

Decrement the count of the number of rows held
in the Above-Screen Line Edit Buffer.

HL=Start of the next row in the Above-Screen
Line Edit Buffer.

Jump ahead to continue.

There are rows of the BASIC line off the top of the screen

L3253:

LD HL,($F9DC)

LD BC,$0023
SBC HL,BC

SCF

DECA

HL=Address of the next location within the
Above-Screen Line Edit Buffer to use.

Point to the previous row location within the
Above-Screen Line Edit Buffer.

Signal to update the number of rows held in the
Above-Screen Line Edit Buffer.

Decrement the count of the number of rows held
in the Above-Screen Line Edit Buffer.

SPECTRUM 128 ROM o DISASSEMBLY

A=New number of rows held in the Above-Screen Line Edit Buffer.

HL=Address of a next row to use within the Above-Screen Line Edit Buffer.

Carry flag reset if no need to update the count of the number of rows in the Above-Screen Line Edit
Buffer.

L325D: EX DE,HL DE=Address of next row to use within the Above-
Screen Line Edit Buffer.
POP HL HL=Address of the Above-Screen Line Edit Buffer
settings.
JR NC,L3262 Jump if no need to update the count of the
number of rows in the Above-Screen Line Edit
Buffer.
LD (HL),A Store the number of rows held in the Above-
Screen Line Edit Buffer.
L3262: INC HL
LD (HL),E
INC HL
LD (HL),D Store the address of the next row to use within
the Above-Screen Line Edit Buffer.
EX DE,HL HL=Address of next row to use within the Above-
Screen Line Edit Buffer.
POP DE Restore registers.
POP BC
RET

Shift Row Up into the Above-Screen Line Edit Buffer if Required

This routine is used to shift up a Screen Line Edit Buffer or a Below-Screen Line Edit Buffer row into
the Above-Screen Line Edit Buffer.
If shifting the top row of the Screen Line Edit Buffer would result in a straggle into the Above-Screen
Line Edit Buffer then the top row is shifted into the next available location within the Above-Screen
Line Edit Buffer. If the shift would place the start of a BASIC line on the top row then the Above-Screen
Line Edit Buffer is set as empty.
The routine is also called when relisting the BASIC program. The first BASIC line may straggle above
the screen and so it is necessary to load the BASIC line into the Above-Screen Line Edit Buffer. This
is achieved by using the Below-Screen Line Edit Buffer as a temporary line workspace. This routine
is called to shift each row into the Above-Screen Line Edit Buffer as appropriate.
Entry: DE=Start address of the first row in the Screen Line Edit Buffer, or start address of a
Below-Screen Line Edit Buffer row.
Exit: HL=Address of next row to use within the Below-Screen or Screen Line Edit Buffer.
Carry flag set if the Line Edit Buffer if not full.

L326A: PUSH BC Save registers.
PUSH DE
LD HL,$0020

SPECTRUM 128 ROM o DISASSEMBLY

ADD HL,DE

LD A,(HL)
CPL

AND $11

JR NZ,L3282

Point to the flag byte for this row within the Below-
Screen or Screen Line Edit Buffer.
Fetch the flag byte.

Jump if not the first row of the BASIC line or no
associated line number stored.

First row of the BASIC line and associated line number stored

L3282:

PUSH DE
PUSH HL

INC HL

LD D,(HL)

INC HL

LD E,(HL)

LD ($FC9A),DE
POP HL

POP DE

BIT 3,(HL)

LD HL,$F9DB
PUSH HL

JR Z,L32A0

The last row of the BASIC line

PUSH HL
CALL L335F

LD HL,($FC9A)
CALL L3352

LD ($FC9A),HL
POP HL

INC HL
INC HL
INC HL

DE=Start address of the row.
HL=Address of the flag byte for the row in the
Line Edit Buffer.

DE=Line number of the corresponding BASIC
line.

Store this as the line number that is at the top of
the screen.

HL=Address of the flag byte for the row in the
Below-Screen or Screen Line Edit Buffer.
DE=Start address of the row.

Is this the last row of the BASIC line?

Point to the Above-Screen Line Edit Buffer
settings.

Stack the address of the Above-Screen Line Edit
Buffer settings.

Jump if not the last row of the BASIC line.

Stack the address of the Above-Screen Line Edit
Buffer settings.

Copy 'Insert Keyword Representation Into
Keyword Construction Buffer' routine to RAM.
Line number at top of screen.

Create line number representation in the Keyword
Construction Buffer of the next BASIC line.
Update the line number at top of screen.
HL=Address of the Above-Screen Line Edit Buffer
settings.

Point to the start of the Above-Screen Line Edit
Buffer.

SPECTRUM 128 ROM o DISASSEMBLY

LD A,$00

SCF
JR L325D
Not the last row of the BASIC line

L32A0: LD A,(HL)

CP $14
JR Z,L32B3

No rows held in the Above-Screen Line Edit
Buffer. [Could have saved 1 byte by using XOR
Al

Signal to update the number of rows count.
Jump back to store the new Above-Screen Line
Edit Buffer settings.

Fetch the number of rows held in the Above-
Screen or Screen Line Edit Buffer.

Are there 20 rows, i.e. the buffer is full?

Jump if the buffer is full, with the carry flag reset.

Shift the top row of the Screen Line Edit Buffer into the Above-Screen Line Edit Buffer

INC A
LD HL,($F9DC)
LD BC,$0023

EX DE,HL

LDIR
EX DE,HL

SCF
JR L325D

Above-Screen Line Edit Buffer is full

L32B3: POP HL

POP DE
POP BC
RET

Increment the count of the number of rows in the
Above-Screen Line Edit Buffer.

Fetch the address of the next row to use within
the Above-Screen Line Edit Buffer.

The length of one row in the edit buffer, including
the 3 data bytes.

DE=Address of next location within the Above-
Screen Line Edit Buffer, HL=Address of the row
in the Below-Screen or Screen Line Edit Buffer to
store.

Copy the row of the BASIC line into the Above-
Screen Line Edit Buffer.

HL=Address of next row to use within the Above-
Screen Line Edit Buffer.

Signal to update the count of the number of rows.
Jump back to store the new Above-Screen Line
Edit Buffer settings.

HL=Address of the Above-Screen Line Edit Buffer
settings.
Restore registers.

Find Row Address in Above-Screen Line Edit Buffer

Find the address in the Above-Screen Line Edit Buffer of the specified row.

This routine calculates DE = $F9DE + $0023*C.

SPECTRUM 128 ROM o DISASSEMBLY

Entry: C=Row number.

Exit: DE=Address of edit row.
L32B7: LD HL,$F9DE Point to the start of the Above-Screen Line Edit
Buffer.
JP L30B7 Find the row address.

BASIC Line Character Action Handler Jump Table

L32BD: DEFB $08 Number of table entries.

DEFB $0D Code: Enter.

DEFW L35CC Address of the 'Enter' action handler routine.

DEFB $01 Code: NULL.

DEFW L35DA Null remaining columns of an edit buffer row.

DEFB $12 Code: FLASH.

DEFW L335A Fetch next de-tokenized character from the
BASIC line within the program area.

DEFB $13 Code: BRIGHT.

DEFW L335A Fetch next de-tokenized character from the
BASIC line within the program area.

DEFB $14 Code: INVERSE.

DEFW L335A Fetch next de-tokenized character from the
BASIC line within the program area.

DEFB $15 Code: OVER.

DEFW L335A Fetch next de-tokenized character from the
BASIC line within the program area.

DEFB $10 Code: INK.

DEFW L335A Fetch next de-tokenized character from the
BASIC line within the program area.

DEFB $11 Code: PAPER.

DEFW L335A Fetch next de-tokenized character from the

BASIC line within the program area.

Copy a BASIC Line into the Above-Screen or Below-Screen
Line Edit Buffer

Copy a BASIC line into the Above-Screen or Below-Screen Line Edit Buffer, handling indentation.

Entry: HL=Address of the previous row's flag byte in Above-Screen or Below-Screen Line Edit
Buffer.

BC=Line number corresponding to the row being edited.
Exit: A=Number of rows in the Above-Screen Line Edit Buffer.

SPECTRUM 128 ROM o DISASSEMBLY

HL=Address of the first row of the BASIC line being edited in the Above-Screen Line Edit

Buffer.
DE=Address of the last row of the BASIC line being edited in the Above-Screen Line Edit
Buffer.
L32D6: LD D,H HL=Address of the previous row's flag byte in the
Above-Screen/Below-Screen Line Edit Buffer.
LD E,L DE=Address of the previous row's flag byte in the
Above-Screen/Below-Screen Line Edit Buffer.
INC DE
INC DE
INC DE Advance to the start of the row in the edit buffer.
PUSH DE DE=Address of the start of the BASIC line in the
Above-Screen/Below-Screen Line Edit Buffer.
LD HL,$0020
ADD HL,DE Point to the flag byte for the row.
LD (HL),$01 Signal the first row of the BASIC line.
INC HL
LD (HL),B
INC HL
LD (HL),C Store the corresponding BASIC line number.
LD C,$01 Row 1.
LD B,$00 Column 0.

Enter a loop to process each character from the current BASIC line

L32EA: PUSH BC Save the column and row numbers.

PUSH DE Save the Above-Screen/Below-Screen Line Edit
Buffer address.

LD A,($ECOE) Fetch mode.

CP $04 Calculator mode?

CALL NZ,L3517 If not then fetch the next de-tokenized character
from the BASIC line within the program area.

POP DE Retrieve the Above-Screen/Below-Screen Line
Edit Buffer address.

POP BC Retrieve the column and row numbers.

JR C,L3307 Jump if Editor mode and a character was

available (if calculator mode then carry flag was
reset by test above).

Calculator mode, or Editor mode and a character was not available

LD AC A=Row number.
CP $01 Is it row 1?
LD A,$0D A='Enter' character.

JR NZ,L3307 Jump if not.

SPECTRUM 128 ROM o DISASSEMBLY

Row 1

LDAB
ORA
LD A,$01

JR Z,L3307
LD A,$0D

LD HL,L32BD
CALL L3FCE

L3307:

JR C,L332C
JR Z,L32EA

A=Column number.

Is it column 0?

A='Null' character, the code used to indicate to
null edit positions.

Jump if so.

A="Enter' character.

The action handler table.

Call the action handler routine to process the
character.

Jump if no more characters are available.
Jump back if an action handler was found so as
to process the next character.

A character was available but there was no action handler routine to process it

PUSH AF

LD A,$1F
CPB

JR NC,L3326

Exceeded last column

LD A$12

CALL L3331

JR C,L3323

A=Character.

Exceeded column 31?
Jump ahead if not.

New flag byte value indicating the row spans

onto another row and there is an associated line
number.

Mark this row as spanning onto the next and clear
the following row's flags.

Jump ahead if not at bottom of the line edit buffer.

At the bottom of the edit buffer so process the line as if an 'Enter' character had been encountered

POP AF
LD A,$0D
JR L3307

The edit buffer has room for another character

L3323: CALL L35F4
L3326: POP AF
CALL L35C5

Discard the stacked item.
A="Enter' character.
Jump back to process the 'Enter' code.

Indent the row by setting the appropriate number
of null characters in the current Above-Screen
Line Edit Buffer row.

A=Character.

Store the character in the current row/column in
the Above-Screen Line Edit Buffer.

SPECTRUM 128 ROM o DISASSEMBLY

JR L32EA Jump back to handle the next character.

No more characters are available

L332C: POP HL HL=Address of the BASIC line being edited in the

Above-Screen Line Edit Buffer.

LD AC A=Number of rows in the Above-Screen Line Edit
Buffer.

RET Z [Redundant since carry flag is always set by here,
and zero flag never subsequently checked]

SCF [Redundant since never subsequently checked]

RET

Set 'Continuation' Row in Line Edit Buffer

This routine is used when the insertion of a BASIC line needs to span onto a another row.
It marks the current row as 'not the last row of the BASIC line' and clears the following row's flags
Entry: DE=Address of start of line edit buffer row.
B=Column number (will be $20).
C=Row number.
A=New flag byte value (will be $12).
Exit: Carry flag reset if bottom of line edit buffer reached.
HL=Address of the flag byte for the new row.

L3331: PUSH AF Save the new flag byte value.

CALL L35E6 HL=Address of flag byte for the row.

POP AF Retrieve the new flag byte value.

XOR (HL) Toggle to set ‘associated line number' and ‘row
spans onto another row' flags.

LD (HL),A Store the new flag byte value.

LD AC A=Row number.

CP $14 At bottom of line edit buffer?

RET NC Return if so.

INCC Advance the row number.

LD HL,$0023

ADD HL,DE Point to the start of the next row.

EX DE,HL

LD HL,$0020

ADD HL,DE Point to the flag byte for the next row.

LD (HL),$00 Clear the flags to indicate no BASIC line on this
row.

SCF Signal still on a row within the edit buffer.

RET

SPECTRUM 128 ROM o DISASSEMBLY

BASIC Line Handling Routines

Find Address of BASIC Line with Specified Line Number

This routine finds the address of the BASIC line in the program area with the specified line number,
or the next line is the specified one does not exist.
Entry: HL=Line number.
Exit: Carry flag set if line exists.
DE=Points to the command of the BASIC line within the program area.
HL=Line number ($0000 for no line number).

L334A: CALL L34B6 Find the address of the BASIC line in the program
area with the specified line number.
RET C Return if the line exists.
LD HL,$0000 No line number.
RET

Create Next Line Number Representation in Keyword
Construction Buffer

This routine is used to create a string representation of the line number for the next line after the
specified line, and store it in the Keyword Construction Buffer.
Entry: HL=Line number.
A=Print leading space flag ($00=Print leading space).
Exit: Carry flag set to indicate specified line exists.
DE=Points to the command field of the BASIC line.
HL=Line number, or $0000 if line does not exist.

L3352: CALL L3430 Create next line number representation in the
Keyword Construction Buffer.
RET C Return if line exists.
LD HL,$0000 Line not found.
RET

Fetch Next De-tokenized Character from Selected BASIC Line
in Program Area

Exit: Carry flag reset if a character was available.
A=Character fetched.

SPECTRUM 128 ROM o DISASSEMBLY

L335A: CALL L3517 Fetch the next de-tokenized character from the
BASIC line within the program area.
CCF
RET NC Return if a character was available. [BUG - This

should just be a RET. Its effect is harmless since
the routine below has previously been called and
hence simply overwrites the data already copied
to RAM. Credit: lan Collier (+3), Andrew Owen
(128)]

Copy 'Insert Keyword Representation into Keyword
Construction Buffer' Routine into RAM

Copies Insert Keyword Representation Into Keyword Construction Buffer routine into physical RAM
bank 7, and resets pointers to indicate that there is no BASIC line currently being de-tokenized.

L335F: LD HL,$0000 Signal no line number of command.

LD ($FC9F),HL Signal no further character to fetch from the
BASIC line within the program area.

LD ($FCA1L),HL Signal no further character to fetch from the
Keyword Construction Buffer.

LD HL,L3374 Source for Insert Keyword Representation Into
Keyword Construction Buffer routine.

LD DE,$FCAE Destination for Insert Keyword Representation
Into Keyword Construction Buffer routine.

LD BC,$00BC

LDIR Copy the routine to RAM bank 7 at address
$FCAE.

RET

Insert Keyword Representation into Keyword Construction
Buffer « RAM Routine »

This routine copies a keyword string from ROM 1 into the Keyword Construction Buffer, terminating it
with an 'end of BASIC line' marker (code ' '+$80). Only standard Spectrum keywords are handled by
this routine (SPECTRUM and PLAY are processed elsewhere).
The routine is run from RAM bank 7 at $FCAE so that access to both ROMs is available.
Depending on the value of A (which should be the ASCII code less $A5, e.g. 'RND', the first (48K)
keyword, has A=0), a different index into the token table is taken. This is to allow speedier lookup
since there are never more than 15 keywords to advance through.
Entry: A=Keyword character code-$A5 (range $00-$5A).

DE=Insertion address within Keyword Construction Buffer.

Copied to physical RAM bank 7 at $FCAE-$FCFC by subroutine at $335F (ROM 0).

SPECTRUM 128 ROM o DISASSEMBLY

L3374: DI Disable interrupts whilst paging.
LD BC,$7FFD
LD D,$17 Page in ROM 1, SCREEN 0, no locking, RAM

bank 7.

OUT (C),D
CP $50 Was the token $F5 or above?
JR NC,L33B1
CP $40 Was the token $E5 or above?
JR NC,L33AA
CP $30 Was the token $D5 or above?
JR NC,L33A3
CP $20 Was the token $C5 or above?
JR NC,L339C
CP $10 Was the token $B5 or above?
JR NC,L3395

Used for token range $A5-$B4 ($00 <= A <= $0F)

LD HL,TOKENS+$0001 $0096. Token table entry "RND" in ROM 1.
JR L33B6

Used for token range $B5-$C4 ($10 <= A <= $1F)

L3395: SUB $10
LD HL,TOKENS+$003A $OOCF. Token table entry "ASN" in ROM 1.
JR L33B6

Used for token range $C5-$D4 ($20 <= A <= $2F)

L339C: SUB $20
LD HL,TOKENS+$006B $0100. Token table entry "OR" in ROM 1.
JR L33B6

Used for token range $D5-$E4 ($30 <= A <= $3F)

L33A3: SUB $30
LD HL,TOKENS+$00A9 $013E. Token table entry "MERGE" in ROM 1.
JR L33B6

Used for token range $E5-$F4 ($40 <= A <= $4F)

L33AA: SUB $40

LD HL,TOKENS+$00F6 $018B. Token table entry "RESTORE" in ROM 1.

JR L33B6

SPECTRUM 128 ROM o DISASSEMBLY

Used for token range $F5-$FF (A >= $50)

L33B1: SUB $50

LD HL,TOKENS+$013F $01D4. Token table entry "PRINT" in ROM 1.
L33B6: LD B,A Take a copy of the index value.

ORA If A=0 then already have the entry address.
L33B8: JR Z,L33C3 If indexed item found then jump ahead to copy

the characters of the token.

L33BA: LD A,(HL) Fetch a character.

INC HL Point to next character.

AND $80 Has end of token marker been found?

JR Z,L33BA Loop back for next character if not.

DECB Count down the index of the required token.

JR L33B8 Jump back to test whether the required token has

been reached.

Copy Keyword Characters « RAM Routine »

This routine copies a keyword string from ROM 1 into the Keyword Construction Buffer, terminating
it with an '‘end of BASIC line' marker (code ' '+$80). A leading space will be inserted if required and
a trailing space is always inserted.
The routine is run from physical RAM bank 7 so that access to both ROMs is available.
Entry: HL=Address of keyword string in ROM 1.

DE-=Insertion address within Keyword Construction Buffer.

Copied to physical RAM bank 7 at $FCFD-$FD2D by subroutine at $335F (ROM 0).

L33C3: LD DE,$FCA3 DE=Keyword Construction Buffer.
LD ($FCA1),DE Store the start address of the constructed
keyword.
LD A,($FC9E) Print a leading space?
ORA
LD A,$00
LD ($FC9E),A Signal leading space not required.
JR NZ,L33D9 Jump if leading space not required.
LD A,$20 Print a leading space.
LD (DE),A Insert a leading space.
INC DE Advance to next buffer position.
L33D9: LD A,(HL) Fetch a character of the keyword.
LD B,A Store it.
INC HL Advance to next keyword character.
LD (DE),A Store the keyword character in the BASIC line
buffer.
INC DE Advance to the next buffer position.

AND $80 Test if the end of the keyword string.

SPECTRUM 128 ROM o DISASSEMBLY

JR Z,L.33D9 Jump back if not to repeat for all characters of the
keyword.

LD AB Get keyword character back.

AND $7F Mask off bit 7 which indicates the end of string
marker.

DEC DE Point back at the last character of the keyword
copied into the buffer

LD (DE),A and store it.

INC DE Advance to the position in the buffer after the last
character of the keyword.

LD A, '+$80 $AO0. Space + end marker.

LD (DE),A Store an 'end of BASIC line so far' marker.

LD A,$07

LD BC,$7FFD

OuT (C),A Page in ROM 0, SCREEN 0, no locking, RAM
bank 7.

El Re-enable interrupts.

RET

Identify Token from Table

This routine identifies the string within the Keyword Conversion Buffer and returns the character code.
The last character of the string to identify has bit 7 set.

Only 48K mode tokens are identified.

Exit: Carry flag set if token identified.

A=Character code.

Copied to RAM at $FD2E-$FD69 by routine at $335F (ROM 0).

L33F4: DI Disable interrupts whilst paging.
LD BC,$7FFD
LD D,$17 Select ROM 1, SCREEN 0, RAM bank 7.
OUT (C),D
LD HL,TOKENS+1 $0096. Address of token table in ROM 1.
LD B,$A5 Character code of the first token - 'RND".

Entry point here used to match 128K mode tokens and mis-spelled tokens

L3401: LD DE,$FD74 Keyword Conversion Buffer holds the text to
match against.
L3404: LD A,(DE) Fetch a character from the buffer.
AND $7F Mask off terminator bit.
CP $61 Is it lowercase?
LD A,(DE) Fetch the character again from the buffer.
JR C,L340E Jump if uppercase.

AND $DF Make the character uppercase.

SPECTRUM 128 ROM o DISASSEMBLY

L340E: CP (HL) Does the character match the current item in the

token table?

JR NZ,L341A Jump if it does not.

INC HL Point to the next character in the buffer.

INC DE Point to the next character in the token table.

AND $80 Has the terminator been reached?

JR Z,L.3404 Jump back if not to test the next character in the
token.

A match was found

SCF Signal a match was found.
JR L3426 Jump ahead to continue.

L341A: INC B The next character code to test against.
JR Z,L.3425 Jump if all character codes tested.

The token does not match so skip to the next entry in the token table

L341D: LD A,(HL) Fetch the character from the token table.
AND $80 Has the end terminator been found?
INC HL Point to the next character.
JR Z,L341D Jump back if no terminator found.
JR L3401 Jump back to test against the next token.

All character codes tested and no match found
L3425: ORA Clear the carry flag to indicate no match found.

The common exit point

L3426: LD AB Fetch the character code of the matching token
($00 for no match).
LD D,$07 Select ROM 0, SCREEN 0, RAM bank 7.
LD BC,$7FFD
OuT (C),D
El Re-enable interrupts.
RET « Last byte copied to RAM »

Create Next Line Number Representation in Keyword
Construction Buffer

This routine is used to create a string representation of the line number for the next line after the
specified line, and store it in the Keyword Construction Buffer.
Entry: HL=Line number.

SPECTRUM 128 ROM o DISASSEMBLY

A=Print leading space flag ($00=Print leading space).
Exit: Carry flag set to indicate specified line available.
DE=Points to the command field of the BASIC line.

HL=Line number.

L3430: CALL L34EA

ORA

LD ($FCIE),A
CALL L1F20

CALL L34F6
JR NC,L3491

JR NZ,L344D

The line number requested exists

LDAB
ORC
JR Z,L344D

Fetch the next line

CALL L34CF
CALL L34D9
JR NC,L3491

Clear BASIC line construction pointers (address
of next character in the Keyword Construction
Buffer and the address of the next character in
the BASIC line within the program area being de-
tokenized).

[BUG - Supposed to be XOR A to ensure that

a leading space is shown before a command
keyword is printed. However, most of the time
the A register will enter the routine holding $00
and so the bug is probably harmless. Credit: Paul
Farrow]

Print a leading space flag.

Use Normal RAM Configuration (physical RAM
bank 0).

Find address of the specified BASIC line, into HL.
Jump if suitable line number not found, i.e. end of
program reached.

Jump if line number did not match, i.e. is higher
than the line requested.

BC=Line number.

Jump if the first program line requested (line
number of 0).

Move to the start of the next BASIC line.
Check whether at the end of the BASIC program.
Jump if at the end of the BASIC program.

Insert line number into the BASIC Line Construction Buffer

L344D: LD D,(HL)
INC HL
LD E,(HL)
CALL L1F45

HL=Address of the BASIC line.

DE=Line number.
Use Workspace RAM configuration (physical
RAM bank 7).

SPECTRUM 128 ROM o DISASSEMBLY

PUSH DE Save the line number.

PUSH HL Save the address of the BASIC line+1.
PUSH IX Save IX.

LD IX,$FCA3 IX=Keyword Construction Buffer, the location

LD ($FCA1L),IX

where the line number will be created.
Store the start of the buffer as the next location to
store a character in.

EX DE,HL HL=Line number.

LD B,$00 Signal no digit printed yet.

LD DE,$FC18 -1000.

CALL L3495 Insert the thousand digit.

LD DE,$FF9C -100.

CALL L3495 Insert the hundred digit.

LD DE,$FFF6 -10.

CALL L3495 Insert the ten digit.

LD DE,$FFFF -1

CALL L3495 Insert the units digits. [Note that this is not
designed to handle line number 0, which
technically is not supported by Sinclair BASIC.
The call would need to be preceded by a LD B,
$01 instruction to make this function support a
line number of 0. Credit: lan Collier (+3), Andrew
Owen (128)]

DEC IX IX points to previous ASCI!I digit.

LD A,(IX+$00)

OR $80

LD (IX+$00),A

Set bit 7 to mark it as the end of the line number
representation.

POP IX Restore registers.

POP HL HL=Address of the BASIC line+1.

POP DE DE=Line number.

INC HL HL=Points to length field of the BASIC line.
INC HL

INC HL HL=Points to the command field of the BASIC

LD ($FCOF),HL

line.
Store it as the next character to fetch when
parsing the BASIC line to de-tokenize it.

EX DE,HL DE=Points to the command field of the BASIC
line, HL=Line number.

SCF Signal line exists.

RET

End of program reached, no line number available

L3491: CALL L1F45 Use Workspace RAM configuration (physical

RAM bank 7).

SPECTRUM 128 ROM o DISASSEMBLY

RET

Insert ASCII Line Number Digit

Return with carry flag reset to signal line does not
exist.

Insert text representation of a line number digit in a buffer.

Insert a $00 character for every leading zero.

Entry: DE=Subtraction amount (-1000, -100, -10, -1).

HL=Line number.

IX=Address of the buffer to write the ASCII line number to.
B=Indicates if digit printed yet ($00=not printed).

Exit: IX points to next buffer location.
B=$01 if digit printed.

HL=Line number remainder.

L3495:
L3496:

XOR A
ADD HL,DE
INC A

JR C,L3496
SBC HL,DE
DEC A

A=Number of multiples of DE in the line number

ADD A $30
LD (IX+$00),A
cP'0O

JR NZ,L34B1
LDA,B

ORA

JR NZ,L34B3
LD A,$00

LD (IX+$00),A
JR L34B3

L34B1:
L34B3:

LD B,$01
INC IX
RET

A=Counter.

Keep adding DE

and incrementing the counter

until there is no carry.

Adjust for the last addition and.

counter value that caused the overflow.

Convert to an ASCI! digit.
Store in the buffer.

$30. Is it a zero?

Jump ahead if not.

Get the 'digit printed' flag.

Jump ahead if already printed a digit.
Otherwise this is a leading zero, so

store a zero byte to indicate 'nothing to print'.
and jump ahead to point to the next buffer
location.

Indicate 'digit printed'.

Point to the next buffer location.

Find Address of BASIC Line with Specified Line Number

This routine finds the address of the BASIC line in the program area with the specified line number,

or the next line is the specified one does not exist.

Entry:

Exit :

L34B6:

Move to Next BASIC Line

L34CF:

SPECTRUM 128 ROM o DISASSEMBLY

HL=Line number.

A=$%$00 to print a leading space.

Carry flag set if line exists.

DE=Points to the command of the BASIC line within the program area.
HL=Line number.

CALL L34EA

ORA

LD ($FCYE),A

Clear BASIC line construction pointers (address
of next character in the Keyword Construction
Buffer and the address of the next character in
the BASIC line within the program area being de-
tokenized).

[BUG - Supposed to be XOR A to ensure that

a leading space is shown before a command
keyword is printed. However, most of the time
the A register will enter the routine holding $00
and so the bug is probably harmless. Credit: Paul
Farrow]

Store 'print a leading space' flag.

CALL L1F20 Use Normal RAM Configuration (physical RAM
bank 0).

CALL L34F6 Find the address of the BASIC line with this line
number, or the next line otherwise.

JR NC,L3491 Jump if does not exist.

EX DE,HL HL=Address of BASIC line.

LD AL

ORH Address of $0000, i.e. no line exists?

SCF Assume line number found.

JP NZz,L344D Jump if a line was found.

CCF Reset carry flag to indicate line number does not
exist

JR L3491 and jump to make a return.

PUSH HL Save the address of the original line.
INC HL Skip past the line number.

INC HL

LD E,(HL) Retrieve the line length into DE.

INC HL

LD D,(HL)

INC HL

ADD HL,DE Point to the start of the next line.
POP DE DE=Address of original line.

RET

SPECTRUM 128 ROM o DISASSEMBLY

Check if at End of BASIC Program

Check whether at the end of the BASIC program.
Entry: HL=Address of BASIC line.
Exit: Carry flag reset if end of BASIC program reached.

L34D9: LD A,(HL)
AND $CO
SCF Signal not at end of BASIC.
RET Z Return if not at end of program.
CCF Signal at end of BASIC.
RET

Compare Line Numbers

Compare line number at (HL) has line number held in BC.

Entry: HL=Address of first line number.
BC=Second line number.

Exit: Carry flag and zero flag set if the line number matches.
Zero flag reset if no match, with carry flag set if line number held in BC
is lower than the line number pointed to by HL.

L34EOQ: LDAB Test the first byte.
CP (HL)
RET Nz Return if not the same.
LD AC Test the second byte.
INC HL
CP (HL)
DEC HL
RET Nz Return if not the same.
SCF Signal line number matches.
RET

Clear BASIC Line Construction Pointers

L34EA: PUSH HL
LD HL,$0000
LD ($FCAL),HL Signal no next character to fetch from the
Keyword Construction Buffer.
LD ($FC9F),HL Signal no next character to fetch within the BASIC

line in the program area.

SPECTRUM 128 ROM o DISASSEMBLY

POP HL
RET

Find Address of BASIC Line

This routine finds the address of the BASIC line within the program area with the specified line number.
Entry: HL=Line number to find ($0000 for first program line).
Exit: Carry flag set if requested or next line exists.

Zero flag reset if no match, with carry flag set if line number is lower than the first program

line number.

HL=Address of the BASIC line number, or $0000 if line does not exist.
DE=Address of previous BASIC line number, or $0000 if line does not exist.

BC=Line number.

L34F6: PUSH HL
POP BC

LD DE,$0000
LD HL,($5C53)
CALL L34D9
RET NC

CALL L34E0
RET C

LDAB
ORC
SCF
RET Z

L350A: CALL L34CF
CALL L34D9
RET NC
CALL L34EO
JR NC,L350A

RET

BC=Line number. [Quicker to have used the
instructions LD B,H /LD C,L]

PROG. Address of the start of BASIC program.
Test for end of BASIC program.

Return if at end of program.

Compare line number at (HL) with BC.

Return if line number matches or is lower than the
first program line number.

Return with carry and zero flags set if first
program line was requested (line number 0).
Get address of next BASIC line.

Test for end of BASIC program.

Return if at end of program.

Compare line number at (HL) with BC.

If line number not the same or greater then back
to test next line.

Exit with carry flag set if line found.

Fetch Next De-tokenized Character from BASIC Line in

Program Area

This routine translates a tokenized BASIC line within the program area into the equivalent ‘typed' line,

i.e. non-tokenized.

SPECTRUM 128 ROM o DISASSEMBLY

The line number has been previously converted into a string representation and is held within the
Keyword Construction Buffer at $FCA3. On each call of this routine, the next character of the BASIC
line representation is fetched. Initially this is the line number characters from the Keyword Construction
Buffer, and then the characters from the program line itself. As a token character is encountered, it
is converted into its string representation and stored in the Keyword Construction Buffer. Then each
character of this string is fetched in turn. Once all of these characters have been fetched, the next
character will be from the last position accessed within the BASIC line in the program area.

Exit: Carry flag set to indicate that a character was available.

A=Character fetched.

L3517: LD HL,($FCA1L) Fetch the address of the character within the
Keyword Construction Buffer.
LD AL
ORH Is there an address defined, i.e. characters still
within the buffer to fetch?
JR Z,L353C Jump ahead if not.

There is a character within the Keyword Construction Buffer

LD A,(HL) Fetch a character from the buffer.
INC HL Point to the next character.
CP ' '+$80 $A0. Was it a trailing space, i.e. the last
character?
LD B,A Save the character.
LD A,$00 Signal 'print a leading space'.
JR NZ,L3529 Jump ahead if not.
LD A,$FF Signal 'do not print a leading space'.
L3529: LD ($FC9E),A Store the 'print a leading space' flag value.
LD AB Get the character back.
BIT 7,A Is it the last character in the buffer, i.e. the
terminator bit is set?
JR Z,L3534 Jump ahead if not.
LD HL,$0000 Signal no more characters within the Keyword
Construction Buffer to fetch.
L3534: LD ($FCA1L),HL Store the address of the next line number/

keyword character within the construction buffer,
or $0000 if no more characters.

AND $7F Mask off the terminator bit.

JP L358F Jump ahead to continue. [Could have saved 1
byte by using JR $358F (ROM 0)]

There is no line number/keyword defined within the buffer so fetch the next tokenized character from
the BASIC line in the program area

L353C: LD HL,($FC9F) Fetch the address of the next character within the
BASIC line construction workspace.

SPECTRUM 128 ROM o DISASSEMBLY

LD AL
ORH

JP Z,L3591
CALL L1F20

L3547: LD A,(HL)
CP $0E

JR NZ,L3554

INC HL

INC HL

INC HL

INC HL

INC HL

INC HL

JR L3547
L3554: CALL L1F45

INC HL
LD ($FCOF),HL

CP $A5

JR C,L3567
SUB $A5

Is there a character defined, i.e. end of line not
yet reached?

Jump ahead if not. [Could have saved 1 byte by
using JR $3591 (ROM 0)]

Use Normal RAM Configuration (physical RAM
bank 0).

Fetch a character from the buffer.

Is it the hidden number marker indicating a
floating-point representation?

Jump ahead if it is not.

Skip over it the floating-point representation.

Jump back to fetch the next character.

Use Workspace RAM configuration (physical
RAM bank 7).

Point to the next character.

Store the address of the next command within the
BASIC line to fetch.

'RND'. Is the current character a standard '48K"
keyword? ('RND' = first 48K keyword)

Jump ahead if not.

Reduce command code range to $00-$5A.

[BUG - The routine assumes all tokens require a leading and trailing space. However, this is not true
for tokens '<=', '>="and '<>'". Credit: lan Collier (+3), Paul Farrow (128)]

[To fix the bug, the call to
$FCAE would need to be
replaced with code such as
the following. Credit: Paul
Farrow.

PUSH AF

CALL $FCAE

POP AF
CP $22
JR C,$3517 (ROM 0)

CP $25
JR NC,$3517 (ROM 0)

LD HL,($FCA1)

Construct a string representation of the keyword
in the Keyword Construction Buffer.
DE=Address of last character copied.

Was it '<=' or above?

Jump back if not to fetch and return the first
character of the keyword string.

Was it '<>' or below?

Jump back if not to fetch and return the first
character of the keyword string.

Is there a leading space?

NOT_LEADING

NOT_TRAILING

SPECTRUM 128 ROM o DISASSEMBLY

LD A,(HL)

cp'

JR NZ,NOT_LEADING
INC HL

LD ($FCAL),HL

LD A $FF

LD ($FC9E),A

LD A,(DE)

CP ' '+$80

JR NZ,NOT_TRAILING
DEC DE

EX DE,HL

SET 7,(HL)

CALL $FCAE

JP L3517

It is not a standard 48K keyword

L3567:

CP $A3

JR C,L357B

Itis a 128K keyword

JR NZ,L3572

Handle 'SPECTRUM'

L3572:
L3575:

Not a keyword

LD HL,L3594
JR L3575

LD HL,L359C
CALL $FCFD

JP L3517

Jump if there is not.

Skip past the leading space.

Signal 'do not print a leading space'.
Is there a trailing space?

Jump if there is not.

Set the terminator bit on the preceding character.

Construct a string representation of the keyword
in the Keyword Construction Buffer.

Jump back to fetch and return the first character
of the keyword string. [Could have saved 1 byte
by using JR $3517 (ROM 0)]

Is it a'128K' keyword, i.e. 'SPECTRUM' or
'PLAY'?
Jump if not.

Jump if it is 'PLAY".

Keyword string "SPECTRUM".

Jump forward.

Keyword string "PLAY".

Copy the keyword string characters into the
Keyword Construction Buffer.

Jump back to fetch and return the first character
of the keyword string. [Could have saved 1 byte
by using JR $3517 (ROM 0)]

SPECTRUM 128 ROM o DISASSEMBLY

L357B: PUSH AF Save the character.
LD A,$00
LD ($FC9E),A Signal to print a trailing space.
POP AF Get the character back.
CP $0D Is it an 'Enter’ character?
JR NZ,L358F Jump if not to exit.

The end of the line was found so signal no further characters to fetch

LD HL,$0000
LD ($FCA1L),HL Signal no further character to fetch from the
Keyword Construction Buffer.
LD ($FC9F),HL Signal no further character to fetch from the
BASIC line within the program area.
L358F: SCF Set the carry flag to indicate that a character was
available.
RET
There was no character within the buffer
L3591: SCF
CCF Reset the carry flag to indicate that a character
was not available.
RET

Edit Buffer Routines — Part 2

Keywords String Table

The following strings are terminated by having bit 7 set, referenced at $356D (ROM 0) and $3F87
(ROM 0).
The table consists of the new 128K mode keywords and mis-spelled keywords.

L3594: DEFM "SPECTRU"
DEFB 'M'+$80

L359C: DEFM "PLA"
DEFB 'Y'+$80
DEFM "GOT"
DEFB 'O'+$80
DEFM "GOSU"
DEFB 'B'+$80
DEFM "DEFF"
DEFB 'N'+$80
DEFM "OPEN"

SPECTRUM 128 ROM o DISASSEMBLY

DEFB '#'+$80
DEFM "CLOSE"
DEFB '#'+$80

Indentation Settings
Copied to $FD6A-$FD6B.

L35B9: DEFB $02
DEFB $01

DEFB $05

Set Indentation Settings

L35BC: LD HL,L35B9

LD DE,$FD6A
JP L3FBA

Number of bytes in table.

Flag never subsequently used. Possibly intended
to indicate the start of a new BASIC line and
hence whether indentation required.

Number of characters to indent by.

HL=Address of the indentation settings data
table.

Destination address.

Copy two bytes from $35B9-$35BA (ROM 0) to
$FD6A-$FD6B.

Store Character in Column of Edit Buffer Row
Store character in the specified column of the current edit buffer row.

Entry: B=Column number.
DE=Start address of row.
A=Character to insert.

Exit: B=Next column number.

L35C5: LDLB
LD H,$00
ADD HL,DE
LD (HL),A
INC B
RET

Point to the required column.
Store the character.
Advance to the next column.

SPECTRUM 128 ROM o DISASSEMBLY

'Enter' Action Handler Routine

L35CC: CALL L35E6

LD A,(HL)
OR $18

LD (HL),A
LD HL,$FD6A

SET 0,(HL)

SCF

RET

Null remaining column positions in the edit buffer
row.

Fetch the flag byte.

Signal associated line number and last row in the
BASIC line.

Update the flag byte.

[Redundant since flag never subsequently tested.
Deleting these instructions would have saved 5
bytes]

Flag possibly intended to indicate the start of a
new BASIC line and hence whether indentation
required.

Signal no more characters are available, i.e. end
of line.

'Null Columns' Action Handler Routine

L35DA: CALL L35E6

SET 3,(HL)

LD HL,$FD6A

SET 0,(HL)

SCF

RET

Null Column Positions

Null remaining column positions in the edit buffer
row.

Signal last row of the BASIC line in the row flag
byte.

[Redundant since flag never subsequently tested.
Deleting these instructions would have saved 5
bytes]

Flag possibly intended to indicate the start of a
new BASIC line and hence whether indentation
required.

Signal no more characters are available, i.e. end
of line.

This routine inserts null characters into the remainder of a line edit buffer row.

Entry: B=Initial column to null.
DE=Address of start of edit row.

Exit: HL=Address of the row's flag byte.

SPECTRUM 128 ROM o DISASSEMBLY

L35E6: LDL,B
LD H,$00 HL=Number of columns.
ADD HL,DE Point to column position in line edit buffer row.
LD A,$20 32 columns.
L35EC: CPB Found specified column?
RET Z Return if so.
LD (HL),$00 Store a null in the location.
INC HL Next buffer position.
INC B Increment column position counter.
JR L35EC Repeat for next column.

Indent Edit Buffer Row

Indent a row by setting the appropriate number of characters in an edit buffer row to nulls, i.e. character
$00.

Entry: DE=Address of row within edit buffer.

Exit: B=First usable column number in the row.

L35F4: LD A,($FD6B) Get the number of indentation columns.
LD B,$00 Start at first column.
L35F9: LD H,$00
LDL,B HL=Column position.
ADD HL,DE
LD (HL),$00 Put a null in the column position.
INC B Next position.
DEC A
JR NZ,L35F9 Repeat for all remaining columns.
RET

Print Edit Buffer Row to Display File if Required

Print a row of the edit buffer to the display file if required.
Entry: HL=Address of edit buffer row.

L3604: PUSH BC Save registers.
PUSH DE
PUSH HL
PUSH HL Save edit buffer row address.
LD HL,$EEF5
BIT 2,(HL) Is printing of the edit buffer row required?
POP HL Retrieve edit buffer row address.
JR NZ,L3614 Jump if printing is not required.

LD B,C B=Cursor row position.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L3B1E Print the edit buffer row to the screen. Returns
with the carry flag set.
L3614: POP HL Restore registers.
POP DE
POP BC
RET

Shift Up Edit Rows in Display File if Required

This routine shifts edit rows in the display file up if required, replacing the bottom row with the top
entry from the Below-Screen Line Edit Buffer.
Entry: HL=Address of first row within the Below-Screen Line Edit Buffer.

C =Number of editing rows on screen.

B =Row number to shift from.

L3618: PUSH BC Save registers.
PUSH DE
PUSH HL
PUSH HL Save edit buffer row address.
LD HL,$EEF5
BIT 2,(HL) Is updating of the display file required?
POP HL Retrieve edit buffer row address.
JR NZ,L3628 Jump if updating is not required.
LD E,C E=Cursor row position, i.e. row to shift from.
CALL L3ABF Shift up edit rows in the display file, replacing the

bottom row with the top entry from the Below-
Screen Line Edit Buffer.
L3628: POP HL Restore registers.
POP DE
POP BC
RET

Shift Down Edit Rows in Display File if Required

This routine shifts edit rows in the display file down if required, replacing the top row with the bottom
entry from the Above-Screen Line Edit Buffer.
Entry: HL=Address of next row to use within the Above-Screen Line Edit Buffer.

C =Number of editing rows on screen.

B =Row number to shift from.

L362C: PUSH BC Save registers.
PUSH DE
PUSH HL

L363C:

SPECTRUM 128 ROM o DISASSEMBLY

PUSH HL Save edit buffer row address.

LD HL,$EEF5

BIT 2,(HL) Is updating of the display file required?

POP HL Retrieve edit buffer row address.

JR NZ,L363C Jump if updating is not required.

LD E,C E=Cursor row position, i.e. row to shift from.
CALL L3AC6 Shift down edit rows in the display file, replacing

the top row with the bottom entry from the Above-
Screen Line Edit Buffer.

POP HL Restore registers.

POP DE

POP BC

RET

Set Cursor Attribute Colour

L3640:

PUSH AF Save registers.
PUSH BC

PUSH DE

PUSH HL

LDAB Swap B with C.
LD B,C

LD CA

CALL L3A9D Set cursor position attribute.
POP HL Restore registers.
POP DE

POP BC

POP AF

RET

Restore Cursor Position Previous Attribute

L364F:

PUSH AF Save registers

PUSH BC

PUSH DE

PUSH HL

LD AB Column.

LD B,C Row.

LD CA Column.

CALL L3AB2 Restore cursor position attribute.
POP HL Restore registers.

POP DE

SPECTRUM 128 ROM o DISASSEMBLY

POP BC
POP AF
RET

Reset 'L' Mode

L365E:

L3668:

L367C:

LD A,$00

LD ($5C41),A
LD A,$02

LD ($5C0A),A
LD HL,$5C3B
LD A,(HL)

OR $0C

LD (HL),A

LD HL,$ECOD
BIT 4,(HL)

LD HL,FLAGS3
JR NZ,L367C
RES 0,(HL)
RET

SET 0,(HL)
RET

Wait for a Key Press
Exit: A holds key code.

L367F:
L3680:
L3683:

PUSH HL
LD HL,$5C3B
BIT 5,(HL)

JR Z,.3683
RES 5,(HL)
LD A,($5C08)
LD HL,$5C41
RES 0,(HL)
CP $20

JR NC,L36A2

CP $10

JR NC,L3680
CP $06

JR C,L3680

Select 'L' mode.

MODE.

Reset repeat key duration.
REPPER

FLAGS.

Select L-Mode and Print in L-Mode.

Editor flags.

Return to the calculator?
$5B66.

Jump ahead if so.

Select Editor/Menu mode.

Select BASIC/Calculator mode.

Preserve contents of HL.
FLAGS.

Wait for a key press.

Clear the new key indicator flag.

Fetch the key pressed from LAST_K.
MODE.

Remove extended mode.

Is it a control code?

Jump if not to accept all characters and token
codes (used for the keypad).

Is it a cursor key?

Jump back if not to wait for another key.
Is it a cursor key?

Jump back if not to wait for another key.

SPECTRUM 128 ROM o DISASSEMBLY

Control code or cursor key

L36A2:

L36A4:

CALL L36A4
JR NC,L3680
POP HL

RET

RST 28H

DEFW KEY_M_CL

RET

Handle CAPS LOCK code and 'mode' codes.
Jump back if mode might have changed.
Restore contents of HL.

$10DB. Handle CAPS LOCK code and 'mode’
codes via ROM 1.

MENU ROUTINES — PART 5

Display Menu

HL=Address of menu text.

L36A8:

L36D1:

L36D7:

PUSH HL
CALL L373B

LD HL,$5C3C
RES 0,(HL)
POP HL

LD E,(HL)
INC HL
PUSH HL

LD HL,L37EC
CALL L3733
POP HL
CALL L3733
PUSH HL
CALL L3822
LD HL,L37FA
CALL L3733
POP HL
PUSH DE

LD BC,$0807
CALL L372B

PUSH BC
LD B,$0C
LD A,$20
RST 10H
LD A,(HL)

Save address of menu text.

Store copy of menu screen area and system
variables.

TVFLAG.

Signal using main screen.

HL=Address of menu text.

Fetch number of table entries.

Point to first entry.

Set title colours.
Print them.

Print menu title pointed to by HL.

Print Sinclair stripes.

Black ' ".

Print it.

HL=Address of first menu item text.
Save number of menu items left to print.

Perform 'Print AT 8,7;' (this is the top left position

of the menu).

Save row print coordinates.

Number of columns in a row of the menu.
Print*".

Fetch menu item character.

L36E0:

L36E3:

Plot a Line

L3719:

SPECTRUM 128 ROM o DISASSEMBLY

INC HL

CP $80

JR NC,L36E0
RST 10H
DJNZ L36D7
AND $7F
RST 10H

LD A$20
RST 10H
DJINZ L36E3
POP BC

INC B

CALL L372B
DECE

JR NZ,L36D1
LD HL,$6F38

POP DE
SLAE
SLAE
SLAE

LD D,E

DEC D

LD E,$6F

LD BC,$FF00
LD AD

CALL L3719
LD BC,$0001
LD AE

CALL L3719
LD BC,$0100
LD AD

INC A

CALL L3719
XOR A

CALL L37CA

RET

PUSH AF
PUSH HL

End marker found?

Jump if end of text found.

Print menu item character

Repeat for all characters in menu item text.
Clear bit 7 to yield a final text character.
Print it.

Print trailing spaces

Until all columns filled.
Fetch row print coordinates.
Next row.

Print AT.

Repeat for all menu items.

Coordinates, pixel (111, 56) = end row 13,
column 7.

Fetch number of menu items to E.

Determine number of pixels to span all menu
items.

D=8*Number of menu items - 1.
Number of pixels in width of menu.
B=-1, C=0. Plot a vertical line going up.
A=Number of vertical pixels to plot.
Plot line.

B=0, C=1. Plot a horizontal line going to the right.

A=Number of horizontal pixels to plot.
Plot line.

B=1, C=0. Plot a vertical line going down.
A=Number of vertical pixels to plot.
Include end pixel.

Plot line.

A=Index of menu option to highlight.
Toggle menu option selection so that it is
highlight.

[Could have saved one byte by using JP $37CA

(ROM 0)]

Save registers.

SPECTRUM 128 ROM o DISASSEMBLY

PUSH DE

PUSH BC

LD B,H Coordinates to BC.
LD C,L

RST 28H

DEFW PLOT_SUB+4 $22E9. Plot pixel
POP BC Restore registers.
POP DE

POP HL

POP AF

ADD HL,BC Determine coordinates of next pixel.
DEC A

JR NZ,L3719 Repeat for all pixels.
RET

Print "AT B,C" Characters

L372B: LD A,$16 ‘AT
RST 10H Print.
LDAB B=Row number.
RST 10H Print.
LD AC C=Column number.
RST 10H Print.
RET
Print String
Print characters pointed to by HL until $FF found.
L3733: LD A,(HL) Fetch a character.
INC HL Advance to next character.
CP $FF Reach end of string?
RET Z Return if so.
RST 10H Print the character.
JR L3733 Back for the next character.

Store Menu Screen Area

Store copy of menu screen area and system variables.

L373B: SCF Set carry flag to signal to save screen area.
JR L373F Jump ahead to continue.

Restore Menu Screen Area

SPECTRUM 128 ROM o DISASSEMBLY

Restore menu screen area and system variables from copy.

Entry:

L373E:
L373F:

L3748:

L374D:

L3753:

L375B:

L3769:

AND A

LD DE,$EEF6
LD HL,$5C3C
JR C,L3748
EX DE,HL
LDI

JR C,L374D
EX DE,HL

LD HL,$5C7D
JR C,L3753
EX DE,HL

LD BC,$0014
LDIR

JR C,L375B
EX DE,HL

EX AF,AF'

LD BC,$0707
CALL L3B94

LD A,(IX+$01)

ADD AB
LD B,A
LD A,$0C

PUSH BC
PUSH AF
PUSH DE
RST 28H

DEFW CL_ADDR

LD BC,$0007
ADD HL,BC
POP DE
CALL L377E
POP AF
POP BC
DECB
DECA

JR NZ,L3769

IX=Address of the cursor settings information.

Reset carry flag to signal restore screen area.
Store for TVFLAG.

TVFLAG.

Jump if storing copies.

Exchange source and destination pointers.
Transfer the byte.

Jump if storing copies.

Restore source and destination pointers.
COORDS. DE=$EEF7 by now.

Jump if storing copies.

Exchange source and destination pointers.
Copy 20 bytes.

Copy COORDS until ATTR_T.

Jump if storing copies.

Restore source and destination pointers.
Save copy direction flag.

Menu will be at row 7, column 7.

B=Number of rows to end row of screen.
C=Number of columns to the end column of the
screen.

A=Rows above the editing area ($16 when using
the lower screen, $00 when using the main
screen).

B=Row number within editing area.

B=Bottom screen row to store.

A=Number of rows to store. [Could have been
just $07 freeing up 630 bytes of workspace]

B holds number of row to store.

A holds number of rows left to store.

DE=End of destination address.

$OE9B. HL=Display file address of row B.
Menu always starts at column 7.
HL=Address of attribute byte at column 7.

Store / restore menu screen row.
Next row.

More rows to store / restore?
Repeat for next row

SPECTRUM 128 ROM o DISASSEMBLY

RET

Store / Restore Menu Screen Row

Entry:

Exit :

Save the display file bytes

L377E:

L3781:

L3789:

L378E:

LD BC,$080E

PUSH BC
LD B,$00
PUSH HL
EX AF,AF'
JR C,L3789
EX DE,HL
LDIR

JR C,L378E
EX DE,HL
EX AF,AF'
POP HL
INCH

POP BC
DJNZ L3781

Now save the attributes

L37A0:

L37A5:

PUSH BC
PUSH DE
RST 28H
DEFW CL_ATTR
EX DE,HL
POP DE
POP BC

EX AF,AF'
JR C,L37A0
EX DE,HL
LDIR

JR C,L37A5
EX DE,HL
EX AF,AF'
RET

HL=Start address of menu row in display file.

DE=Screen location/Workspace store for screen row.

AF'=Carry flag set for store to workspace, reset for restore to screen.
DE=Screen location/workspace store for next screen row.

B=Menu row is 8 lines deep. C=Menu is 14
columns wide.

Save number of row lines.

Just keep the column count in BC.

Save display file starting address.

Retrieve copy direction flag.

Jump if storing copies of display file bytes.
Exchange source and destination pointers.
Copy the row of menu display file bytes.
Jump if storing copies of display file bytes.
Restore source and destination pointers.
Save copy direction flag.

Fetch display file starting address.
Advance to next line

Fetch number of lines.

Repeat for next line.

B=0. C=Number of columns.
DE=Destination address.

$OE88. HL=Address of attribute byte.
DE=Address of attribute byte.

Retrieve copy direction flag.

Jump if storing copies of attribute bytes.
Restore source and destination pointers.
Copy the row of menu attribute bytes.
Jump if storing copies of attribute bytes.
Restore source and destination pointers.
Save copy direction flag.

SPECTRUM 128 ROM o DISASSEMBLY

Move Up Menu

L37AT: CALL L37CA Toggle old menu item selection to de-highlight it.
DEC A Decrement menu index.
JP P,L37B1 Jump if not exceeded top of menu.
LD A,(HL) Fetch number of menu items.
DEC A Ignore the title.
DEC A Make it indexed from O.

L37B1: CALL L37CA Toggle new menu item selection to highlight it.
SCF Ensure carry flag is set to prevent immediately
RET calling menu down routine upon return.

Move Down Menu

L37B6: PUSH DE Save DE.
CALL L37CA Toggle old menu item selection to de-highlight it.
INC A Increment menu index.
LDD,A Save menu index.
LD A,(HL) fetch number of menu items.
DEC A Ignore the title.
DEC A Make it indexed from 0.
CPD Has bottom of menu been exceeded?
LD AD Fetch menu index.
JP P,L37C5 Jump if bottom menu not exceeded.
XOR A Select top menu item.
L37C5: CALL L37CA Toggle new menu item selection to highlight it.
POP DE Restore DE.
RET

Toggle Menu Option Selection Highlight

L37CA: PUSH AF Save registers.

PUSH HL

PUSH DE

LD HL,$5907 First attribute byte at position (9,7).

LD DE,$0020 The increment for each row.

AND A

JR Z,L37DA Jump ahead if highlighting the first entry.
L37D6: ADD HL,DE Otherwise increase HL

DEC A for each row.

L37DA:

L37E1:
L37E3:

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,L37D6
LD A,$78

CP (HL)

JR NZ,L37E1
LD A,$68

LD D,$0E

LD (HL),A
INC HL

DEC D

JR NZ,L37E3
POP DE
POP HL
POP AF

RET

Menu Title Colours Table

L37EC:

DEFB $16, $07, $07
DEFB $15, $00
DEFB $14, $00
DEFB $10, $07
DEFB $11, 00
DEFB $13, $01
DEFB $FF

Menu Title Space Table

L37FA:

Menu Sinclair Stripes Bitmaps

DEFB $11, $00
DEFB "'

DEFB $11, $07
DEFB $10, $00
DEFB $FF

Flash 0, Bright 1, Paper 7, Ink O = Bright white.
Is the entry already highlighted?

Jump ahead if not.

Flash 0, Bright 1, Paper 5, Ink 0 = Bright cyan.
There are 14 columns to set.

Set the attributes for all columns.

Restore registers.

AT 7,7
OVER O
INVERSE 0
INK 7
PAPER 0
BRIGHT 1

PAPER O

PAPER 7
INK O

Bit-patterns for the Sinclair stripes used on the menus.

L3802:

DEFB $01
DEFB $03
DEFB $07
DEFB $0F

0000O0OO0OO01 X
00000011 XX
00000111 XXX
00001111 XXXX

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $1F
DEFB $3F
DEFB $7F
DEFB $FF
DEFB $FE
DEFB $FC
DEFB $F8
DEFB $FO
DEFB $EO
DEFB $CO
DEFB $80
DEFB $00

Sinclair Strip 'Text'

CHARS points to RAM at $5A98, and characters ' ' and '!" redefined as the Sinclair strips using the

bit patterns above.

L3812:

DEFB $10, $02, '"
DEFB $11, $06, '
DEFB $10, $04, '"
DEFB $11, $05, '
DEFB $10, $00, ''
DEFB $FF

oOrFPrFPFPFPFPRPFLPPLOOO
oOoOrFPFPFRPFRPEFLPFPLPPFPLOO
oo oOoOrRFRFRPRFRPRFRPRFPLPEFPLPPEPLO
[oNeolNolNoll Nl o i i i
[oNeolololNoll N il ol
[oNeololoNolNoll N) Sl ol
[oNeololoNeoNolNoll J)) ol
[eNeolNololNeoleolNoNol JN 0 -

INK 2
PAPER 6
INK 4
PAPER 5
INK O

Print the Sinclair stripes on the menu

L3822:

PUSH BC
PUSH DE
PUSH HL

LD HL,L3802
LD DE,STRIP1
LD BC,$0010
LDIR

LD HL,($5C36)
PUSH HL

LD HL,STRIP1-$0100
LD ($5C36),HL
LD HL,L3812
CALL L3733
POP HL

LD ($5C36),HL
POP HL

Save registers.

Graphics bit-patterns
$5B98.

Copy two characters.
Save CHARS.

$5A98.

Set CHARS to point to new graphics.

Point to the strip string.
Print it.
Restore CHARS.

Restore registers.

SPECTRUM 128 ROM o DISASSEMBLY

POP DE
POP BC
RET

Print '128 BASIC' Banner

L3848: LD HL,L2769
JR L385A

Print 'Calculator' Banner

L384D: LD HL,L2772
JR L385A

Print 'Tape Loader' Banner

L3852: LD HL,L275E
JR L385A

Print 'Tape Tester' Banner

L3857: LD HL,L2784

Print Banner

L385A: PUSH HL

CALL L3881
LD HL,$5AA0
LD B,$20
LD A,$40
L.3865: LD (HL),A
INC HL
DJINZ L3865
LD HL,L37EC

"128 BASIC" text from main menu.
Jump ahead to print banner.

"Calculator" text from main menu.
Jump ahead to print banner.

"Tape Loader" text from main menu.
Jump ahead to print banner.

"Tape Tester" text from main menu.

Address in memory of the text of the selected
menu item.

Clear lower editing area display.

Address of banner row in attributes.

32 columns.

FLASH 0, BRIGHT 1, PAPER 0, INK 0.

Set a black row.

Menu title colours table.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L3733

LD BC,$1500
CALL L372B

POP DE

CALL LO57D
LD C,$1A
CALL L372B
JP L3822

Clear Lower Editing Display

L3881: LD B,$15
LD D,$17
JP L3B5E

RENUMBER ROUTINE

Print the colours as a string.

Perform 'Print AT 21,0;".

Address in memory of the text of the selected
menu item.

Print the text.

B has not changed and still holds 21.

Perform 'Print AT 21,26;".

Print Sinclair stripes and return to calling routine.

Top row of editing area.
Bottom row of editing area.
Reset Display.

Exit: Carry flag reset if required to produce an error beep.

1.3888: CALL L1F20
CALL L3A05
LD AD
ORE
JP Z,L39C0
LD HL,(RNSTEP)

RST 28H
DEFW HL_MULT_DE

EX DE,HL

Use Normal RAM Configuration (physical RAM
bank 0).
DE=Count of the number of BASIC lines.

Were there any BASIC lines?

Jump if not to return since there is nothing to
renumber.

$5B96. Fetch the line number increment for
Renumber.

$30A9. HL=HL*DE in ROM 1. HL=Number of
lines * Line increment = New last line number.
[BUG - If there are more than 6553 lines then
an arithmetic overflow will occur and hence

the test below to check if line 9999 would be
exceeded will fail. The carry flag will be set upon
such an overflow and simply needs to be tested.
The bug can be resolved by following the call

to HL_MULT_DE with a JP C,$39C0 (ROM 0)
instruction. Credit: lan Collier (+3), Andrew Owen
(128)]

DE=0ffset of new last line number from the first
line number.

There is a program that can be renumbered

L38AA:

L38B8:

L38C5:

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,(RNFIRST)
ADD HL,DE

LD DE,$2710
ORA

SBC HL,DE

JP NC,L39C0

LD HL,($5C53)
RST 28H
DEFW NEXT_ONE

INC HL
INC HL
LD (RNLINE),HL

INC HL
INC HL

LD (N_STR1+4),DE
LD A,(HL)

RST 28H

DEFW NUMBER
CP $0D

JR Z,L38C5

CALL L390E

JR L38B8

LD DE,(N_STR1+4)
LD HL,($5C4B)

AND A
SBC HL,DE

EX DE,HL
JR NZ,L38AA

$5B94. Starting line number for Renumber.
HL=New last line number.
10000.

Would the last line number above 99997
Jump if so to return since Renumber cannot
proceed.

PROG. HL=Address of first BASIC line.

Find the address of the next BASIC line from the
$19B8. location pointed to by HL, returning it in
DE.

Advance past the line number bytes to point

at the line length bytes.

$5B92. Store the address of the BASIC line's
length bytes.

Advance past the line length bytes to point

at the command.

$5B6B. Store the address of the next BASIC line.
Get a character from the BASIC line.

Advance past a floating point number, if present.
$18B6.

Is the character an 'ENTER'?

Jump if so to examine the next line.

Parse the line, renumbering any tokens that may
be followed by a line number.

Repeat for all remaining character until end of the
line.

$5B6B. DE=Address of the next BASIC line.
VARS. Fetch the address of the end of the BASIC
program.

Has the end of the BASIC program been
reached?

HL=Address of start of the current BASIC line.
Jump back if not to examine the next line.

The end of the BASIC program has been reached so now it is time to update the line numbers and

line lengths.

CALL L3A05
LD B,D
LD C,E
LD DE,$0000

DE=Count of the number of BASIC lines.

BC=Count of the number of BASIC lines.

L38DD:

Tokens Using Line Numbers

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,($5C53)
PUSH BC

PUSH DE

PUSH HL

LD HL,(RNSTEP)
RST 28H

DEFW HL_MULT_DE
LD DE,(RNFIRST)
ADD HL,DE
EX DE,HL
POP HL

LD (HL),D
INC HL

LD (HL),E
INC HL

LD C,(HL)
INC HL

LD B,(HL)
INC HL

ADD HL,BC
POP DE

INC DE

POP BC
DEC BC
LDAB
ORC

JR NZ,L38DD
CALL L1F45

LD (RNLINE),BC

SCF
RET

PROG. HL=Address of first BASIC line.
BC=Count of number of lines left to update.
DE-=Index of the current line.

HL=Address of current BASIC line.

$5B96. HL=Renumber line increment.
Calculate new line number offset, i.e. Line
increment * Line index.

$30A9. HL=HL*DE in ROM 1.

$5B94. The initial line number when renumbering.
HL=The new line number for the current line.
DE=The new line number for the current line.
HL=Address of current BASIC line.

Store the new line number for this line.

Fetch the line length.

Point to the next line.

DE=Index of the current line.

Increment the line index.

BC=Count of number of lines left to update.
Decrement counter.

Jump back while more lines to update.

Use Workspace RAM configuration (physical
RAM bank 7).

$5B92. Clear the address of line length bytes of
the ‘current line being renumbered'. [No need to
clear this]

Signal not to produce an error beep.

A list of all tokens that maybe followed by a line number and hence require consideration.

L3907:

DEFB $CA
DEFB $FO
DEFB $E1
DEFB $EC
DEFB $ED
DEFB $E5

'LINE".
'LIST".
'LLIST".

‘GO TO'.
‘GO SUB'.
'RESTORE'".

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $F7 'RUN".

Parse a Line Renumbering Line Number References

This routine examines a BASIC line for any tokens that may be followed by a line number reference
and if one is found then the new line number if calculated and substituted for the old line number
reference. Although checks are made to ensure an out of memory error does not occur, the routine
simply returns silently in such scenarios and the renumber routine will continue onto the next BASIC
line.
Entry: HL=Address of current character in the current BASIC line.

A=Current character.

L390E: INC HL Point to the next character.
LD (HD_11+1),HL $5B79. Store it.
EX DE,HL DE=Address of next character.
LD BC,$0007 There are 7 tokens that may be followed by a line
LD HL,L3907 number, and these are listed in the table at $3907
(ROM 0).
CPIR Search for a match for the current character.
EX DE,HL HL=Address of next character.
RET NZ Return if no match found.

A token that might be followed by a line number was found. If it is followed by a line number then
proceed to renumber the line number reference. Note that the statements such as GO TO VAL "100"
will not be renumbered. The line numbers of each BASIC line will be renumbered as the last stage
of the renumber process at $38D2 (ROM 0).

LD C,$00 Counts the number of digits in the current line

number representation. B will be $00 from above.
L391F: LD A,(HL) Fetch the next character.

CP"' $20. Is it a space?

JR Z,L393F Jump ahead if so to parse the next character.

RST 28H

DEFW NUMERIC $2D1B. Is the character a numeric digit?

JR NC,L393F Jump if a numeric digit to parse the next
character.

CP" $2E. Is it a decimal point?

JR Z,L393F Jump ahead if so to parse the next character.

CP $0E Does it indicate a hidden number?

JR Z,L.3943 Jump ahead if so to process it.

OR $20 Convert to lower case.

CP'e' $65. Is it an exponent 'e'?

JR NZ,L393B Jump if not to parse the next character.

LDAB Have any digits been found?

ORC

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,L393F

A line number reference was not found

L393B:

L393F:

LD HL,(HD_11+1)

RET

INC BC
INC HL
JR L391F

An embedded number was found

L3943:

LD (HD_00),BC

PUSH HL
RST 28H
DEFW NUMBER

CALL L3A36
LD A,(HL)
POP HL
cp

JR Z,L3957
CP $0D
RET NZ

End of statement/line found

L3957:

INC HL
RST 28H
DEFW STACK_NUM

RST 28H
DEFW FP_TO_BC

LD H,B
LDL,C

Jump ahead to parse the next character.

$5B79. Retrieve the address of the next
character.

Increment the number digit counter.

Point to the next character.

Jump back to parse the character at this new
address.

$5B71. Note the number of digits in the old line
number reference.
Save the address of the current character.

$18B6. Advance past internal floating point
representation, if present.

Skip over any spaces.

Fetch the new character.

HL=Address of the current character.

$3A. Isit":'?

Jump if so.

Is it 'ENTER'?

Return if not.

Point to the next character.

$33B4. Move floating point number to the
calculator stack.

$2DA2. Fetch the number line to BC. [BUG - This
should test the carry flag to check whether the
number was too large to be transferred to BC. If
so then the line number should be set to 9999,
as per the instructions at $396A (ROM 0). As a
result, the call the LINE_ADDR below can result
in a crash. The bug can be resolved using a JR
C,$396A (ROM 0) instruction. Credit: lan Collier
(+3), Andrew Owen (128)]

Transfer the number line to HL.

SPECTRUM 128 ROM o DISASSEMBLY

RST 28H
DEFW LINE_ADDR

JR Z,L396F
LD A,(HL)

CP $80

JR NZ,L396F
LD HL,$270F
JR L3980

The reference line exists

L396F:

LD (HD_OF+1),HL
CALL L3A0B

LD HL,(RNSTEP)
RST 28H
DEFW HL_MULT_DE

LD DE,(RNFIRST)
ADD HL,DE

HL=New line number being referenced

L3980:

LD DE,HD_0B+1

PUSH HL
CALL L3A3C

LDEB

Find the address of the line number specified by
HL.

$196E. HL=Address of the BASIC line, or the
next one if it does not exist.

Jump if the line exists.

Has the end of the BASIC program been
reached?

[BUG - This tests for the end of the variables
area and not the end of the BASIC program area.
Therefore, the renumber routine will not terminate
properly if variables exist in memory when it is
called. Executing CLEAR prior to renumbering will
overcome this bug. It can be fixed by replacing
CP $80 with the instructions AND $CO / JR Z,
$396F (ROM 0). Credit: lan Collier (+3), Andrew
Owen (128)]

Jump ahead if not.

Make the reference point to line 9999.

Jump ahead to update the reference to use the
new line number.

$5B77. Store the address of the referenced line.
DE=Count of the number of BASIC lines up to the
referenced line.

$5B96. Fetch the line number increment.

$30A9. HL=HL*DE in ROM 1. HL=Number of
lines * Line increment = New referenced line
number. [An overflow could occur here and would
not be detected. The code at $3898 (ROM 0)
should have trapped that such an overflow would
occur and hence there would have been no
possibility of it occurring here.]

$5B94. Starting line number for Renumber.
HL=New referenced line number.

$5B73. Temporary buffer to generate ASCII
representation of the new line number.
Save the new line number being referenced.
Create the ASCII representation of the line
number in the buffer.

SPECTRUM 128 ROM o DISASSEMBLY

INCE
LD D,$00
PUSH DE
PUSH HL

LDL,E
LD H,$00
LD BC,(HD_00)

ORA
SBC HL,BC
LD (HD_00),HL

JR Z,L39CF
JR C,L39C5

LD B,H
LDC,.L

LD HL,(HD_11+1)

PUSH HL
PUSH DE

LD HL,($5C65)
ADD HL,BC

JR C,L39BE

EX DE,HL
LD HL,$0082

ADD HL,DE
JR C,L39BE

SBC HL,SP
CCF

JR C,L39BE
POP DE

POP HL
RST 28H

DE=Number of digits in the new line number.
DE=Number of digits in the new line number.
HL=Address of the first non-'0' character in the
buffer.

HL=Number of digits in the new line number.
$5B71. Fetch the number of digits in the old line
number reference.

Has the number of digits changed?

$5B71. Store the difference between the number
of digits in the old and new line numbers.

Jump if they are the same length.

Jump if the new line number contains less digits
than the old.

The new line number contains more digits than the old line number

BC=Length of extra space required for the new
line number.

$5B79. Fetch the start address of the old line
number representation within the BASIC line.
Save start address of the line number reference.
DE=Number of non-'0' characters in the line
number string.

STKEND. Fetch the start of the spare memory.
Would a memory overflow occur if the space were
created?

Jump if not to return without changing the line
number reference.

DE=New STKEND address.

Would there be at least 130 bytes at the top of
RAM?

Jump if not to return without changing the line
number reference.
Is the new STKEND address below the stack?

Jump if not to return without changing the line
number reference.

DE=Number of non-'0' characters in the line
number string.

HL=Start address of line number reference.

SPECTRUM 128 ROM o DISASSEMBLY

DEFW MAKE_ROOM $1655. Create the space for the extra line number
digits.
JR L39CF Jump ahead to update the number digits.

No room available to insert extra line number digits

L39BE: POP DE Discard stacked items.
POP HL

[At this point the stack contains 3 surplus items. These are not explicitly popped off the stack since
the call to $1F45 (ROM 0) will restore the stack to the state it was in at $3888 (ROM 0) when the
call to $1F20 (ROM 0) saved it.] Exit if no BASIC program, renumbering would cause a line number
overflow or renumbering would cause an out of memory condition

L39Co: CALL L1F45 Use Workspace RAM configuration (physical
RAM bank 7).
AND A Reset the carry flag so that an error beep will be
produced.
RET

The new line number contains less digits than the old line number

L39Cs: DEC BC BC=Number of digits in the old line number
reference.
DECE Decrement number of digits in the new line
number.
JR NZ,L39C5 Repeat until BC has been decremented by the

number of digits in the new line number, thereby
leaving BC holding the number of digits in the
BASIC line to be discarded.

LD HL,(HD_11+1) $5B79. Fetch the start address of the old line
number representation within the BASIC line.

RST 28H

DEFW RECLAIM_2 $19E8. Discard the redundant bytes.

The appropriate amount of space now exists in the BASIC line so update the line number value

L39CF: LD DE,(HD_11+1) $5B79. Fetch the start address of the old line
number representation within the BASIC line.
POP HL HL=Address of the first non-'0' character in the
buffer.
POP BC BC=Number of digits in the new line number.
LDIR Copy the new line number into place.
EX DE,HL HL=Address after the line number text in the

BASIC line.

SPECTRUM 128 ROM o DISASSEMBLY

LD (HL),$0E
POP BC
INC HL

PUSH HL
RST 28H
DEFW STACK_BC

POP DE

LD BC,$0005
LDIR
EX DE,HL

PUSH HL
LD HL,(RNLINE)

PUSH HL

LD E,(HL)

INC HL

LD D,(HL)

LD HL,(HD_00)
ADD HL,DE

EX DE,HL

POP HL

LD (HL),E

INC HL

LD (HL),D

LD HL,(N_STR1+4)
LD DE,(HD_00)
ADD HL,DE

LD (N_STR1+4),HL

POP HL

Store the hidden number marker.

Retrieve the new line number being referenced.
HL=Address of the next position within the BASIC
line.

$2D2B. Put the line number on the calculator
stack, returning HL pointing to it. [BUG - This
stacks the new line number so that the floating
point representation can be copied. However,
the number is not actually removed from the
calculator stack. Therefore the amount of free
memory reduces by 5 bytes as each line with a
line number reference is renumbered. A call to
FP_TO_BC (at $2DA2 within ROM 1) after the
floating point form has been copied would fix
the bug. Note that all leaked memory is finally
reclaimed when control is returned to the Editor
but the bug could prevent large programs from
being renumbered. Credit: Paul Farrow]
DE=Address of the next position within the BASIC
line.

Copy the floating point form into the BASIC line.
HL=Address of character after the newly inserted
floating point number bytes.

$5B92. HL=Address of the current line's length
bytes.

DE=Existing length of the current line.
$5B71. HL=Change in length of the line.

DE=New length of the current line.
HL=Address of the current line's length bytes.

Store the new length.
$5B6B. HL=Address of the next BASIC line.
$5B71. DE=Change in length of the current line.

$5B6B. Store the new address of the next BASIC
line.

HL=Address of character after the newly inserted
floating point number bytes.

SPECTRUM 128 ROM o DISASSEMBLY

RET

Count the Number of BASIC Lines

This routine counts the number of lines in the BASIC program, or if entered at $3A0B (ROM 0) counts
the number of lines up in the BASIC program to the address specified in HD_0F+1.
Exit: DE=Number of lines.

L3A05: LD HL,($5C4B) VARS. Fetch the address of the variables
LD (HD_OF+1),HL $5B77. and store it.

L3A0B: LD HL,($5C53) PROG. Fetch the start of the BASIC program
LD DE,(HD_OF+1) $5B77. and compare against the address of
ORA the end address to check whether there is
SBC HL,DE a BASIC program.
JR Z,L3A31 Jump if there is no BASIC program.
LD HL,($5C53) PROG. Fetch the start address of the BASIC

program.

LD BC,$0000 A count of the number of lines.

L3A1D: PUSH BC Save the line number count.
RST 28H Find the address of the next BASIC line from the
DEFW NEXT_ONE $19B8. location pointed to by HL, returning it in

DE.

LD HL,(HD_OF+1) $5B77. Fetch the start of the variables area,
AND A i.e. end of the BASIC program.
SBC HL,DE
JR Z,L3A2E Jump if end of BASIC program reached.
EX DE,HL HL=Address of current line.
POP BC Retrieve the line number count.
INC BC Increment line number count.
JR L3A1D Jump back to look for the next line.

L3A2E: POP DE Retrieve the number of BASIC lines and
INC DE increment since originally started on a line.
RET

No BASIC program

L3A31: LD DE,$0000 There are no BASIC lines.
RET

Skip Spaces

L3A35: INC HL Point to the next character.

L3A36: LD A,(HL) Fetch the next character.

SPECTRUM 128 ROM o DISASSEMBLY

CP"
JR Z,L3A35
RET

$20. Is it a space?
Jump if so to skip to next character.

Create ASCII Line Number Representation
Creates an ASCII representation of a line number, replacing leading zeros with spaces.

Entry: HL=The line number to convert.

DE=Address of the buffer to build ASCII representation in.
B=Number of non-'0' characters minus 1 in the ASCII representation.
Exit: HL=Address of the first non-'0' character in the buffer.

L3A3C: PUSH DE

LD BC,$FC18
CALL L3A60
LD BC,$FF9C
CALL L3A60
LD C,$F6
CALL L3A60
LD AL

ADD A,'0'

LD (DE),A
INC DE

Now skip over leading zeros

LD B,$03
POP HL

LD A,(HL)
CP O

RET NZ

LD (HL), "
INC HL
DJNZ L3A56
RET

L3A56:

Insert Line Number Digit

This routine effectively works out the result of HL divided by BC. It does this by repeatedly adding a

negative value until no overflow occurs.
Entry: HL=Number to test.
BC=Negative amount to add.

Store the buffer address.
BC=-1000.

Insert how many 1000s there are.
BC=-100.

Insert how many 100s there are.
BC=-10.

Insert how many 10s there are.
A=Remainder.

$30. Convert into an ASCII character ('0'..

Store it in the buffer.
Point to the next buffer position.

Skip over 3 leading zeros at most.
Retrieve the buffer start address.
Fetch a character.

$30. Is it a leading zero?

Return as soon as a non-'0' character is found.

$20. Replace it with a space.
Point to the next buffer location.
Repeat until all leading zeros removed.

DE=Address of buffer to insert ASCII representation of the number of divisions.

'9).

SPECTRUM 128 ROM o DISASSEMBLY

Exit: HL=Remainder.

DE=Next address in the buffer.

L3A60: XOR A

L3A61: ADD HL,BC
INC A
JR C,L3A61
SBC HL,BC
DEC A
ADD A0’
LD (DE),A
INC DE
RET

Assume a count of 0 additions.

Add the negative value.

Increment the counter.

If no overflow then jump back to add again.
Undo the last step

and the last counter increment.

$30. Convert to an ASCII character ('0'..'9").
Store it in the buffer.

Point to the next buffer position.

EDITOR ROUTINES — PART 4

Initial Lower Screen Cursor Settings

Copied to $FD6C-$FD73.

L3A6D: DEFB $08
DEFB $00
DEFB $00
DEFB $14
DEFB $00
DEFB $00
DEFB $00
DEFB $0F

DEFB $00

Number of bytes in table.

$FD6C. [Setting never used)]

$FD6D = Rows above the editing area.
$FDG6E. [Setting never used]

$FD6F. [Setting never used)]

$FD70. [Setting never used]

$FD71. [Setting never used]

$FD72 = Cursor attribute colour (blue paper,
white ink).

$FD73 = Stored cursor position screen attribute
colour (None = black paper, black ink).

Initial Main Screen Cursor Settings

Copied to $SFD6C-$FD73.

L3A76: DEFB $08
DEFB $00
DEFB $16
DEFB $01
DEFB $00
DEFB $00

Number of bytes in table.

$FD6C. [Setting never used]

$FD6D = Rows above the editing area.
$FDG6E. [Setting never used]

$FD6F. [Setting never used)]

$FD70. [Setting never used]

SPECTRUM 128 ROM o DISASSEMBLY

DEFB $00 $FD71. [Setting never used]

DEFB $0F $FD72 = Cursor attribute colour (blue paper,
white ink).

DEFB $00 $FD73 = Stored cursor position screen attribute

colour (None = black paper, black ink).

Set Main Screen Editing Cursor Details

Set initial cursor editing settings when using the main screen.
Copies 8 bytes from $3A6E-$3A75 (ROM 0) to $FD6C-$FD73.

L3A7F: LD IX,$FD6C Point IX at cursor settings in workspace.
LD HL,L3A6D Initial values table for the lower screen cursor
settings.
JR L3A8B Jump ahead.

Set Lower Screen Editing Cursor Details

Set initial cursor editing settings when using the lower screen.
Copies 8 bytes from $3A77-$3A7E (ROM 0) to $FD6C-$FD73.

L3A88: LD HL,L3A76 Initial values table for the main screen cursor
settings.
L3A8B: LD DE,$FD6C DE=Cursor settings in workspace.
JP L3FBA Jump to copy the settings.

UNUSED ROUTINES — PART 2

Print 'AD’
This routine prints to the current channel the contents of register A and then the contents of register D.
[Never called by ROM].

L3A91: RST 10H Print character held in A.
LD AD
RST 10H Print character held in D.
SCF

RET

SPECTRUM 128 ROM o DISASSEMBLY

EDITOR ROUTINES — PART 5

Store Cursor Colour

L3A96: AND $3F
LD (IX+$06),A
SCF

RET

Set Cursor Position Attribute

L3A9D: LD A,(IX+$01)

ADD A,B

LD B,A
CALL L3BAO
LD A,(HL)
LD (IX+$07),A
CPL

AND $CO
OR (IX+$086)
LD (HL),A
SCF

RET

Mask off flash and bright bits.
Store it as the new cursor attribute value.

A=Rows above the editing area ($16 when using
the lower screen, $00 when using the main
screen).

B=Row number within editing area.

B=Screen row number.

Get address of attribute byte into HL.

Fetch current attribute byte.

Store the current attribute byte.

Invert colours.

Mask off flash and bright bits.

Get cursor colour.

Store new attribute value to screen.
[Redundant since calling routine preserves AF]

Restore Cursor Position Attribute

L3AB2: LD A,(IX+$01)

ADD A,B

LD B,A

CALL L3BAO
LD A,(IX+$07)
LD (HL),A
RET

A=Rows above the editing area ($16 when using
the lower screen, $00 when using the main
screen).

B=Row number within editing area.

B=Screen row humber.

Get address of attribute byte into HL.

Get previous attribute value.

Set colour.

SPECTRUM 128 ROM o DISASSEMBLY

Shift Up Edit Rows in Display File

This routine shifts edit rows in the display file up, replacing the bottom row with the top entry from the
Below-Screen Line Edit Buffer.
Entry: HL=Address of first row in the Below-Screen Line Edit Buffer.

E =Number of editing rows on screen.

B =Row number to shift from.

L3ABF: PUSH HL Save the address of the Below-Screen Line Edit
Buffer row.
LD H,$00 Indicate to shift rows up.
LD AE A=Number of editing rows on screen.
SUB B A=Number of rows to shift, i.e. from current row to
end of edit screen.
JR L3ACD Jump ahead.

Shift Down Edit Rows in Display File

This routine shifts edit rows in the display file down, replacing the top row with the bottom entry from
the Above-Screen Line Edit Buffer.
Entry: HL=Address of next row to use within the Above-Screen Line Edit Buffer.

E =Number of editing rows on screen.

B =Row number to shift from.

L3ACS6: PUSH HL Save the address of the first row in Below-Screen
Line Edit Buffer.
LD AE A=Number of editing rows on screen.
LDE,B E=Row number to shift from.
LD B,A B=Number of editing rows on screen.
SUBE A=Number of rows to shift, i.e. from current row to
end of edit screen.
LD H,$FF Indicate to shift rows down.
Shift Rows
L3ACD: LDCA C=Number of rows to shift.
LDAB A=Row number to shift from.
CPE Is it the final row of the editing screen?
JR Z,L3B1D Jump if so to simply display the row.

Shift all display file and attributes rows up

PUSH DE Save number of editing rows on screen, in E.

SPECTRUM 128 ROM o DISASSEMBLY

CALL L3B98
L3ADG: PUSH BC

LD CH
RST 28H
DEFW CL_ADDR

EX DE,HL
XOR A
ORC

JR Z,L3AE3
INC B

JR L3AE4
L3AE3: DECB

L3AEA4: PUSH DE
RST 28H
DEFW CL_ADDR

POP DE
Copy one row of the display file

LD AC
LD C,$20
LD B,$08
L3AEE: PUSH BC
PUSH HL
PUSH DE
LD B,$00
LDIR
POP DE
POP HL
POP BC
INCH
INC D
DJINZ L3AEE

Copy one row of display attributes

PUSH AF
PUSH DE

RST 28H

B=Inverted row number, i.e. 24-row number.
B=Inverted row number, C=Number of rows left to
shift.

Store the direction flag.

$OE9B. HL=Destination display file address, for
the row number specified by 24-B.
DE=Destination display file address.

Fetch the direction flag.

Jump if moving up to the previous row.

Move to the previous row (note that B is inverted,
i.e. 24-row number).

Jump ahead.

Move to the next row (note that B is inverted, i.e.
24-row number).

DE=Destination display file address.

$0E9B. HL=Source display file address, for the
row number held in B.
DE=Destination display file address.

Fetch the direction flag.
32 columns.
8 lines.

Copy one line in the display file.

Next source line in the display file.
Next destination line in the display file.
Repeat for all lines in the row.

Save the duration flag.

DE=Address of next destination row in the display
file.

HL=Address of next source row in the display file.

SPECTRUM 128 ROM o DISASSEMBLY

DEFW CL_ATTR
EX DE,HL

EX (SP),HL

RST 28H

DEFW CL_ATTR
EX DE,HL

EX (SP),HL
POP DE

LD BC,$0020
LDIR

Repeat to shift the next row

L3B16:

L3B17:

L3B1D:

POP AF
POP BC

AND A
JR Z,L3B16
INC B

JR L3B17
DECB

DECC
LD H,A
JR NZ,L3AD6
POP DE
LD B,E
POP HL

$0E88. DE=Address of corresponding attribute
cell.

HL=Address of corresponding source attribute
cell.

Store source attribute cell on the stack, and fetch
the next destination row in the display file in HL.
HL=Address of next destination row in the display
file.

$OEB8. DE=Address of corresponding destination
attribute cell.

HL=Address of corresponding destination
attribute cell.

Store destination attribute cell on the stack, and
fetch the source attribute cell in HL.
DE=Destination attribute cell.

Copy one row of the attributes file.

Retrieve the direction flag.

B=Inverted row number, C=Number of rows left to
shift.

Shifting up or down?

Jump if shifting rows up.

Move to the previous row, i.e. the row to copy
(note that B is inverted, i.e. 24-row number).
Jump ahead.

Move to the next row, i.e. the row to copy (note
that B is inverted, i.e. 24-row number).
Decrement the row counter.

H=Direction flag.

Jump if back more rows to shift.

E=Number of editing rows on screen.
B=Number of editing rows on screen.
HL=Address of the Line Edit Buffer row to print
(either in the Above-Screen Line Edit Buffer or in
the Below-Screen Line Edit Buffer).

Print a Row of the Edit Buffer to the Screen

This routine prints all 32 characters of a row in the edit buffer to the display file.
When shifting all rows up, this routine prints the top entry of the Below-Screen Line Edit Buffer to the
first row of the display file.

When shifting all rows down, this routine prints the bottom entry of the Above-Screen Line Edit Buffer

SPECTRUM 128 ROM o DISASSEMBLY

to the last editing row of the display file.
Entry: B =Row number to print at.

L3B1E:

L3B31:

L3B3C:

L3B42:

L3B49:

L3B55:

HL=Address of edit buffer row to print.

CALL L3BBS
EX DE,HL

LD A,($5C3C)
PUSH AF

LD HL,$ECOD
BIT 6,(HL)
RES 0,A

JR Z,L3B31
SET 0,A

LD ($5C3C),A
LD C,$00
CALL L372B
EX DE,HL

LD B,$20

LD A,(HL)
AND A

JR NZ,L3B42
LD A,$20

CP $90

JR NC,L3B55
RST 28H
DEFW PRINT_A 1
INC HL

DJNZ L3B3C
POP AF

LD ($5C3C),A
CALL L3BBS
SCF

RET

CALL L1F20

RST 10H
CALL L1F45

JR L3B49

Exchange colour items.
Transfer address of edit buffer row to DE.
TVFLAG.

Editor flags.

Test the editing area flag.

Allow leading space.

Jump if editing area is the main screen.
Suppress leading space.

TVFLAG.

The first column position of the edit row.
Print AT.

HL=Address of edit buffer row.

32 columns.

Character present in this position?

Jump if character found.

Display a space for a null character.
Is it a single character or UDG?
Jump ifitis a UDG.

Print the character.

$0010.

Repeat for all column positions.

Restore original suppress leading space status.
TVFLAG.

Exchange colour items.

[Redundant since never subsequently checked]

Use Normal RAM Configuration (physical RAM
bank 0).

Print it (need to page in RAM bank 0 to allow
access to UDGs).

Use Workspace RAM configuration (physical
RAM bank 7).

Jump back for next character.

SPECTRUM 128 ROM o DISASSEMBLY

Clear Display Rows

L3B5E: CALL L3BB8 Exchange 48 and 128 editing colour items.
LD AD Bottom row to clear.
SUB B
INC A A=Number of rows to clear.
LDCA C=Number of rows to clear.
CALL L3B98 B=Number of rows to end of screen.

Clear display file row

L3B68: PUSH BC B=Row number. C=Row to clear.
RST 28H
DEFW CL_ADDR $OE9B. Find display file address.
LD C,$08 8 lines in the row.
L3B6E: PUSH HL Save start of row address.
LD B,$20 32 columns.
XOR A
L3B72: LD (HL),A Blank the row.
INC HL
DJINZ L3B72
POP HL Get start of row address.
INC H Next line.
DECC
JR NZ,L3B6E Repeat for all rows.
LD B,$20 32 columns.
PUSH BC
RST 28H
DEFW CL_ATTR $0ES88. Find attribute address.
EX DE,HL
POP BC BC=32 columns.

Reset display file attributes

LD A,($5C8D) ATTR_P.

L3B86: LD (HL),A Set display file position attribute.
INC HL
DJNZ L3B86 Repeat for all attributes in the row.

Repeat for next row

POP BC B=Row number. C=Number of rows to clear.
DEC B
DECC

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,L3B68 Repeat for all rows.

CALL L3BBS8 Exchange 48 and 128 editing colour items.
SCF [Redundant since never subsequently checked]
RET

Find Rows and Columns to End of Screen

This routine calculates the number of rows to the end row of the screen and the number of columns
to the end column of the screen. It takes into account the number of rows above the editing area.
Entry: B=Row number.

C=Column number.
Exit: B=Number of rows to end row of screen.

C=Number of columns to the end column of the screen.

L3B94: LD A$21 Reverse column number.
SUBC
LDCA C=33-C. Columns to end of screen.

Find Rows to End of Screen

This routine calculates the number of rows to the end row of the screen. It takes into account the
number of rows above the editing area.
Entry: B=Row number.
Exit: B=Number of rows to end of screen.
IX=Address of the cursor settings information.

L3B98: LD A,$18 Row 24.
SUB B A=24-B.
SUB (IX+$01) Subtract the number of rows above the editing
area.
LD B,A B=Rows to end of screen.
RET

Get Attribute Address
Get the address of the attribute byte for the character position (B,C).
Entry: B=Row number.
C=Column number.
Exit: HL=Address of attribute byte.

L3BAO: PUSH BC Save BC.

SPECTRUM 128 ROM o DISASSEMBLY

XOR A

LD D,B

LD EA

RR D

RRE

RR D

RR E

RR D

RRE

LD HL,$5800
LD B,A
ADD HL,BC
ADD HL,DE
POP BC
RET

Exchange Colour Items

Exchange 128 Editor and main colour items.
L3BBS8: PUSH AF
PUSH HL
PUSH DE

LD HL,($5C8D)
LD DE,($5C8F)
EXX

LD HL,($ECOF)

LD DE,($EC11)
LD ($5C8D),HL

LD ($5C8F),DE
EXX

LD ($ECOF),HL
LD ($EC11),DE

LD HL,$EC13

LD A,($5C91)
LD D,(HL)

LD (HL),A

LD AD

LD ($5C91),A
POP DE

A=0.

DE=B*256.

DE=B*32.

Start of attributes file.
B=0.

Add column offset.
Add row offset.
Restore BC.

Save registers.

ATTR_P, MASK_P. Fetch main colour items.
ATTR_T, MASK_T.

Store them.

Alternate Editor ATTR_P, MASK_P. Fetch
alternate Editor colour items.

Alternate Editor ATTR_T, MASK_T.

ATTR_P, MASK_P. Store alternate Editor colour

items as main colour items.

ATTR_T, MASK_T.

Retrieve main colour items ATTR_T and
MASK_T.

Alternate Editor ATTR_P, MASK_P.
Alternate Editor ATTR_T, MASK_T. Store
alternate Editor colour items as main colour
items.

Alternate P_FLAG. Temporary Editor store for
P_FLAG.

P_FLAG.

Fetch alternate Editor version.

Store main version in alternate Editor store.
A=Alternate Editor version.

P_FLAG. Store it as main version.

Restore registers.

SPECTRUM 128 ROM o DISASSEMBLY

POP HL
POP AF
RET

TAPE TESTER ROUTINE

The Tape Tester routine displays a bright blue bar completely across row 8, with 6 black markers
evenly distributed above it on row 7 (columns 1, 7, 13, 19, 25 and 31). The tape port is read 2048
times and the number of highs/lows counted. A cyan marker is placed on the blue bar to indicate the
ratio of high and lows. The higher the tape player volume, the further to the right the cyan marker will
appear. The Tape Tester can be exited by pressing BREAK (though only SPACE checked), ENTER
or EDIT (though only key 1 checked). Note that no attempt to read the keypad is made and so it cannot
be used to exit the Tape Tester.

Although the Sinclair manual suggests setting the tape player volume such that the cyan marker
appears as far to the right of the screen as possible, this does not guarantee the best possible loading
volume. Instead, it appears better to aim for the cyan marker appearing somewhere near the mid
point of the blue bar.

There are bugs in the Tape Tester code that can cause the cyan level marker to spill over onto the first
column of the row below. This is most likely to occur when the Tape Tester is selected whilst a tape
is already playing. The routine initially reads the state of the tape input and assumes this represents
silence.

It then monitors the tape input for 2048 samples and counts how many high levels appear on the tape
input. Should this initial reading of the tape port not correspond to silence then when a true period of
silence does occur it will be interpreted as continuous noise and hence a maximum sample count. It
is a maximum sample count that leads to the cyan marker spilling onto the next row.

L3BEQ: CALL L3C56 Signal no key press.
DI Turn interrupts off since need accurate timing.
IN A,($FE) Read tape input port (bit 5).
AND $40 Set the zero flag based on the state of the input
line.

[BUG - Ideally the input line should be read indefinitely and the routine only continue once the level
has remained the same for a large number of consecutive samples. The chances of the bug occurring
can be minimised by replacing the port read instructions above with the following code. Credit: Paul
Farrow.

LD BC,$7FFE Tape input port and keyboard row B to SPACE.

IN A,(C) Read the tape input port.

AND $40 Keep only the state of the input line.
BF23_START

LD E,A Save the initial state of the tape input line.

LD HL,$1000 Number of samples to monitor for changes in

input line state.
BF23 LOOP

SPECTRUM 128 ROM o DISASSEMBLY

IN A,(C)
BIT 0,A

JP Z,$3C56 (ROM 0)

AND $40
CPE

JR NZ,BF23_START

DEC HL
LD AH
OR L

JR NZ,BF23_LOOP

LD AE

EX AF,AF'

Read the keyboard and tape input port.

Test for SPACE (i.e. BREAK).

Exit Tape Tester if SPACE/BREAK pressed.
Keep only the state of the input line.

Has the line input state changed?

Jump if so to restart the sampling procedure.
Decrement the number of samples left to test.

Jump if more samples to test.
Fetch the input line state.]

Save initial state of the tape input.

Print 6 black attribute square across row 7, at 6 column intervals.

L3BFA:

LD HL,$58E1
LD DE,$0006
LD B,E

LD AD

LD (HL),A
ADD HL,DE
DJNZ L3BFA

Screen attribute position (7,1).

DE=column spacing of the black squares.
Count 6 black squares.

A=Flash 0, Bright 0, Paper black, Ink black.
Set a black square.

Move to next column position.

Repeat for all 6 black squares.

Now enter the main loop checking for the tape input signal

L3BFE:

L3C04:

LD HL,$0000

LD DE,$0800

LD BC,$BFFE
INA(C)

BIT 0,A

JR Z,L3C56
LD B,$7F

IN A,(C)

BIT 0,A

JR Z,L3C56

LD B,$F7
INA(C)
BIT 0,A

JR Z,L3C56

Count of the number of high signals read from the

tape port.

Read 2048 tape samples. [BUG - This should
be $07CO0 so that the maximum sample count
corresponds to column 31 and not column 32,
and hence a spill over onto the following row.
Credit: Paul Farrow]

Read keyboard row H to ENTER.

Test for ENTER.
Jump to exit Tape Tester if ENTER pressed.
Read keyboard row B to SPACE.

Test for SPACE (i.e. BREAK).

Jump to exit Tape Tester if SPACE/BREAK
pressed.

Read keyboard row 1 to 5.

Test for 1 (i.e. EDIT).
Jump to exit Tape Tester if 1/EDIT pressed.

SPECTRUM 128 ROM o DISASSEMBLY

L3C1D: DEC DE Decrement sample counter.
LD A,D
ORE
JR Z,L3C2B Zero flag set if all samples read.
IN A,($FE)
AND $40 Read the tape port.
JR Z,L3C1D If low then continue with next sample.
INC HL Tape port was high so increment high signal
counter.
JR L3C1D Continue with next sample.
L3C2B: RLL HL could hold up to $0800.
RLH
RL L
RLH HL=HL*4. HL could now hold $0000 to $2000.
EX AF,AF' Retrieve initial state of the tape port.
JR Z,L3C3D This dictates how to interpret the number of high

signals counted.

If the initial tape port level was high then invert the count in H, i.e. determine number of low signals.
Note that if H holds $00 then the following code will result in a column position for the cyan marker of
32, and hence it will appear in the first column of the row below.

EX AF,AF' Re-store initial state of the tape port.

LD A,$20 A=Column 32.

SUB H A=32-H. H could hold up to $20 so A could be
$00.

LD L,A L=32-H. L holds a value between $00 to $20.

JR L3C3F

If the initial tape port level was low then H holds the number of high signals found.

L3C3D: EX AF,AF' Retrieve initial state of the tape port.
LDLH L holds a value between $00 to $20.

L holds the column at which to show the cyan marker.

L3C3F: XOR A

LD H,A Set H to $00.

LD DE,$591F Attribute position (8,31).

LD B,$20 Print a blue bar 32 columns wide underneath the
6 black squares. It is drawn here so that it erases
the previous cyan marker.

LD A,$48 Flash 0, Bright 1, Paper blue, Ink black = Bright
blue.

El

HALT Wait for the screen to be redrawn.

SPECTRUM 128 ROM o DISASSEMBLY

DI
L3C4B: LD (DE),A Set each blue square in the attributes file.
DEC DE Move to previous attribute position.
DJNZ L3C4B Repeat for all 32 columns.
INC DE Move back to first attribute column.
ADD HL,DE Determine column to show cyan marker at.
LD A,$68 Flash 0, Bright 1, paper cyan, Ink O = Bright cyan.
LD (HL),A Show the cyan marker.
JR L3BFE Go back and count a new set of samples.

Half second delay then clear key press flag. This is called upon entry and exit of the Tape Tester.

L3C56: El Re-enable interrupts.
LD B,$19 Count 25 interrupts.
L3C59: HALT Wait for half a second.
DJNZ L3C59
LD HL,$5C3B FLAGS.
RES 5,(HL) Signal no key press
SCF Setting the carry flag here serves no purpose.
RET

EDITOR ROUTINES — PART 5

Tokenize BASIC Line

This routine serves two purposes. The first is to tokenize a typed BASIC line into a tokenized version.
The second is when a syntax error is subsequently detected within the tokenized line, and it is then
used to search for the position within the typed line where the error marker should be shown.

This routine parses the BASIC line entered by the user and generates a tokenized version in the
workspace area as pointed to by system variable E_LINE.

It suffers from a number of bugs related to the handling of '>' and '<' characters. The keywords '<>',
'>=" and '<=" are the only keywords that do not commence with letters and the routine traps these in a
different manner to all other keywords. If a '<' or '>' is encountered then it is not immediately copied to
the BASIC line workspace since the subsequent character must be examined as it could be a *>' or '='
character and therefore might form the keywords '<>', '>=' or '<=". A problem occurs if the subsequent
character is a letter since the parser now expects the start of a possible keyword. It should at this
point insert the '<' or '>" into the BASIC line workspace but neglects to do this. It is only when the next
non-letter character is encountered that the '<' or '>' gets inserted, but this is now after the previously
found string has been inserted. This results the following types of errors:

'PRINT varA>varB' is seen by the parser as 'PRINT varAvarB>' and hence a syntax error occurs.
'PRINT varA>varB1' is seen by the parser as 'PRINT varAvarB>1' and hence is accepted as a valid
statement.

A work-around is to follow the '<' or '>' with a space since this forces the '<' or ">' to be inserted before
the next potential keyword is examined.

SPECTRUM 128 ROM o DISASSEMBLY

A consequence of shifting a '<' or ">' is that a line such as 'PRINT a$>b$' is seen by the parser as
'PRINT abh>' and so it throws a syntax error.

The parser saved the ">' character for consideration when the next character was examined to see
if it was part of the keywords '<>', '>=' or '<=', but fails to discard it if the end of the statement is
immediately encountered. Modifying the statement to a form that will be accepted will still cause a
syntax error since the parser mistakenly believes the '>' character applies to this statement.

The parser identifies string literals contained within quotes and will not tokenize any keywords that
appear inside them, except for the keywords "<>", "<=" and ">=" which it neglects to check for.
Keywords are also not tokenized following a REM statement, except again for "<>", "<="and ">=", until
the end of the line is reached. This differs slightly to 48K BASIC mode. In 48K BASIC mode, typing a
"' following a REM statement will cause a change from 'L' cursor mode to 'K' cursor mode and hence
the next key press results in a keyword token being inserted. In 128K BASIC mode, typing a "' will
not change to 'K' cursor mode and hence the next key press will just be the letter, number or symbol.
This does not affect the running of the program since 48K BASIC mode will ignore all characters after
a REM command until the end of the line. However, creating such a REM statement in 128K BASIC
mode that appears similar to one created in 48K BASIC mode will result in more memory being used
since the 'keyword' must be spelled out letter by letter.

When being used to locate the error marker position, the same process is performed as when
tokenizing but no characters are actually inserted into the workspace (they are still there from when
the line was originally tokenized). Instead, a check is made after each character is processed to see if
the error marker address held in system variable X_PTR has been reached. If it does match then the
routine returns with BC holding the character position where the error marker should be displayed at.
Entry point - A syntax error was detected so the error marker must be located

L3C63: LD A,$01 Signal to locate the error marker.
JR L3C69 Jump forward.

Entry point - Tokenize the BASIC line

L3C67: LD A,$00 Signal to tokenize the BASIC line. [Could have
saved 1 byte by using XOR A]
L3C69: LD ($FD8A),A Store the ‘'locate error marker flag.
LD HL,$0000
LD ($FD85),HL Reset count of the number of characters in the
typed BASIC line being inserted.
LD ($FD87),HL Reset count of the number of characters in
the tokenized version of the BASIC line being
inserted.
ADD HL,SP
LD ($FD8B),HL Store the stack pointer.
CALL L34EA Clear BASIC line construction pointers (address

of next character in the Keyword Construction
Buffer and the address of the next character in
the BASIC line within the program area being de-
tokenized).

LD A,$00 [Could have saved 1 byte by using XOR A]

SPECTRUM 128 ROM o DISASSEMBLY

LD ($FD84),A

LD HL,$FD74

LD ($FD7D),HL
CALL L1F20

RST 28H

DEFW SET_MIN
CALL L1F45

LD A,$00

LD ($FD81),A
LD HL,($5C59)
LD ($FD82),HL

LD HL,$0000

LD ($FD7F),HL

Signal last character was not a keyword and was
not a space. [BUG - Should reset the '<' and >'
store at $FD89 to $00 here. Attempting to insert
a BASIC line such as 'PRINT VAL a$>b' will fail
since the parser does not like '>' immediately
after 'a$', due to the bug at $3CB8 (ROM 0).
The parser stores the ">' in $FD89 since it will
check the following character in case it should
replace the two characters with the token '<>',
'>=' or '<=". After the parser throws the syntax
error, it does not clear $FD89 and so even if the
line is modified such that it should be accepted,
e.g. 'PRINT VAL a$=b', the parser believes the
line is really >PRINT VAL n$=b' and so throws
another syntax error. Since a letter follows the
'>', the contents of $FD89 will get cleared and
hence a second attempt to insert the line will now
succeed. Credit: Paul Farrow]

HL=Start address of the Keyword Conversion
Buffer.

Store as the next available location.

Use Normal RAM Configuration (physical RAM
bank 0).

$16B0. Clear the editing areas.

Use Workspace RAM configuration (physical
RAM bank 7).

[Could have saved 1 byte by using XOR A, or 2
bytes by clearing this above]

Clear Keyword Conversion Buffer flags - not
within REM, not with Quotes, no characters in the
buffer.

E_LINE.

Store the address of the workspace for the
tokenized BASIC line.

[Could have saved 1 byte by using LD H,A
followed by LD L,A]

Signal no space character between words in the
Keyword Conversion Buffer.

Enter a loop to fetch each character from the BASIC line and insert it into the workspace, tokenizing
along the way

L3CAL: LD HL,($FD85)
INC HL Increment count of the number of characters in
the typed BASIC line.
LD ($FD85),HL

SPECTRUM 128 ROM o DISASSEMBLY

CALL L3D9D Fetch the next character from BASIC line being
inserted, return in B.
LDCA Save the character status value.

C=%$01 if not a space, not a letter, not a '# and not a '$'.
$02 if a'# or'$'.

$03 if a space.

$06 if a letter.

B=Character fetched.

LD A,($FD81) Have any Keyword Conversion Buffer flags been
set?

CP $00 Has anything be put into the buffer yet?

JR NZ,L3CF4 Jump if so.

The first character to potentially put into the Keyword Conversion Buffer

L3CB3: LDAC Retrieve the character status value.
AND $04 Is the character a letter?
JR Z,L3CED Jump if not.

Insert the character
L3CBS:

[BUG - At this point a '>' or '<' that was previously stored should be inserted into the BASIC line
workspace. However, the routine proceeds with the new potential keyword and this is entered into the
BASIC line workspace next. The >' or '<' will only be inserted when the next non-letter character is
encountered. This causes an expression such as 'a>b1' to be translated into ‘ab>1'. Credit: lan Collier
(+3), Paul Farrow (128)] [The bug can be fixed by testing if whether a '<' or '>' character is stored.
Credit: Paul Farrow.

LD A,($FD89)
AND A Was the last character a '>' or '<'?
JR Z,INSERT Jump if not.
PUSH BC Save the new character.
LD B,A
CALL $3E64 (ROM 0) Insert the >' or '<' into the BASIC line workspace.
POP BC Retrieve the new character.
XOR A
LD ($FD89),A Clear the *>' or '<'.
INSERT
CALL L3DE9 Insert the character into the Keyword Conversion

Buffer.

SPECTRUM 128 ROM o DISASSEMBLY

JR NC,L3CC4 Jump if no more room within the buffer, hence
string is too large to be a token.

LD A,$01 Signal Keyword Conversion Buffer contains
characters.

LD ($FD81),A

JR L3CA1 Jump back to fetch and process the next
character.

No room to insert the character into the Keyword Conversion Buffer hence string is too large to be
a valid token

L3CC4: LD HL,($FD7F) Fetch the address of the space character
between words within the Keyword Conversion
Buffer.
LD AL
ORH Is there an address set?
JP NZ,L3D1E Jump if so to copy the first word into the BASIC

line workspace and the move the second word
to the start of the Keyword Conversion Buffer.
Further characters can then be appended and
the contents re-evaluated in case a complete
keyword is then available.

Copy the Keyword Conversion Buffer into the BASIC line workspace

L3CCC: PUSH BC Save the character to insert.
CALL L3DCD Copy Keyword Conversion Buffer contents into
BASIC line workspace.
POP BC Retrieve the character to insert.
LD A,$00
LD ($FD81),A Signal the Keyword Conversion Buffer is empty.

C=%$01 if not a space, not a letter, not a '# and not a '$'.
$02 ifa'# or'$.

$03 if a space.

$06 if a letter.

B=Character fetched.

L3CDé6: LD AC Retrieve the character status value.
AND $01 Is it a space, or not a letter and not a '#' and not a
'$'?
JR NZ,L3CB3 Jump back if so to insert the character either into

the Keyword Conversion Buffer or the BASIC line
workspace.

SPECTRUM 128 ROM o DISASSEMBLY

The string was too long to be a keyword and was followed by a space, a '# or a '$'. Enter a loop to
insert each character of the string into the BASIC line workspace.

LDAB
CALL L3E16
RET NC

LD HL,($FD85)
INC HL

LD ($FD85),HL
CALL L3D9D

LD CA
JR L3CD6

Retrieve the character to insert.
Insert character into BASIC line workspace.
Return if tokenizing is complete.

Increment the count of the number of characters
in the typed BASIC line being inserted.

Fetch the next character from BASIC line being
inserted.

Save the flags.

Jump back to insert the character of the non-
keyword string into the BASIC line workspace.

The character is not a letter so insert directly into the BASIC line workspace

L3CED: LDAB
CALL L3E16

RET NC
JRL3CAl1

Retrieve the character to insert.

Insert character into BASIC line workspace,
tokenizing '<>', '<=" and '>=' if encountered.
Return if tokenizing is complete.

Jump back to fetch and process the next
character.

Keyword Conversion buffer flags are set - either the buffer already contains characters, or within

quotes or within a REM statement

L3CF4: CP $01

JR NZ,L3CED

Is the Keyword Conversion Buffer empty or the
contents marked as being within quotes or within
a REM?

Jump back if so to insert the character since this
is either the first character of a new word or is
within quotes or within a REM.

C=$01 if not a space, not a letter, not a '# and not a '$'.

$02ifa'# or's$'.
$03 if a space.
$06 if a letter.

LDAC
AND $01
JR Z,L3CB8

Retrieve the character status value.
Is it a letter or a '# or a'$'?
Jump if so to simply insert the character.

SPECTRUM 128 ROM o DISASSEMBLY

The character is a space, or is not a letter and not a '# and not a '$', i.e. the last character was the
end of a potential keyword

PUSH BC Save the next character to insert and the
character status value.
L3CFE: CALL L3F7E Attempt to identify the string in Keyword
Conversion Buffer.
POP BC Retrieve the next character to insert and the
character status value.
JR C,L3D7D Jump if keyword identified.

The string in the Keyword Conversion Buffer was not identified as a keyword

LD HL,($FD7F) Fetch the address of the space character
between words within the Keyword Conversion
Buffer.

LD AH

ORL Is there an address set, i.e. a space between
words?

JR NZ,L3D1E Jump if there is a space character.

LDA,C Retrieve the character status value.

AND $02 Is it a space?

JR Z,L3CCC Jump if not to copy Keyword Conversion Buffer

into the workspace since it is not a keyword.

Character is a space. Allow this as the keyword could be DEF FN, GO TO, GO SUB, etc.

CALL L3DE9 Insert the character into the Keyword Conversion
Buffer.

JR NC,L3CC4 Jump back if no room to insert the character, i.e.
not a keyword since too large.

LD HL,($FD7D) Fetch the next location address.

DEC HL Point back to the last character.

LD ($FD7F),HL Store as the address of the space character. This
is used for double keywords such as DEF FN.

JR L3CA1 Jump back to fetch and process the next
character.

The string in the Keyword Conversion Buffer contains two words separated by a space that do not
form a valid double keyword (such as DEF FN, GO SUB, GO TO, etc).

For a BASIC line such as 'IF FLAG THEN' the Keyword Conversion Buffer holds the characters 'FLAG
THEN'.

The 'FLAG' characters get moved to the workspace and the 'THEN' characters are shifted to the start
of the Keyword Conversion Buffer before being re-evaluated to see if they form a keyword.

L3D1E:

L3D2F:

SPECTRUM 128 ROM o DISASSEMBLY

PUSH BC
LD HL,$FD74

LD DE,($FD7F)

LD AD

CPH

JR NZ,L3D2F
LD AE

CPL

JR NZ,L3D2F
INC DE

DEC DE
JR L3D33

Save the character to insert and the character
status value.

Point to the start address of the Keyword
Conversion Buffer.

Fetch the address of the space character
between words within the Keyword Conversion
Buffer.

Is the space possibly at the start of the buffer?
Jump if not.

Is the space at the start of the buffer?

Jump if not.

Point to the next location within the buffer,
counter-acting the following decrement.

Point to the previous location within the buffer.
Jump ahead to copy all characters to the BASIC
line workspace.

Copy all characters from the Keyword Conversion Buffer prior to the space into the BASIC line

workspace

L3D32:

L3D33:

INC HL
LD A,(HL)

AND $7F
PUSH HL
PUSH DE

CALL L3E16

POP DE
POP HL
LD AH
CPD

JR NZ,L3D32
LD AL

CPE

JR NZ,L3D32

Now proceed to handle the next word

LD DE,($FD7F)

Point to the next location within the Keyword
Conversion Buffer.

Fetch a character from the Keyword Conversion
Buffer.

Mask off the terminator bit.

HL=Location within Keyword Conversion Buffer.
DE=Location of last character within the Keyword
conversion Buffer.

Insert character into BASIC line workspace,
including a stored '<' or '>' character.

Possibly reached the character prior to the
space?
Jump back if not to copy the next character.

Reached the character prior to the space?
Jump back if not to copy the next character.

DE=Address of the space character between
words.

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,$FD74
LD ($FD7F),HL

LD BC,($FD7D)

DEC BC

LD AD

CPH

JR NZ,L3D70
LD AE

CPL

JR NZ,L3D70

Set the address of the space character to be the
start of the buffer.

BC=Next location within the Keyword Conversion
Buffer.

Point to the last used location.

Is the space possibly at the start of the buffer?
Jump if not.

Is the space at the start of the buffer?
Jump if not.

The space character is at the start of the Keyword Conversion Buffer

INC DE
PUSH HL

LD HL,$0000
LD ($FD7F),HL
POP HL

LDAB
CPH

JR NZ,L3D70
LD AC

CPL

JR NZ,L3D70
POP BC

JR L3D8F

DE=Address after the space character within the
Keyword Conversion Buffer.

HL=Start address of the Keyword Conversion
Buffer.

Signal no space character between words.
HL=Start address of the Keyword Conversion
Buffer.

Is the space possibly the last character in the
buffer?
Jump if not.

Is the space the last character in the buffer?
Jump if not.

Retrieve the character to insert and the character
status value.

Jump ahead to continue.

The space is not at the start of the Keyword Conversion Buffer, i.e. the buffer contains another word

after the space.

The first word has already been copied to the BASIC line workspace so now copy the second word to
the start of the Keyword Conversion Buffer and then see if it is a valid keyword. [It is not recommended
to name a variable as per a keyword since statements such as 'PRINT then' will fail the syntax check
since the variable 'then' is interpreted as the keyword ‘'THEN' and so the statement is seen as 'PRINT
THEN', which in this case is invalid.] HL points to the start of the Keyword Conversion Buffer. DE

points to the space between the two words.

L3D70: LD A,(DE)
LD (HL),A
INC HL

Fetch a character from the second word.
Store it at the beginning of the buffer.

SPECTRUM 128 ROM o DISASSEMBLY

INC DE

AND $80 Reached the last character in the buffer, i.e. the
terminator bit set?

JR Z,L3D70 Jump if not to copy the next character.

LD ($FD7D),HL Store the new address of the next free location.

JR L3CFE Jump back to attempt identification of the 'second’

word as a keyword.

The string in the Keyword Conversion Buffer was identified as a keyword, so insert the token character
code of the keyword into the BASIC line workspace.
A=Character code of identified token.

L3D7D: PUSH BC Save the next character to insert and the
character status value.
CALL L3E16 Insert character held in A into BASIC line
workspace.
POP BC Retrieve the next character to insert and the

character status value.

The token has been inserted into the BASIC line workspace so reset the Keyword Conversion Buffer

LD HL,$0000
LD ($FD7F),HL Indicate no space character between words in the
Keyword Conversion Buffer.
LD A,($FD81) Fetch the flag bits.
CP $04 Within a REM statement?
JR Z,L.3D9%4 Jump if so to retain the 'within a REM' flag bit.
L3D8F: LD A,$00
LD ($FD81),A Signal no characters within the Keyword
Conversion Buffer.
L3D94: LD HL,$FD74 Start address of the Keyword Conversion Buffer.
LD ($FD7D),HL Store this as the next location within the buffer.
JP L3CB3 Jump back to insert the next character either into
the Keyword Conversion Buffer or the BASIC line
workspace.

Fetch Next Character and Character Status from BASIC Line to
Insert

Fetch the next character from the BASIC line being inserted and check whether a letter, a space, a
'#ora's.

Exit: B=Character.

A=301 if not a space, not a letter, not a '‘#' and not a '$'.

$02if a'# or'$.

$03 if a space.

$06 if a letter.

L3D9D:

L3DAC:

L3DAF:

L3DBD:

L3DCoO:

L3DC3:

SPECTRUM 128 ROM o DISASSEMBLY

CALL L2D54

LD B,A
CP'?

JR C,L3DAF
OR $20
CALL L3DC6
JR C,L3DC3
LD A,$01
RET

CP $20

JR Z,L3DCO
CP'#

JR Z,L3DBD
JR C,L3DAC
CP'$

JR NZ,L3DAC
LD A,$02
RET

LD A,$03
RET

LD A,$06
RET

Is Lowercase Letter?

L3DCE6:

CP $7B
RET NC
CP $61
CCF
RET

Fetch the next character from the BASIC line
being inserted.

Save the character.

$3F. Is it below '?' (the error marker)?

Jump if so.

Make lowercase.

Is it a letter?

Jump if so.

Indicate not space, not letter, not '#' and not '$'.

Is it a space?
Jump if so.

$23. Is it '#'?
Jump if so.

Jump if below '#'.
$24. I1sit'$?
Jump if not.
Indicate a '#' or '$".

Indicate a space.

Indicate a letter.

Is the character above 'z'?
Return with carry flag reset if above 'z'.
Is the character below 'a'?
Return with carry flag reset if below 'a'.

Copy Keyword Conversion Buffer Contents into BASIC Line

Workspace

L3DCD:

[To fix the error marker bug at $3EFB (ROM 0), the code below up until the instruction at $3DDA

(ROM 0) should have been as follows]

L3DDA:

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,$FD74

CALL $3DDA (ROM 0)

LD HL,$FD74
LD ($FD7D),HL
SUB A

LD ($FD7F),A
LD ($FD80),A

RET

LD HL,$FD74
LD ($FD7D),HL
SUB A

LD ($FD7F),A
LD ($FD80),A

LD A,(HL)
AND $7F
PUSH HL
CALL L3ESC

POP HL
LD A,(HL)
AND $80
RET NZ
INC HL
JR L3DDA

Start address of the Keyword Conversion Buffer.
Copy all characters into the BASIC line
workspace.

Start address of the Keyword Conversion Buffer.
Store the next available location.

A=0.

Signal no space character between words in the
Keyword Conversion Buffer.

Start address of the Keyword Conversion Buffer.
Store the next available location.
A=0.

Signal no space character between words in the
Keyword Conversion Buffer.

Fetch a character from the buffer.

Mask off the terminator bit.

Save buffer location.

Insert the character into the BASIC line
workspace, suppressing spaces as required.
Retrieve buffer location.

Re-fetch the character from the buffer.

Is it the terminator character?

Return if so.

Point to the next character in the buffer.
Jump back to handle next buffer character.

Insert Character into Keyword Conversion Buffer

Entry; B=Character to insert.
Exit : Carry flag reset if no room to insert the character within the buffer.

L3DEQ:

LD HL,($FD7D)
LD DE,$FD7D
LD A,D

CPH

JR NZ,L3DF8
LD AE

CPL

JP Z,L3E13

End of buffer not reached

Fetch address within Keyword Conversion Buffer.
Address after Keyword Conversion Buffer.

Has end of buffer possibly been reached?
Jump if not.

Has end of buffer been reached?
Jump if so. [Could have saved a byte by using JR
instead of JP]

L3DFS8:

SPECTRUM 128 ROM o DISASSEMBLY

LD DE,$FD74
LD AD

CPH

JR NZ,L3E03
LD AE

CPL

JR Z,L3E09

Start address of Keyword Conversion Buffer.

Possibly at the start of the buffer?
Jump if not.

At the start of the buffer?
Jump if so to simply store the character.

Not at the start of the buffer so need to remove terminator bit from the previous character

L3EO03:

L3E09:

DEC HL
LD A,(HL)
AND $7F
LD (HL),A
INC HL
LDAB
OR $80
LD (HL),A
INC HL
LD ($FD7D),HL
SCF

RET

End of buffer reached

L3E13:

SCF
CCF

RET

Point to the last character.
Clear the terminator bit from the last character.

Point back at the current location.
Retrieve the new character.

Set the terminator bit.

Store the character in the buffer.
Point to the next location.

Store the address of the next location.
Signal character inserted.

Clear the carry flag to indicate no room to insert
the character within the buffer.

Insert Character into BASIC Line Workspace, Handling '>' and

|<|

This routine inserts a character into the BASIC line workspace, tokenizing '>=', '<=" and '<>".
Entry: A=Character to insert.

Exit :

L3E16:

PUSH AF

If tokenizing a BASIC line then returns with carry flag reset if tokenizing is complete.

If searching for the error marker location then returns with the carry flag set if the error
marker has not been found,

otherwise a return is made to the main calling routine with BC holding the number of
characters in the typed BASIC line,

i.e. the error marker location is at the end of the line.

Save the character to insert.

SPECTRUM 128 ROM o DISASSEMBLY

[BUG - The string characters "<>", "<=" and ">=" get tokenized to a single character '<>', '<=' and
'>=' respectively even within quotes or a REM statement. Credit: Paul Collins (+3), Paul Farrow (128)]
[BUG - 128 BASIC mode handles a colon character found following a REM statement differently to
48K mode. In 48K mode, typing a colon returns the cursor into 'K' mode and hence the next key
press inserts a keyword token. In 128K mode, typing a colon does not cause the characters following
it to be interpreted as a possible keyword. There is no noticeable difference when executing the
REM statement since subsequent statements are ignored following a REM command. However, for
consistency the 128K mode editor ought to generate identical BASIC lines to those that would be
created from 48K mode. Credit: Paul Farrow] [The following instructions would be required fix the two
bugs described above. Credit: Paul Farrow.

LD A,($FD81)
BIT 1,A Within quotes?
JR NZ,WITHIN Jump forward if within quotes.
BIT 2,A Within a REM statement?
JR Z,NOT_WITHIN Jump forward if not within a REM statement.
POP AF
PUSH AF
CP"'
JR NZ,WITHIN Jump if not a colon.
LD A,($FD81)
AND $FB Signal not within a REM statement.
LD ($FD81),A
WITHIN
POP AF Retrieve the character to insert.
JP $3E64 (ROM 0) Simply insert the character into the BASIC line
workspace.
NOT_WITHIN
LD A,($FD89) Was the previous character '<' or '>'?
ORA
JR NZ,L3E2F Jump if so.
POP AF Retrieve the character to insert.
CP "> $3E. Is it '>'?
JR Z,L3E2A Jump if so to store for special treatment later.
CP'< $3C. Isit'<'?
JR Z,L3E2A Jump if so to store for special treatment later.
L3E26: CALL L3E64 Insert the character into the BASIC line
workspace.
RET [Could have saved 1 byte by using JP $3E64

The character was '<' or '>'

L3E2A:

LD ($FD89),A

(ROM 0)]

Store '<' or '>'.

SPECTRUM 128 ROM o DISASSEMBLY

SCF

RET
The previous character was '<' or '>'

L3E2F: CP <
LD A,$00
LD ($FD89),A
JR NZ,L3E52

Previous character was '<'

POP AF
CP >
JR NZ,L3E41
LD A,$C9
JRL3E26
L3E41L: CP =
JR NZ,L3E49
LD A $C7
JRL3E26

Signal tokenizing not complete or error marker
not found.

$3C. Was the previous character '<'?
Reset the indicator that the previous
character was '<' or '>',

Jump ahead if not '<'.

Retrieve the character to insert.

$3E. Is it '>'?

Jump ahead if not.

Tokenize to the single character '<>'.

Jump back to insert the character and return.
$3D. Isit'="?

Jump ahead if not.

Tokenize to '<=".

Jump back to insert the character and return.

Previous character was '<' and new character is '<'

L3E49: PUSH AF
LD A<
CALL L3E64
POP AF
JR L3E26

Previous character was ">'

L3E52: POP AF
Cp'=
JR NZ,L3E5B
LD A$C8
JR L3E26

Save the current character to insert.

$3C.

Put the preceding '<' character into the line.
Retrieve the character to insert.

Jump back to insert the character and return.

Retrieve the character to insert.

$3D. Is it '='?

Jump ahead if not.

Tokenize to '>=".

Jump back to insert the character and return.

Previous character was '>' and new character is >'

L3E5B: PUSH AF
LD A,>'
CALL L3E64
POP AF

Save the current character to insert.

$3E.

Put the preceding '>' character into the line.
Retrieve the character to insert.

SPECTRUM 128 ROM o DISASSEMBLY

JR L3E26 Jump back to insert the character and return.

Insert Character into BASIC Line Workspace, Handling 'REM'
and Quotes

This routine inserts a character into the BASIC line workspace, with special handling of a 'REM'
command and strings contained within quotes.
Entry: A=Character to insert.
Exit: If tokenizing a BASIC line then returns with carry flag reset if tokenizing is complete.
If searching for the error marker location then returns with the carry flag set if the error
marker has not been found,

otherwise a return is made directly to the main calling routine with BC holding the number
of characters in the typed BASIC line,

i.e. the error marker location is at the end of the line.

L3E64: CP $0D Is it 'ENTER'?
JR Z,L3E88 Jump ahead if so.
CP $EA Is it 'REM'?
LD B,A Save the character.
JR NZ,L3E74 Jump ahead if not REM.

It is a 'REM' character

LD A,$04 Indicate that within a REM statement.
LD ($FD81),A
JR L3E82 Jump ahead to insert the character into the
BASIC line workspace.
L3E74: CP $22 Is it a quote?
JR NZ,L3E82 Jump ahead if not.

It is a quote character

LD A,($FD81)
AND $FE Signal last character was not a keyword.
XOR $02 Toggle the ‘within quotes' flag. Will be 1 for an

opening quote, then 0 for a closing quote.
LD ($FD81),A

L3E82: LD AB Retrieve the character.
CALL L3E9C Insert the character into the BASIC line
workspace, suppressing spaces as required.
SCF Indicate BASIC line tokenization not complete.
RET

It is an 'ENTER' character

SPECTRUM 128 ROM o DISASSEMBLY

[BUG - At this point a check should be made to see whether the last character was a space. If it was
then it will not have been inserted but instead the flag in $FD84 (ROM 0) will have been set. The
purpose of the flag is to filter out double spaces caused by the leading/trailing spaces of tokens. Only
if the following character is not a space will the previous character, the space, be inserted. When the
end of the line is found, there is no attempt to insert this space. The bug can be fixed by the two
modifications shown below. Credit: Paul Farrow]

L3E88: LD A,($FD8A) Fetch the 'locate error marker' flag.
CP $00 Searching for the error marker following a syntax
error? [Could have saved 1 byte by using AND A]

JR Z,L3E99 Jump if tokenizing the BASIC line.

The end of the line was reached and no error marker was found so assume the error marker exists
at the end of the typed line

LD BC,($FD85) BC=Count of number of the characters in the
typed BASIC line being inserted.
LD HL,($FD8B)

[The first part of the fix for
the trailing space bug is as

follows:

LD A,($FD84) Fetch the BASIC line insertion flags.

AND $02 Was the last character a space?

JR Z,GOT_COUNT Jump if not.

INC BC Increment to account for the final space.
GOT_COUNT

LD SP,HL Restore the stack pointer.

SCF Indicate the error marker was not found within the

tokenized BASIC line.
RET Return back to the top level calling routine, to

$2D04 (ROM 0).
Tokenizing the BASIC line
L3E99:

[The second part of the fix for
the trailing space bug is as

follows:
LD A,($FD84) Fetch the BASIC line insertion flags.
AND $02 Was the last character a space?

LD A,$20 Insert a space into the line.

SPECTRUM 128 ROM o DISASSEMBLY

CALL NZ,$3EFB (ROM 0) If so then insert the character into the BASIC line
workspace.]

SCF
CCF Carry flag reset to indicate tokenizing complete.
RET

Insert Character into BASIC Line Workspace With Space
Suppression

This routine is called to insert a character into the BASIC line workspace, suppressing both leading
and trailing spaces around tokens, e.g. 'PRINT 10' does not require a space stored between 'PRINT'
and '10" within the BASIC line.

The routine maintains two flags which indicate whether the last character was a space or was a
token. Whenever a space is encountered, it is noted but not inserted straight away. It is only after
the subsequent character is examined that the routine can determine whether the space should or
should not be inserted.

Entry: A=Character to insert.

Exit: A=Updated BASIC line insertion flags.

L3E9C: LD EA Save the character to insert in E.
LD A,($FD84)
LDD,A D=BASIC line insertion flags.
LD AE Restore character to insert back to A.
CP $20 Is it a space?
JR NZ,L3EC6 Jump ahead if not.

Character to insert is a space

LD AD A=BASIC line insertion flags.
AND $01 Was the last character a token?
JR NZ,L3EBF Jump ahead if so.

LD AD A=BASIC line insertion flags.
AND $02 Was the last character a space?
JR NZ,L3EB7 Jump ahead if so.

Character to insert is a space and the last character was not a space/token. This could be the start
of a new keyword so note the space but do not insert it now.

LD AD
OR $02

LD ($FD84),A

RET

A=BASIC line insertion flags.
Signal the last character was a space.
Store the updated BASIC line insertion flags.

SPECTRUM 128 ROM o DISASSEMBLY

Character to insert is a space and the last character was a space. The new space could be the start
of a new keyword so keep the 'last character was a space' flag set but insert a space for the previous
space that was noted.

L3EB7: LD AE Retrieve the character to insert.
CALL L3EFB Insert the character into the BASIC line
workspace.
LD A,($FD84) A=BASIC line insertion flags.
RET

Character to insert is a space and the last character was a token. Do not insert trailing spaces for
tokens.

L3EBF: LD AD A=BASIC line insertion flags.
AND $FE Signal last character was not a token.
LD ($FD84),A Store the updated BASIC line insertion flags.
RET [Could have saved 2 bytes by using JR $3EB3
(ROM 0)]

Character to insert is not a space

L3ECE6: CP $A3 Compare against the token 'SPECTRUM' (the
first 128K keyword).
JR NC,L3EEE Jump ahead if a token.

Character to insert is not a space and not a token

LD AD A=BASIC line insertion flags.
AND $02 Was the last character a space?
JR NZ,L3EDA Jump ahead if it was.

Character to insert is not a space and not a token and the last character inserted was not a space,
S0 just insert the character

LD AD A=BASIC line insertion flags.

AND $FE Signal last character was not a keyword.

LD ($FD84),A Store the new flags.

LD AE Retrieve the character to insert.

CALL L3EFB Insert the character into the BASIC line
workspace.

RET [Could have saved one byte by using JP $3EFB

(ROM 0)]

SPECTRUM 128 ROM o DISASSEMBLY

Character to insert is not a space and not a token and the last character was a space. Since the new
character is not a token, the previous space was not the start of a new keyword so insert a space
and then the new character.

L3EDA: PUSH DE Save the BASIC line insertion flags.

LD A,$20 Insert a space into the line.

CALL L3EFB Insert the character into the BASIC line
workspace.

POP DE Retrieve the flags.

LD AD A=BASIC line insertion flags.

AND $FE Signal last character was not a keyword.

AND $FD Signal last character was not a space.

LD ($FD84),A Store the updated BASIC line insertion flags.
[Could have saved 6 bytes by using JR $3ED2
(ROM 0)]

LD AE Retrieve the character to insert.

CALL L3EFB Insert the character into the BASIC line
workspace.

RET

Character to insert is a token. Clear any previously noted space since leading spaces are not required
for tokens.

L3EEE: LD AD A=BASIC line insertion flags.

AND $FD Signal last character was not a space.

OR $01 Signal last character was a keyword.

LD ($FD84),A Store the updated BASIC line insertion flags.
[Could have saved 6 bytes by using JR $3ED2
(ROM 0)]

LD AE Retrieve the character to insert.

CALL L3EFB Insert the character into the BASIC line
workspace.

RET

Insert a Character into BASIC Line Workspace

This routine is called for two purposes. The first use is for inserting a character or token into the BASIC
line workspace (situated at E_LINE).

The second use is after a syntax error has been identified within the tokenized BASIC line in the
workspace and the location of the error marker needs to be established. For the second case, the
system variable X_PTR holds the address of where the error occurred within the tokenized BASIC
line in the workspace.

The Editor needs to identify how many characters there are before the equivalent error position is
reached within the typed BASIC line. To locate it, the typed BASIC line is re-parsed but this time without
inserting any characters into the BASIC line workspace, since this still contains the tokenized line from

SPECTRUM 128 ROM o DISASSEMBLY

before. This tokenized line will now also include embedded floating point numbers for any numeric
literals contained within the BASIC line. As the typed line is re-parsed, a count of the characters
examined so far is kept and instead of inserting tokenized characters within the BASIC line workspace,
a check is made to see whether the insertion location has reached the address of the error marker. If it
has then the parsing of the BASIC line terminates and the count of the typed line characters indicates
the equivalent position within it of the error. However, should the last character have been a token
then the typed line count will also include the number of characters that form the keyword, and so this
must be subtracted from the count.
Entry: A=Character to insert.

DE=Address of insertion position within the BASIC line workspace.
Exit: If searching for the error marker position and it is found then a return is made directly to the

top level calling routine with BC holding the number of characters in

the typed BASIC line prior to the equivalent error marker position.

L3EFB: LD HL,($FD87)
INC HL Increment the count of the number of characters
in the tokenized BASIC line.
LD ($FD87),HL
LD HL,($FD82) HL=Address of next insertion position in the

BASIC line workspace.

LD B,A Save the character to insert.
LD A,($FD8A) Fetch the 'locate error marker' flag.
CP $00 Searching for the error marker following a syntax

error? [Could have saved 1 byte by using AND A]

LDAB
JR Z,L3F33

Locating the error marker

LD DE,($5C5F)

A=Character to insert.
Jump if tokenizing the BASIC line.

X_PTR. Fetch the address of the character after
the error marker.

LD AH

CPD Has the error marker position possibly been
reached?

JR NZ,L3F30 Jump ahead if not.

LD AL

CPE Has the error marker position been reached?

JR NZ,L3F30 Jump ahead if not.

The error marker has been reached

[BUG - The desired character count until the error marker is held at address $FD85 and needs the
length of the last character to be removed from it, which for a token would be several bytes. However,
the routine simply returns the lower of the tokenized and typed counts, and this yields very unhelpful
error marker positions shown within the typed BASIC line. Credit: lan Collier (+3), Andrew Owen (128)]
[The code below up until the instruction at $3F2A (ROM 0) should have been as follows. Changes to
the code at $3DCD (ROM 0) are also required. Credit: Paul Farrow.

L3F2A:

The error marker has not yet been reached

L3F30:

SPECTRUM 128 ROM o DISASSEMBLY

LD HL,($FD7D)
LD DE,$FD74

AND A
SBC HL,DE

EX DE,HL

LD HL,($FD85)

SBC HL,DE
LD B,H
LD C,L

LD BC,($FD85)

LD HL,($FD87)

AND A
SBC HL,BC

JR NC,L3F2A
LD BC,($FD87)
LD HL,($FD8B)
LD SP,HL

SCF

RET

SCF

JR L3F35

Tokenizing the BASIC line

Fetch the next address within the Keyword
Conversion Buffer.

Fetch the start address of the Keyword
Conversion Buffer.

HL=Length of the keyword (excluding leading or
trailing spaces).

DE=Length of the keyword (excluding leading or
trailing spaces).

BC=Count of the number of characters in the
typed BASIC line until the error marker location
was found.

Subtract the number of characters in the keyword
text.

Transfer the result to BC, and then return via the
instructions at $3F2A (ROM 0) onwards.]

Count of the number of characters in the typed
BASIC line until the error marker location was
found.

Count of the number of characters in the
tokenized BASIC line until the error marker
location.

Jump if the tokenized version is longer than the
typed version.

Count of the number of characters in the
tokenized version of the BASIC line until the error
marker location.

Fetch the saved stack pointer.

Restore the stack pointer.

Set the carry flag to indicate the error marker has
been located.

Return back to the top level calling routine, to
$2D04 (ROM 0).

Set the carry flag to indicate error marker locating
mode.
Jump ahead to continue.

L3F33:

L3F35:

SPECTRUM 128 ROM o DISASSEMBLY

SCF
CCF

CALL L1F20

JR NC,L3F47

Reset carry flag to signal BASIC line tokenizing
mode.

Use Normal RAM Configuration (physical RAM
bank 0).

Jump if tokenizing the BASIC line.

Searching for the error marker so need to consider embedded floating point numbers

[BUG - This should fetch the next character from the tokenized BASIC line and not the current
character. This routine is called to process every visible character in the BASIC line, but is not called
for embedded floating point numbers. It must therefore test whether the current character is followed
by an embedded floating point number and if so to skip over it. The routine does make an attempt
to detect embedded floating point numbers but incorrectly performs the test on the visible character
and not the character that follows it. The bug can be fixed as replacing the LD A,(HL) instruction with

the following instructions. Credit: Paul Farrow.

Come here if tokenizing the BASIC line

INC HL
LD A,(HL)

DEC HL

LD A,(HL)
EX DE,HL

CP $0E
JR NZ,L3F5D
INC DE
INC DE
INC DE
INC DE

INC DE

JR L3F5D

Advance to the next character in the tokenized
BASIC line.

Fetch the next character in the tokenized BASIC
line.

Point back to the current character in the
tokenized BASIC line.]

Fetch the current character in the tokenized
BASIC line.

DE-=Insert position within the tokenized BASIC
line.

Is it the 'number' marker?

Jump ahead if not.

Skip over the 5 byte hidden number
representation.

[BUG - There should be another INC DE
instruction here to take into account the character
that the tokenizer would

have inserted. As a result, the attempt to locate
the error marker location will drift off by one byte
for every numeric

literal within the BASIC statement, and if there are
many numeric literals in the statement then the
error marker location

may never be found before the end of the
statement is parsed. Credit: lan Collier (+3),
Andrew Owen (128)]

Jump ahead to continue.

L3F47:

L3F5D:

SPECTRUM 128 ROM o DISASSEMBLY

PUSH AF

LD BC,$0001
PUSH HL
PUSH DE
CALL L3F66
POP DE
POP HL

RST 28H

DEFW POINTERS
LD HL,($5C65)
EX DE,HL

LDDR

POP AF

LD (DE),A

INC DE

CALL L1F45

LD ($FD82),DE

RET

Room for BC Bytes?

Test whether there is room for the specified number of bytes in the spare memory, producing error
"4 Out of memory" if not.
Entry: BC=Number of bytes required.

Exit :

L3F66:

LD HL,($5C65)
ADD HL,BC

JR C,L3F76
EX DE,HL
LD HL,$0082

ADD HL,DE
JR C,L3F76

Save the character to insert and the carry flag
reset.
Request to insert 1 byte.

Check that there is memory available for 1 byte,
automatically producing error '4" if not.

BC=Number of bytes. HL=Address location
before the position.

$1664. Update all system variables due to the
insertion. Exit with DE pointing to old STKEND
position, BC with number of bytes 'shifted'.
STKEND. Fetch the start of the spare memory.
DE=Address of spare memory. HL=Address of
character in the BASIC line.

Shift up all affected bytes to make the room for
the new character.

Retrieve the character to insert and the flags. The
carry flag will be reset and hence will indicate that
tokenizing the BASIC line is not complete.

Store the character in the BASIC line workspace.
Advance to the next character in the BASIC line.
Use Workspace RAM configuration (physical
RAM bank 7).

Store the address of the next insertion position
within the BASIC line workspace.

Returns if the room requested room is available else an error '4' is produced.

STKEND.

Would adding the specified number of bytes
overflow the RAM area?

Jump to produce an error if so.

DE=New end address.

Would there be at least 130 bytes at the top of
RAM?

Jump to produce an error if not.

SPECTRUM 128 ROM o DISASSEMBLY

SBC HL,SP If the stack is lower in memory, would there still
be enough room?
RET C Return if there would.
L3F76: LD A,$03
LD ($5C3A),A ERR_NR. Signal error "4 Out of Memory".
JP L0321 Jump to error handler routine.

Identify Keyword

This routine identifies the string within the Keyword Conversion Buffer and returns the token character
code. The last character of the string has bit 7 set.

The routine attempts to identify 48K mode keywords, 128K mode keywords and a number of mis-
spelled keywords (those that require a space within them).

Exit: Carry flag set if a keyword was identified.

A=Token character code.

L3F7E:

CALL $FD2E
RET C

Attempt to identify 48K mode keyword.
Return if keyword identified.

Attempt to identify 128K mode keywords and mis-spelled keywords.

Attempt to convert mis-spelled keywords

LD B,$F9 Base character code (results in codes $F9-$FF).

LD DE,$FD74 DE=Address of Keyword Conversion Buffer.

LD HL,L3594 HL=Keywords string table.

CALL $FD3B Attempt to identify 128K mode/mis-spelled
keyword.

RET NC Return if no keyword identified.

CP $FF Was it "CLOSE#"?
JR NZ,L3F96
LD A$D4 Use character code for 'CLOSE #'.
JR L3FB8 Jump ahead to continue.
L3F96: CP $FE Was it "OPEN#"?
JR NZ,L3F9E Jump if not.
LD A,$D3 Use character code for 'OPEN #'.
JR L3FB8 Jump ahead to continue.
L3F9E: CP $FD Was it "DEFFN"?
JR NZ,L3FA6 Jump if not.
LD A $CE Use character code for 'DEF FN'.
JR L3FB8 Jump ahead to continue.
L3FAG6: CP $FC Was it "GOSUB"?
JR NZ,L3FAE Jump if not.

LD A,$ED

Use character code for 'GO SUB'.

SPECTRUM 128 ROM o DISASSEMBLY

JR L3FB8 Jump ahead to continue.
L3FAE: CP $FB Was it "GOTO"?
JR NZ,L3FB6 Jump if not.
LD A$EC Use character code for 'GO TO'.
JR L3FB8 Jump ahead to continue.
L3FB6: SUB $56 Reduce to $A3 for 'SPECTRUM' and $A4 for
'PLAY".
L3FB8: SCF Signal keyword identified.
RET

Copy Data Block

This routine is used on 8 occasions to copy a block of default data.

Entry: DE=Destination address.
HL=Address of source data table, which starts with the number of bytes to copy
followed by the bytes themselves.

L3FBA: LD B,(HL) Get number of bytes to copy.
INC HL Point to the first byte to copy.

L3FBC: LD A,(HL) Fetch the byte from the source
LD (DE),A and copy it to the destination.
INC DE Increment destination address.
INC HL Increment source address.
DJINZ L3FBC Repeat for all bytes.
RET

Get Numeric Value for ASCIl Character

Exit: Carry flag set if character was numeric and A holding value.
[Never called by this ROM]

L3FC3: CP'0O' $30. Test against '0'.

CCF

RET NC Return with carry flag reset if not numeric
character.

CP"' $3A. Test against "'

RET NC Return with carry flag reset if not numeric
character.

SUB 'O $30. Get numeric value.

SCF Return with carry flag set to indicate a numeric
character.

RET

SPECTRUM 128 ROM o DISASSEMBLY

Call Action Handler Routine

If the code in A matches an entry in the table pointed to by HL then execute the action specified by
the entry's routine address.
Entry: A=Code.
HL=Address of action table.
Exit: Zero flag reset if no match found.
Carry flag reset if an error beep is required, or to signal no suitable action handler found.
HL=Address of next table entry if a match was found.

L3FCE: PUSH BC Save registers.
PUSH DE
LD B,(HL) Fetch number of table entries.
INC HL Point to first entry.
L3FD2: CP (HL) Possible match for A?
INC HL
LD E,(HL)
INC HL
LD D,(HL) DE=Address to call if a match.
JR Z,L3FE1 Jump if a match.
INC HL Next table entry.
DJINZ L3FD2 Repeat for next table entry.

No match found

SCF Return with carry flag reset to signal an error
beep is required
CCF and with the zero flag reset to signal a match was
not found.
POP DE Restore registers.
POP BC
RET
Found a match
L3FE1: EX DE,HL HL=Action routine to call.
POP DE
POP BC
CALL L3FEE Indirectly call the action handler routine.
JR C,L3FEB Jump if no error beep is required.
CPA Set zero flag to indicate a match was found.
RET Exit with carry flag reset to indicate error beep
required.

L3FEB: CPA Set zero flag to indicate a match was found.

SPECTRUM 128 ROM o DISASSEMBLY

SCF Signal no error beep required.
RET
L3FEE: JP (HL) Jump to the action handler routine.

PROGRAMMERS' INITIALS

[Provided by Andrew Owen]

L3FEF: DEFB $00
DEFM "MB" Martin Brennan.
DEFB $00
DEFM "SB" Steve Berry.
DEFB $00
DEFM "AC" Andrew Cummins.
DEFB $00
DEFM "RG" Rupert Goodwins.
DEFB $00
DEFM "KM*" Kevin Males.
DEFB $00

END OF ROM MARKER

L3FFF: DEFB $01
END

REFERENCE INFORMATION — PART 2

Routines Copied/Constructed in RAM

Construct Keyword Representation

This routine copies a keyword string from ROM 1 into the BASIC Line Construction Buffer, terminating
it with an 'end of BASIC line' marker (code ' '+$80). Only standard Spectrum keywords are handled
by this routine (SPECTRUM and PLAY are processed elsewhere).

The routine is run from RAM bank 7 at $FCAE so that access to both ROMs is available.

Depending on the value of A (which should be the ASCII code less $A5, e.g. 'RND', the first (48K)
keyword, has A=0), a different index into the token table is taken. This is to allow speedier lookup
since there are never more than 15 keywords to advance through.

Entry: A=Keyword character code-$A5 (range $00-$5A).

SPECTRUM 128 ROM o DISASSEMBLY

DE=Insertion address within BASIC Line Construction Buffer.
Copied to physical RAM bank 7 at $SFCAE-$FCFC by routine at $335F (ROM 0).

$FCAE DI Disable interrupts whilst paging.
LD BC,$7FFD
LD D,$17 Page in ROM 1, SCREEN 0, no locking, RAM

bank 7.

OUT (C),.D
CP $50 Was the token $F5 or above?
JR NC,$FCEB
CP $40 Was the token $E5 or above?
JR NC,$FCE4
CP $30 Was the token $D5 or above?
JR NC,$FCDD
CP $20 Was the token $C5 or above?
JR NC,$FCD6
CP $10 Was the token $B5 or above?
JR NC,$FCCF

Used for token range $A5-$B4 ($00 <= A <= $0F)

LD HL,$0096 Token table entry 'RND' in ROM 1.
JR $FCFO

Used for token range $B5-$C4 ($10 <= A <= $1F)

$FCCF SUB $10
LD HL,$00CF Token table entry 'ASN' in ROM 1.
JR $FCFO

Used for token range $C5-$D4 ($20 <= A <= $2F)

$FCD6 SUB $20
LD HL,$0100 Token table entry 'OR' in ROM 1.
JR $FCFO

Used for token range $D5-$E4 ($30 <= A <= $3F)

$FCDD SUB $30
LD HL,$013E Token table entry 'MERGE' in ROM 1.
JR $FCFO

Used for token range $E5-$F4 ($40 <= A <= $4F)

SPECTRUM 128 ROM o DISASSEMBLY

$FCE4 SUB $40
LD HL,$018B Token table entry 'RESTORE' in ROM 1.
JR $FCFO

Used for token range $F5-$FF (A >= $50)

$FCEB SUB $50

LD HL,$01D4 Token table entry 'PRINT' in ROM 1.
$FCFO LD B,A Take a copy of the index value.

ORA If A=0 then already have the entry address.
$FCF2 JR Z,$FCFD If indexed item found then jump ahead to copy

the characters of the token.

$FCF4 LD A,(HL) Fetch a character.

INC HL Point to next character.

AND $80 Has end of token marker been found?

JR Z,$FCF4 Loop back for next character if not.

DECB Count down the index of the required token.

Copy Keyword Characters

This routine copies a keyword string from ROM 1 into the BASIC Line Construction Buffer, terminating
it with an 'end of BASIC line' marker (code ' '+$80).
The routine is run from RAM bank 7 so that access to both ROMs is available.
Entry: HL=Address of keyword string in ROM 1.
DE-=Insertion address within BASIC Line Construction Buffer.

Copied to physical RAM bank 7 at $FCFD-$FD2D by subroutine at $335F (ROM 0).

$FCFD LD DE,$FCA3 DE=Keyword Construction Buffer.
LD ($FCA1),DE Store the start address of the constructed
keyword.
LD A,($FC9E) Print a leading space?
ORA
LD A,$00
LD ($FC9E),A Signal leading space not required.
JR NZ,$FD13 Jump if leading space not required.
LD A,$20 Print a leading space.
LD (DE),A Insert a leading space.
INC DE Advance to next buffer position.
$FD13 LD A,(HL) Fetch a character of the keyword.
LD B,A Store it.
INC HL Advance to next keyword character.
LD (DE),A Store the keyword character in the BASIC line
buffer.
INC DE Advance to the next buffer position.

AND $80 Test if the end of the keyword string.

SPECTRUM 128 ROM o DISASSEMBLY

JR Z,$FD13

LDAB
AND $7F

DEC DE

LD (DE),A
INC DE

LD A, +$80
LD (DE),A

LD A $07

LD BC,$7FFD
OUT (C),A

El

Identify Token

Jump back if not to repeat for all characters of the
keyword.

Get keyword character back.

Mask of bit 7 which indicates the end of string
marker.

Point back at the last character of the keyword
copied into the buffer

and store it.

Advance to the position in the buffer after the last
character of the keyword.

$A0. ' ' + end marker

Store an 'end of BASIC line so far' marker.

Page in ROM 0, SCREEN 0, no locking, RAM
bank 7.
Re-enable interrupts.

This routine identifies the string within the Keyword Conversion Buffer and returns the character code.
The last character of the string to identify has bit 7 set.

Exit: Carry flag set if token identified.

B=Character code.

Copied to physical RAM bank 7 at $FD2E-$FD69 by subroutine at $335F (ROM 0).

$FD2E DI
LD BC,$7FFD
LD D,$17
OUT (C),D
LD HL,$0096
LD B,$A5

Disable interrupts whilst paging.
Select ROM 1, SCREEN 0, RAM bank 7.

Address of token table in ROM 1.
Character code of the first token - 'RND'.

Entry point here used to match 128K mode tokens and mis-spelled tokens

$FD3B LD DE,$FD74

$FD3E LD A,(DE)
AND $7F
CP $61
LD A,(DE)
JR C,$FD48
AND $DF
$FD48 CP (HL)

Keyword Conversion Buffer holds the text to
match against.

Fetch a character from the buffer.

Mask off terminator bit.

Is it lowercase?

Fetch the character again from the buffer.

Jump if uppercase.

Make the character uppercase.

Does the character match the current item in the
token table?

SPECTRUM 128 ROM o DISASSEMBLY

JR NZ,$FD54 Jump if it does not.
INC HL Point to the next character in the buffer.
INC DE Point to the next character in the token table.
AND $80 Has the terminator been reached?
JR Z,$FD3E Jump back if not to test the next character in the
token.
A match was found
SCF Signal a match was found.
JR $FD60 Jump ahead to continue.
$FD54 INCB The next character code to test against.
JR Z,$FD5F Jump if all character codes tested.

The token does not match so skip to the next entry in the token table

$FD57 LD A,(HL) Fetch the character from the token table.
AND $80 Has the end terminator been found?
INC HL Point to the next character.
JR Z,$FD57 Jump back if no terminator found.
JR $FD3B Jump back to test against the next token.

All character codes tested and no match found
$FD5F ORA Clear the carry flag to indicate no match found.

The common exit point

$FD60 LD AB Fetch the character code of the matching token
($00 for no match).
LD D,$07 Select ROM 0, SCREEN 0, RAM bank 7.
LD BC,$7FFD
OUT (C),D
El Re-enable interrupts.

Insert Character into Display File

Copy a character into the display file.
Entry: HL=Character data.
DE=Display file address.
This ro utine is constructed from three segments and stitched together in physical RAM bank 7 to
form a single routine.
Created in physical RAM Bank 7 at $FF28-$FF60 by routine at $246F (ROM 0). [Construction routine
never actually called by the ROM]

SPECTRUM 128 ROM o DISASSEMBLY

$FF28 PUSH BC Save BC
DI Disable interrupts whilst paging.
LD BC,$7FFD
LD A,(BANK_M) $5B5C. Fetch current paging configuration.
XOR $10 Toggle ROMs.
OuT (C),A Perform paging.
El Re-enable interrupts.
EX AF,AF' Save the new configuration in A'.
LD C,D Save D.
LD A,(HL)
LD (DE),A Copy byte 1.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 2.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 3.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 4.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 5.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 6.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 7.
INC HL
INCD
LD A,(HL)
LD (DE),A Copy byte 8.
LDD,C Restore D.
EX AF,AF' Retrieve current paging configuration.
DI Disable interrupts whilst paging.
LD C,$FD Restore Paging I/O port number.
XOR $10 Toggle ROMs.
OuT (C),A Perform paging.
El Re-enable interrupts.

POP BC Restore BC.

SPECTRUM 128 ROM o DISASSEMBLY

Standard Error Report Codes

0—OK

1 — NEXT without FOR

2 — Variable not found

3 — Subscript wrong
4 — Out of memory

5 — Out of screen

6 — Number too big

7 — RETURN without GO SUB

8 — End of file
9 — STOP statement

A — Invalid argument

B — Integer out of range

C — Nonsense in BASIC

D — BREAK - CONT repeats
E — Out of DATA

F — Invalid file name

G — No room for line

H — STOP in INPUT

| — FOR without NEXT

J — Invalid I/O device

Successful completion, or jump to a line number bigger
than any existing.

The control variable does not exist (it has not been

set up by a FOR statement), but there is an ordinary
variable with the same name.

For a simple variable, this will happen if the variable is
used before it has been assigned to by a LET, READ
or INPUT statement, loaded from disk (or tape), or set
up in a FOR statement. For a subscripted variable, it
will happen if the variable is used before it has been
dimensioned in a DIM statement, or loaded from disk
(or tape).

A subscript is beyond the dimension of the array or
there are the wrong number of subscripts.

There is not enough room in the computer for what you
are trying to do.

An INPUT statement has tried to generate more than
23 lines in the lower half of the screen. Also occurs with
'PRINT AT 22,xx".

Calculations have yielded a number greater than
approximately 10"38.

There has been one more RETURN than there were
GO SUBs.

Input returned unacceptable character code.

After this, CONTINUE will not repeat the STOP but
carries on with the statement after.

The argument for a function is unsuitable.

When an integer is required, the floating point argument
is rounded to the nearest integer. If this is outside a
suitable range, then this error results.

The text of the (string) argument does not form a valid
expression.

BREAK was pressed during some peripheral operation.
You have tried to READ past the end of the DATA list.
SAVE with filename empty or longer than 10
characters.

There is not enough room left in memory to
accommodate the new program line.

Some INPUT data started with STOP.

A FOR loop was to be executed no times (e.g. FOR
n=1 TO 0) and corresponding NEXT statement could
not be found.

Attempting to input characters from or output characters
to a device that doesn't support it.

K — Invalid colour
L — BREAK into program

M — RAMTOP no good

N — Statement lost
O — Invalid Stream

P — FN without DEF

Q — Parameter error

R — Tape loading error

SPECTRUM 128 ROM o DISASSEMBLY

The number specified is not an appropriate value.
BREAK pressed. This is detected between two
statements.

The number specified for RAMTOP is either too big or
too small.

Jump to a statement that no longer exists.

Trying to input from or output to a stream that isn't
open or that is out of range (0...15), or trying to open a
stream that is out of range.

User-defined function used without a corresponding
DEF in the program.

Wrong number of arguments, or one of them is the
wrong type.

A file on tape was found but for some reason could not
be read in, or would not verify.

Standard System Variables
These occupy addresses $5C00-$5CB5.

KSTATE
LASTK
REPDEL

REPPER
DEFADD
K_DATA

TVDATA
STRMS
CHARS

RASP
PIP
ERR_NR

FLAGS

$5C00
$5C08
$5C09

$5CO0A

$5C0B

$5C0D

$5COE
$5C10
$5C36

$5C38
$5C39
$5C3A

$5C3B

8
1
1

IY-$3A
1Y-$32
1Y-$31

1Y-$30
IY-$2F
1Y-$2D
1Y-$2C
IY-$2A
1Y-$04
1Y-$02
1Y-$01
1Y+$00

IY+$01

Used in reading the keyboard.
Stores newly pressed key.

Time (in 50ths of a second) that a key must be held down
before it repeats. This starts off at 35.

Delay (in 50ths of a second) between successive repeats
of a key held down - initially 5.

Address of arguments of user defined function (if one is
being evaluated), otherwise 0.

Stores second byte of colour controls entered from
keyboard.

Stores bytes of colour, AT and TAB controls going to TV.
Addresses of channels attached to streams.

256 less than address of character set, which starts with **
and carries on to '©'.

Length of warning buzz.
Length of keyboard click.

1 less than the report code. Starts off at 255 (for -1) so
'PEEK 23610’ gives 255.

Various flags to control the BASIC system:

Bit 0: 1=Suppress leading space.

Bit 1: 1=Using printer, 0=Using screen.

Bit 2: 1=Print in L-Mode, 0=Print in K-Mode.

Bit 3: 1=L-Mode, 0=K-Mode.

Bit 4: 1=128K Mode, 0=48K Mode. [Always 0 on 48K
Spectrum]

Bit 5: 1=New key press code available in LAST_K.

TVFLAG

ERR_SP

LISTSP
MODE

NEWPPC
NSPPC
PPC
SUBPPC
BORDCR

E_PPC
VARS
DEST
CHANS
CURCHL

PROG
NXTLIN
DATADD
E_LINE
K_CUR
CH_ADD

X_PTR
WORKSP
STKBOT

$5C3C

$5C3D

$5C3F
$5C41

$5C42
$5C44
$5C45
$5C4A7
$5C48

$5C49
$5C4B
$5C4D
$5C4F
$5C51

$5C53
$5C55
$5C57
$5C59
$5C5B
$5C5D

$5C5F
$5C61
$5C63

SPECTRUM 128 ROM o DISASSEMBLY

1

N NDNNNDN N NDNDNDN P P NEDN

N N

1Y+$02

1Y+$03

IY+$05
IY+$07

1Y+$08
IY+$0A
1Y+$0B
1Y+$0D
IY+$0E

IY+$0F
IY+$11
1Y+$13
IY+$15
1Y+$17

1Y+$19
IY+$1B
IY+$1D
IY+$1F
IY+$21
IY+$23

1Y+$25
1Y+$27
1Y+$29

Bit 6: 1=Numeric variable, 0=String variable.

Bit 7: 1=Line execution, 0=Syntax checking.

Flags associated with the TV:

Bit 0 : 1=Using lower editing area, 0=Using main screen.
Bit 1-2: Not used (always 0).

Bit 3 : 1=Mode might have changed.

Bit 4 : 1=Automatic listing in main screen, 0=Ordinary
listing in main screen.

Bit 5 : 1=Lower screen requires clearing after a key press.

Bit 6 : 1=Tape Loader option selected (set but never
tested). [Always 0 on 48K Spectrum]

Bit 7 : Not used (always 0).

Address of item on machine stack to be used as error
return.

Address of return address from automatic listing.
Specifies cursor type:

$00="L" or 'C".

$01="E'.

$02='G".

$04='K".

Line to be jumped to.

Statement number in line to be jumped to.

Line number of statement currently being executed.
Number within line of statement currently being executed.

Border colour multiplied by 8; also contains the attributes
normally used for the lower half

of the screen.

Number of current line (with program cursor).
Address of variables.

Address of variable in assignment.

Address of channel data.

Address of information currently being used for input and
output

Address of BASIC program.

Address of next line in program.
Address of terminator of last DATA item.
Address of command being typed in.
Address of cursor.

Address of the next character to be interpreted - the
character after the argument of PEEK,

or the NEWLINE at the end of a POKE statement.
Address of the character after the '?' marker.
Address of temporary work space.

Address of bottom of calculator stack.

STKEND
BREG
MEM

FLAGS2

DF_Sz

S_TOP
OLDPPC
OSPPC

FLAGX

STRLEN
T_ADDR
SEED

FRAMES

ubG

COORDS

P_POSN
PR_CC

ECHO_E
DF_cC

DF_CCL
S_POSN

$5C65
$5C67
$5C68

$5C6A

$5C6B

$5C6C
$5C6E
$5C70

$5C71

$5C72
$5C74
$5C76
$5C78

$5C7B

$5C7D
$5C7E
$5C7F
$5C80

$5C82

$5C84
$5C86
$5C88

SPECTRUM 128 ROM o DISASSEMBLY

2 IY+$2B
1 1Y+$2D
2 IY+$2E
1 1Y+$30
1 1Y+$31
2 1Y+$32
2 1Y+$34
1 1Y+$36
1 1Y+$37
2 1Y+$38
2 IY+$3A
2 1Y+$3C
3 IY+$3E
2 IY+$41
1 1Y+$43
1 1Y+$44
1 1Y+$45
2 1Y+$46
2 1Y+$48
2 IY+$4A
2 1Y+$4C
1 IY+$4E

Address of start of spare space.
Calculator's B register.

Address of area used for calculator's memory (usually
MEMBOT, but not always).

Flags:

Bit 0 : 1=Screen requires clearing.
Bit 1 : 1=Printer buffer contains data.
Bit 2 : 1=In quotes.

Bit 3 : 1=CAPS LOCK on.

Bit 4 : 1=Using channel 'K".

Bit 5-7: Not used (always 0).

The number of lines (including one blank line) in the lower
part of the screen.

The number of the top program line in automatic listings.
Line number to which CONTINUE jumps.

Number within line of statement to which CONTINUE
jumps.

Flags:

Bit 0 : 1=Simple string complete so delete old copy.

Bit 1 : 1=Indicates new variable, 0=Variable exists.

Bit 2-4: Not used (always 0).

Bit 5 : 1=INPUT mode.

Bit 6 : 1=Numeric variable, 0=String variable. Holds nature
of existing variable.

Bit 7 : 1=Using INPUT LINE.

Length of string type destination in assignment.
Address of next item in syntax table.

The seed for RND. Set by RANDOMIZE.

3 byte (least significant byte first), frame counter
incremented every 20ms.

Address of first user-defined graphic. Can be changed to
save space by having fewer

user-defined characters.
X-coordinate of last point plotted.
Y-coordinate of last point plotted.
33-column number of printer position.

Full address of next position for LPRINT to print at (in ZX
Printer buffer).

Legal values $5B00 - $5B1F. [Not used in 128K mode]

33-column number and 24-line number (in lower half) of
end of input buffer.

Address in display file of PRINT position.
Like DF CC for lower part of screen.
33-column number for PRINT position.

$5C89
SPOSNL $5C8A
SCR_CT $5C8C
ATTR_P $5C8D
MASK_P $5C8E
ATTR_T $5C8F
MASK_T $5C90
P_FLAG $5C91
MEMBOT $5C92

$5CBO
RAMTOP $5CB2
P_RAMT $5CB4
Memory Map

SPECTRUM 128 ROM o DISASSEMBLY

1 IY+$4F
2 1Y+$50
1 1Y+$52
1 IY+$53
1 1Y+$54
1 IY+$55
1 1Y+$56
1 1Y+$57
30 IY+$58
2 IY+$76
2 1Y+$78
2 IY+$7A

24-line number for PRINT position.
Like S_POSN for lower part.

Counts scrolls - it is always 1 more than the number of
scrolls that will be done before

stopping with 'scroll?".
Permanent current colours, etc, as set up by colour
statements.

Used for transparent colours, etc. Any bit that is 1 shows
that the corresponding attribute

bit is taken not from ATTR_P, but from what is already on
the screen.

Temporary current colours (as set up by colour items).
Like MASK_P, but temporary.
Flags:

Bit 0: 1=OVER 1, 0=OVER 0.

Bit 1: Not used (always 0).

Bit 2: 1=INVERSE 1, 0=INVERSE 0.
Bit 3: Not used (always 0).

Bit 4: 1=Using INK 9.

Bit 5: Not used (always 0).

Bit 6: 1=Using PAPER 9.

Bit 7: Not used (always 0).

Calculator's memory area - used to store numbers that
cannot conveniently be put on the

calculator stack.

Not used on standard Spectrum. [Used by ZX Interface 1
Edition 2 for printer WIDTH]

Address of last byte of BASIC system area.
Address of last byte of physical RAM.

The conventional memory is used as follows:

SPECTRUM 128 ROM o DISASSEMBLY

BASIC Display Attributes New System | System

ROM File File Variables Variables
$0000 $4000 $5800 $5B00 $5C00 $5CB6 = CHANS

Channel BASIC Variables Edit Line $

80

Info 360 Program Area $60 or Command NL
CHANS PROG VARS E_LINE WORKSP

INPUT Temporary | Calculator Machine | GOSUB

?

data NL | Work Space | Stack Spare | o Stack ? | $3E | UDGs
WORKSP STKBOT STKEND SP RAMTOP UDG P_RAMT
| Register

The | register is used along with the R register by the Z80 for automatic memory refreshing. Setting
the | register to a value between $40 and $7F causes memory refreshes to occur to the lower 16K
RAM. This RAM is contended with the ULA which uses it for the generation of the video display.
The memory refreshes get interpreted by the ULA as the CPU requesting to access the lower 16K
RAM bank very rapidly and very often. The ULA is not able to handle reads at such a high frequency,
with the consequence that it fails to fetch and output the next screen byte. Instead it uses re-uses the
byte previously read. This causes a visible corruption to the video display output, often referred to a
'snow’, although no actual corruption occurs to the video display RAM. This also happens when the |
register is set to a value between $C0 and $FF when a contended RAM bank is paged in and, unlike
the Spectrum 16K/48K, can lead to a machine crash.

Screen File Formats

The two screens available on the Spectrum 128, the normal screen in RAM bank 5 ($4000-$5AFF)
and the shadow screen in RAM bank 7 ($C000-$FFFF), both use the same file format.

Display File
The display file consists of 3 areas, each consisting of 8 characters rows, with each row consisting
of 8 pixel lines.
Each pixel line consists of 32 cell columns, with each cell consisting of a byte that represents 8 pixels.
The address of a particular cell is formed as follows:
[si1fofajafijrfrfrjrfrjciclcfcfc]|
Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
where: s = Screen (0-1: 0=Normal screen, 1=Shadow Screen)
aa = Area (0-2)
rrr = Row (0-7)
Il = Line (0-7)

SPECTRUM 128 ROM o DISASSEMBLY

ccccc = Column (0-31)
An area value of 3 denotes the attributes file, which consists of a different format.

Attributes File

The attributes file consists of 24 characters rows, with each row consisting of 32 cell columns.
Each cell consisting of a byte that holds the colour information.
The address of a particular cell is formed as follows:
[sl1fofafijofrfrjrfrfrfcfcfcfcfec]
Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
where: s = Screen (0-1: 0=Normal screen, 1=Shadow Screen)
rrrrr = Row (0-23)
ccccc = Column (0-31)
Each cell holds a byte of colour information:
[flbfofpfpfififil
Bt: 7 6 5 4 3 2 1 0
where: f = Flash (0-1: 0=0ff, 1=0n)
b = Bright (0-1: 0=0Off, 1=0n)
ppp = Paper (0-7: 0=Black, 1=Blue, 2=Red, 3=Magenta, 4=Green, 5=Cyan,
6=Yellow, 7=White)
iii = Ink (0-7: 0=Black, 1=Blue, 2=Red, 3=Magenta, 4=Green, 5=Cyan,
6=Yellow, 7=White)

Address Conversion Between Display File and Attributes File

The address of the attribute cell corresponding to an address in the display file can be constructed
by moving bits 11 to 12 (the area value) to bit positions 8 to 9, setting bit 10 to 0 and setting bits
11to12to 1.

The address of the display file character cell corresponding to an address in the attributes file can
be constructed by moving bits 8 to 9 (the row value) to bit positions 11 to 12, and then setting bits
8to9to 0.

Standard I/O Ports

Port $FE

This controls the cassette interface, the speaker, the border colour and is used to read the keyboard.
Since it is the ULA that controls these facilities, it will introduce a delay when accessing the port if it
is busy at the time, and hence I/O port $FE is subject to contention.

OUTPUT:

Bit 0-2: Border colour (0=Black, 1=Blue, 2=Red, 3=Magenta, 4=Green, 5=Cyan, 6=Yellow, 7=White).
Bit 3 : MIC output (1=0ff, 0=0n).

SPECTRUM 128 ROM o DISASSEMBLY

Bit 4 : Speaker output (1=0n, 0=0ff).
Bit 5-7: Not used.
INPUT:
Upper byte selects keyboard row to read.
Bit0 Bitl Bit2 Bit3 Bit4 Bit4 Bit3 Bit2 Bitl Bit0

$F7FE 1 2 3 4 5 6 7 8 9 0 $EFFE
$FBFE Q W E R T Y U |) P $DFFE
$FDFE A S D F G H J K L ENTER $BFFE
$FEFE SHIFT Z X Cc \Y B N M SYM SPACE $7FFE

Bit 0-4 : Key states (corresponding bit is O if the key is pressed).
Bit 5 : Not used (always 1).

Bit 6 : EAR input.

Bit 7 : Not used (always 1).

Cassette Header Format

A file consists of a header block followed by a data block. Each block begins with a flag that indicates
whether it is a header block or a data block. Next are the header or data bytes, and finally a checksum
of the flag and header/data bytes.

Flag - A value of $00 for a header and $FF for a data block.

Bytes - The bytes forming the header information or the file data.

Checksum - An XOR checksum of the Flag and Bytes fields.

The header information consists of 17 bytes and these describe the size and type of data that the
data block contains.

The header bytes have the following meaning:

Byte $00 : File type - $00=Program, $01=Numeric array, $02=Character array, $03=Code/Screen$.
Bytes $01-$0A: File name, padding with trailing spaces.

Bytes $0B-$0C: Length of program/code block/screen$/array ($1B00 for screen$).

Bytes $0D-$0E: For a program, it holds the auto-run line number ($80 in byte $OE if no auto-run).
For code block/screen$ it holds the start address ($4000 for screen$).

For an array, it holds the variable name in byte $0E.

Bytes $0F-$10: Offset to the variables (i.e. length of program) if a program.

AY-3-8912 Programmable Sound Generator Registers

This is controlled through output I/O port $FFFD. It is driven from a 1.77345 MHz clock.
The datasheet for the AY-3-8912 lists to the registers in octal, but below they are listed in decimal.

Registers 0 and 1 (Channel A Tone Generator)

Forms a 12 bit pitch control for sound channel A. The basic unit of tone is the clock frequency divided
by 16, i.e. 110.841 kHz. With a 12 bit counter range, 4095 different frequencies from 27.067 Hz to
110.841 kHz (in increments of 27.067 Hz) can be generated.

Bits 0-7 : Contents of register 0.

Bits 8-11 : Contents of lower nibble of register 1.

Bits 12-15: Not used.

SPECTRUM 128 ROM o DISASSEMBLY

Registers 2 and 3 (Channel B Tone Generator)

Forms a 12 bit pitch control for sound channel B.
Bits 0-7 : Contents of register 2.

Bits 8-11 : Contents of lower nibble of register 3.
Bits 12-15: Not used.

Registers 4 and 5 (Channel C Tone Generator)

Forms a 12 bit pitch control for sound channel C.
Bits 0-7 : Contents of register 4.

Bits 8-11 : Contents of lower nibble of register 5.
Bits 12-15: Not used.

Register 6 (Noise Generator)

The frequency of the noise is obtained in the PSG by first counting down the input clock by 16 (i.e.
110.841 kHz), then by further counting down the result by the programmed 5 bit noise period value
held in bits 0-4 of register 6. With a 5 bit counter range, 31 different frequencies from 3.576 kHz to
110.841 kHz (in increments of 3.576 kHz) can be generated.

Register 7 (Mixer — I/O Enable)

This controls the enable status of the noise and tone mixers for the three channels, and also controls
the 1/0O port used to drive the RS232 and Keypad sockets.

Bit 0: Channel A Tone Enable (O=enabled).

Bit 1: Channel B Tone Enable (O=enabled).

Bit 2: Channel C Tone Enable (O=enabled).

Bit 3: Channel A Noise Enable (O=enabled).

Bit 4: Channel B Noise Enable (0O=enabled).

Bit 5: Channel C Noise Enable (O=enabled).

Bit 6: 1/0 Port Enable (O=input, 1=output).

Bit 7: Not used.

Register 8 (Channel A Volume)

This controls the volume of channel A.

Bits 0-4: Channel A volume level.

Bit 5 : 1=Use envelope defined by register 13 and ignore the volume setting.
Bits 6-7: Not used.

Register 9 (Channel B Volume)

This controls the volume of channel B.

Bits 0-4: Channel B volume level.

Bit 5 : 1=Use envelope defined by register 13 and ignore the volume setting.
Bits 6-7: Not used.

SPECTRUM 128 ROM o DISASSEMBLY

Register 10 (Channel C Volume)

This controls the volume of channel C.

Bits 0-4: Channel C volume level.

Bit 5 : 1=Use envelope defined by register 13 and ignore the volume setting.
Bits 6-7: Not used.

Register 11 and 12 (Envelope Period)

These registers allow the frequency of the envelope to be selected.

The frequency of the envelope is obtained in the PSG by first counting down the input clock by 256
(6.927 kHz), then further counting down the result by the programmed 16 bit envelope period value.
With a 16 bit counter range, 65535 different frequencies from 1.691 Hz to 110.841 kHz (in increments
of 1.691 Hz) can be generated.

Bits 0-7 : Contents of register 11.

Bits 8-15: Contents of register 12.

Register 13 (Envelope Shape)

This register allows the shape of the envelope to be selected.

The envelope generator further counts down the envelope frequency by 16, producing a 16-state
per cycle envelope pattern. The particular shape and cycle pattern of any desired envelope is
accomplished by controlling the count pattern of the 4 bit counter and by defining a single cycle or
repeat cycle pattern.

Bit 0 : Hold.

Bit 1 : Alternate.

Bit 2 : Attack.

Bit 3 : Continue.

Bits 4-7: Not used.

These control bits can produce the following envelope waveforms:

SPECTRUM 128 ROM o DISASSEMBLY

Bit:3210

00 XX Single decay then off.

Used by WO PLAY command.
01XX Single attack then off.

Used by W1 PLAY command.
1000 Repeated decay.

Used by W4 PLAY command.
1001 Single decay then off.

Not used by PLAY command (use WO instead).

1010 Repeated decay-attack.
Used by W7 PLAY command.
Single decay then hold.

1011 \J Used by W2 PLAY command.

Repeated attack.
1100 Used by W5 PLAY command.

Single attack then hold.

1101 Used by W3 PLAY command.
Repeated attack-delay.
1110 Used by W6 PLAY command.
Single attack then off.
1111 Not used by PLAY command (use W1 instead).

% ‘ ‘ e Envelope period

Register 14 (/O Port)

This controls the RS232 and Keypad sockets.

Once the register has been selected, it can be read via port $FFFD and written via port $BFFD.

Bit 0: KEYPAD CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 1: KEYPAD RXD (out) - 0=Transmit high bit, 1=Transmit low bit

Bit 2: RS232 CTS (out) - 0=Spectrum ready to receive, 1=Busy

Bit 3: RS232 RXD (out) - 0=Transmit high bit, 1=Transmit low bit

Bit 4: KEYPAD DTR (in) - 0=Keypad ready for data, 1=Busy

Bit 5: KEYPAD TXD (in) - 0=Receive high bit, 1=Receive low bit

Bit 6: RS232 DTR (in) - 0=Device ready for data, 1=Busy

Bit 7: RS232 TXD (in) - 0=Receive high bit, 1=Receive low bit

The RS232 port also doubles up as a MIDI port, with communications to MIDI devices occurring at
31250 baud.

Commands and data can be sent to MIDI devices. Command bytes have the most significant bit set,
whereas data bytes have it reset.

SPECTRUM 128 ROM o DISASSEMBLY

Socket Pin Outs

RS232/MIDI Socket

The RS232/MIDI socket is controlled by register 14 of the AY-3-8912 sound generator.

654 3 21 Front view

Pin Signal

ov

TXD - In (Bit 7)
RXD - Out (Bit 3)
DTR - In (Bit 6)
CTS - Out (Bit 2)
12v

o0 WN B

Keypad Socket

The keypad socket is controlled by register 14 of the AY-3-8912 sound generator.

Only bits 0 and 5 are used for communications with the keypad (pins 2 and 5).

Writing a 1 to bit O (pin 2) will eventually force the keypad to reset.

Summary information about the keypad and its communications protocol can be found in the Spectrum
128 Service Manual and a detailed description can be found at www.fruitcake.plus.com.

654 3 21 Front view

Pin Signal

1 ov

2 OUT - Out (Bit 0)
3 n/u - In (Bit 4)

4 n/u - Out (Bit 1)
5 IN - In (Bit 5)

6 12v

n/u = Not used for keypad communications.

The keypad socket was later used by Amstrad to support a lightgun. There are no routines within the
ROMs to handle communication with the lightgun so each game has to implement its own control
software. Only bits 4 and 5 are used for communication with the lightgun (pins 3 and 5).

The connections to the lightgun are as follows:

Pin Signal

1 ov

2 n/u - Out (Bit 0)

3 SENSOR - In (Bit 4)
4 n/u - Out (Bit 1)

SPECTRUM 128 ROM o DISASSEMBLY

5 TRIGGER - In (Bit 5)
6 12v
n/u = Not used for lightgun communication.

Monitor Socket

Pin Signal Level

1 Composite PAL 1.2V pk-pk (75 Ohms)
2 0 Volts ov

3 Bright Output TTL

4 Composite Sync TTL

5 Vertical Sync TTL

6 Green TTL

7 Red TTL

8 Blue TTL

A detailed description of the monitor socket and circuitry, and how to construct a suitable RGB SCART
cable can be found at www.fruitcake.plus.com.

Edge Connector

Pin Side A Side B
1 Al5 Al4
2 Al13 Al12
3 D7 +5V
4 n/u +9V
5 Slot Slot
6 DO ov

7 D1 ov

8 D2 ICLK
9 D6 A0
10 D5 Al
11 D3 A2

=
N

D4 A3

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/INT
/INMI
/HALT
IMREQ
/IORQ
/RD
/WR
-5V
IWAIT
+12V
-12v
M1
/RFSH
A8
A10
n/u

SPECTRUM 128 ROM o DISASSEMBLY

/IORQULA

ov

n/u (On 48K Spectrum = VIDEO)
n/u (On 48K Spectrum = /1Y)
n/u (On 48K Spectrum = V)
n/u (On 48K Spectrum = U)
/BUSREQ

/IRESET

A7

A6

A5

A4

/ROMCS

/BUSACK

A9

All

Side A=Component Side, Side B=Underside.
n/u = Not used.

	SPECTRUM 128 ROM 0 DISASSEMBLY
	NOTES
	Release Date
	Disassembly Contributors
	Markers

	REFERENCE INFORMATION — PART 1
	128 BASIC Mode Limitations
	Timing Information
	I/O Details
	Memory Paging
	Memory Map
	Shadow Display File
	Contended Memory
	Logical RAM Banks
	AY-3-8912 Sound Generator
	I/O Port A (AY-3-8912 Register 14)
	Standard I/O Ports

	Error Report Codes
	Standard Error Report Codes
	New Error Report Codes

	System Variables
	New System Variables
	Standard System Variables
	RAM Disk Catalogue
	Editor Workspace Variables

	Called ROM 1 Subroutines
	RESTART ROUTINES — PART 1
	RST $00 — Reset Machine
	RST $10 — Print A Character
	RST $18 — Collect A Character
	RST $20 — Collect Next Character
	RST $28 — Call Routine in ROM 1

	MASKABLE INTERRUPT ROUTINE
	ERROR HANDLER ROUTINES — PART 1
	128K Error Routine

	RESTART ROUTINES — PART 2
	Call ROM 1 Routine (RST $28 Continuation)

	RAM ROUTINES
	Swap to Other ROM (copied to $5B00)
	Return to Other ROM Routine (copied to $5B14)
	Error Handler Routine (copied to $5B1D)
	'P' Channel Input Routine (copied to $5B2F)
	'P' Channel Output Routine (copied to $5B34)
	'P' Channel Exit Routine (copied to $5B4A)

	ERROR HANDLER ROUTINES — PART 2
	Call Subroutine

	INITIALISATION ROUTINES — PART 1
	Reset Routine (RST $00 Continuation, Part 1)

	ROUTINE VECTOR TABLE
	INITIALISATION ROUTINES — PART 2
	Fatal RAM Error
	Reset Routine (RST $00 Continuation, Part 2)

	COMMAND EXECUTION ROUTINES — PART 1
	Execute Command Line
	Return from BASIC Line Syntax Check
	Parse a BASIC Line with No Line Number

	ERROR HANDLER ROUTINES — PART 3
	Error Handler Routine
	Error Handler Routine When Parsing BASIC Line

	COMMAND EXECUTION ROUTINES — PART 2
	Parse a BASIC Line with a Line Number

	ERROR HANDLER ROUTINES — PART 4
	New Error Message Vector Table
	New Error Message Table
	Print Message

	INITIALISATION ROUTINES — PART 3
	The 'Initial Channel Information'
	The 'Initial Stream Data'

	ERROR HANDLER ROUTINES — PART 5
	Produce Error Report
	Check for BREAK into Program

	RS232 PRINTER ROUTINES
	RS232 Channel Handler Routines
	FORMAT Routine
	Baud Rate Table
	RS232 Input Routine
	Read Byte from RS232 Port
	RS232 Output Routine
	Write Byte to RS232 Port
	COPY Command Routine
	Output Half Row
	Output Nibble of Pixels
	Output Characters from Table
	Test Whether Pixel (B,C) is Set
	EPSON Printer Control Code Tables

	PLAY COMMAND ROUTINES
	Command Data Block Format
	Channel Data Block Format
	Calculate Timing Loop Counter « RAM Routine »
	Test BREAK Key
	Select Channel Data Block Duration Pointers
	Select Channel Data Block Pointers
	Get Channel Data Block Address for Current String
	Next Channel Data Pointer
	PLAY Command (Continuation)
	PLAY Command Character Table
	Get Play Character
	Get Next Note in Semitones
	Get Numeric Value from Play String
	Multiply DE by 10
	Find Next Note from Channel String
	Play Command '!' (Comment)
	Play Command 'O' (Octave)
	Play Command 'N' (Separator)
	Play Command '(' (Start of Repeat)
	Play Command ')' (End of Repeat)
	Get Address of Bracket Pointer Store
	Play Command 'T' (Tempo)
	Tempo Command Return
	Play Command 'M' (Mixer)
	Play Command 'V' (Volume)
	Play Command 'U' (Use Volume Effect)
	Play command 'W' (Volume Effect Specifier)
	Play Command 'X' (Volume Effect Duration)
	Play Command 'Y' (MIDI Channel)
	Play Command 'Z' (MIDI Programming Code)
	Play Command 'H' (Stop)
	Play Commands 'a'..'g', 'A'..'G', '1'.."12", '&' and '_'
	End of String Found
	Point to Duration Length within Channel Data Block
	Store Entry in Command Data Block's Channel Duration Length Pointer Table
	PLAY Command Jump Table
	Envelope Waveform Lookup Table
	Identify Command Character
	Semitones Table
	Find Note Duration Length
	Note Duration Table
	Is Numeric Digit?
	Play a Note On a Sound Chip Channel
	Set Sound Generator Register
	Read Sound Generator Register
	Turn Off All Sound
	Get Previous Character from Play String
	Get Current Character from Play String
	Produce Play Error Reports
	Play Note on Each Channel
	Wait Note Duration
	Find Smallest Duration Length
	Play a Note on Each Channel and Update Channel Duration Lengths
	Note Lookup Table
	Play Note on MIDI Channel
	Turn MIDI Channel Off
	Send Byte to MIDI Device

	CASSETTE / RAM DISK COMMAND ROUTINES — PART 1
	SAVE Routine
	LOAD Routine
	VERIFY Routine
	MERGE Routine
	RAM Disk Command Handling
	RAM Disk VERIFY! Routine
	RAM Disk MERGE! Routine
	RAM Disk LOAD! Routine
	RAM Disk Load Bytes
	Get Expression from BASIC Line
	Check Filename and Copy
	Cassette / RAM Disk Command Handling

	EDITOR ROUTINES — PART 1
	Relist the BASIC Program from the Current Line
	Print All Screen Line Edit Buffer Rows to the Display File
	Clear Editing Display
	Shift All Edit Buffer Rows Up and Update Display File if Required
	Shift All Edit Buffer Rows Down and Update Display File if Required
	Insert Character into Edit Buffer Row, Shifting Row Right
	Insert Character into Edit Buffer Row, Shifting Row Left

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 1
	The Syntax Offset Table
	The Syntax Parameter Table
	The 'Main Parser' Of the BASIC Interpreter
	The Statement Loop
	The 'Separator' Subroutine
	The 'Statement Return' Subroutine
	The 'Line Run' Entry Point
	The 'Line New' Subroutine
	REM Routine
	The 'Line End' Routine
	The 'Line Use' Routine
	The 'Next Line' Routine
	The 'CHECK-END' Subroutine
	The 'STMT-NEXT' Routine
	The 'Command Class' Table
	The 'Command Classes — 0C, 0D & 0E'
	The 'Command Classes — 00, 03 & 05'
	The 'Command Class — 01'
	The 'Command Class — 02'
	The 'Command Class — 04'
	The 'Command Class — 08'
	The 'Command Class — 06'
	Report C — Nonsense in BASIC
	The 'Command Class — 0A'
	The 'Command Class — 07'
	The 'Command Class — 09'
	The 'Command Class — 0B'
	IF Routine
	FOR Routine
	READ Routine
	DATA Routine
	RUN Routine
	CLEAR Routine
	GO SUB Routine
	RETURN Routine
	DEF FN Routine
	MOVE Routine

	MENU ROUTINES — PART 1
	Run Tape Loader
	List Program to Printer

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 2
	SPECTRUM Routine

	MENU ROUTINES — PART 2
	Main Menu — 48 BASIC Option
	Set 'P' Channel Data
	LOAD "" Command Bytes

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 3
	LLIST Routine
	LIST Routine
	RAM Disk SAVE! Routine
	CAT! Routine
	ERASE! Routine

	RAM DISK COMMAND ROUTINES — PART 2
	Load Header from RAM Disk
	Load from RAM Disk

	PAGING ROUTINES — PART 1
	Page Logical RAM Bank
	Physical RAM Bank Mapping Table

	RAM DISK COMMAND ROUTINES — PART 3
	Compare Filenames
	Create New Catalogue Entry
	Adjust RAM Disk Free Space
	Find Catalogue Entry for Filename
	Find RAM Disk File
	Update Catalogue Entry
	Save Bytes to RAM Disk
	Load Bytes from RAM Disk
	Transfer Bytes to RAM Bank 4 — Vector Table Entry
	Transfer Bytes from RAM Bank 4 — Vector Table Entry

	PAGING ROUTINES — PART 2
	Use Normal RAM Configuration
	Select RAM Bank
	Use Workspace RAM Configuration

	RAM DISK COMMAND ROUTINES — PART 4
	Erase a RAM Disk File
	Print RAM Disk Catalogue
	Print Catalogue Filename Data
	Print Single Catalogue Entry

	BASIC LINE AND COMMAND INTERPRETATION ROUTINES — PART 4
	LPRINT Routine
	PRINT Routine
	INPUT Routine
	COPY Routine
	NEW Routine
	CIRCLE Routine
	DRAW Routine
	DIM Routine
	Error Report C — Nonsense in BASIC
	Clear Screen Routine
	Evaluate Numeric Expression
	Process Key Press
	Find Start of BASIC Command
	Is LET Command?
	Is Operator Character?
	Operator Tokens Table
	Is Function Character?
	Is Numeric or Function Expression?
	Is Numeric Character?
	PLAY Routine

	UNUSED ROUTINES — PART 1
	Return to Editor
	BC=HL-DE, Swap HL and DE
	Create Room for 1 Byte
	Room for BC Bytes?
	HL = A*32
	HL = A*8
	Find Amount of Free Space
	Print Screen Buffer Row
	Blank Screen Buffer Content
	Print Screen Buffer to Display File
	Print Screen Buffer Characters to Display File
	Copy A Character « RAM Routine »
	Toggle ROMs 1 « RAM Routine »
	Toggle ROMs 2 « RAM Routine »
	Construct 'Copy Character' Routine in RAM
	Set Attributes File from Screen Buffer
	Set Attributes for a Screen Buffer Row
	Swap Ink and Paper Attribute Bits
	Character Data

	KEY ACTION TABLES
	Editing Keys Action Table
	Menu Keys Action Table

	MENU ROUTINES — PART 3
	Initialise Mode Settings
	Show Main Menu

	EDITOR ROUTINES — PART 2
	Return to Editor / Calculator / Menu from Error
	Return to the Editor
	Main Waiting Loop
	Process Key Press
	TOGGLE Key Handler Routine
	Select Lower Screen
	Select Upper Screen
	Produce Error Beep
	Produce Success Beep

	MENU ROUTINES — PART 4
	Menu Key Press Handler Routines
	Menu Key Press Handler — MENU
	Menu Key Press Handler — SELECT
	Menu Key Press Handler — CURSOR UP
	Menu Key Press Handler — CURSOR DOWN

	Menu Tables
	Main Menu
	Edit Menu
	Calculator Menu
	Tape Loader Text

	Menu Handler Routines
	Edit Menu — Screen Option
	Main Menu — Tape Tester Option
	Edit Menu / Calculator Menu — Exit Option
	Main Menu — Tape Loader Option
	Edit Menu — Renumber Option
	Edit Menu — Print Option
	Main Menu — Calculator Option

	EDITOR ROUTINES — PART 3
	Reset Cursor Position
	Return to Main Menu
	Main Screen Error Cursor Settings
	Lower Screen Good Cursor Settings
	Initialise Lower Screen Editing Settings
	Initialise Main Screen Editing Settings
	Handle Key Press Character Code
	DELETE-RIGHT Key Handler Routine
	DELETE Key Handler Routine
	ENTER Key Handler Routine
	TOP-OF-PROGRAM Key Handler Routine
	END-OF-PROGRAM Key Handler Routine
	WORD-LEFT Key Handler Routine
	WORD-RIGHT Key Handler Routine
	Remove Cursor
	Show Cursor
	Display Cursor
	Fetch Cursor Position
	Store Cursor Position
	Get Current Character from Screen Line Edit Buffer
	TEN-ROWS-DOWN Key Handler Routine
	TEN-ROWS-UP Key Handler Routine
	END-OF-LINE Key Handler Routine
	START-OF-LINE Key Handler Routine
	CURSOR-UP Key Handler Routine
	CURSOR-DOWN Key Handler Routine
	CURSOR-LEFT Key Handler Routine
	CURSOR-RIGHT Key Handler Routine

	Edit Buffer Routines — Part 1
	Find Closest Screen Line Edit Buffer Editable Position to the Right else Left
	Find Closest Screen Line Edit Buffer Editable Position to the Left else Right
	Insert BASIC Line, Shift Edit Buffer Rows Down If Required and Update Display File If Required
	Insert BASIC Line, Shift Edit Buffer Rows Up If Required and Update Display File If Required
	Find Next Screen Line Edit Buffer Editable Position to Left, Wrapping Above if Required
	Find Next Screen Line Edit Buffer Editable Position to Right, Wrapping Below if Required
	Find Screen Line Edit Buffer Editable Position from Previous Column to the Right
	Find Screen Line Edit Buffer Editable Position to the Left
	Find Start of Word to Left in Screen Line Edit Buffer
	Find Start of Word to Right in Screen Line Edit Buffer
	Find Start of Current BASIC Line in Screen Line Edit Buffer
	Find End of Current BASIC Line in Screen Line Edit Buffer
	Insert BASIC Line into Program if Altered
	Insert Line into BASIC Program If Altered and the First Row of the Line
	Insert Line into BASIC Program
	Fetch Next Character from BASIC Line to Insert
	Fetch Next Character Jump Table
	Fetch Character from the Current Row of the BASIC Line in the Screen Line Edit Buffer
	Fetch Character from Edit Buffer Row
	Upper Screen Rows Table
	Lower Screen Rows Table
	Reset to Main Screen
	Reset to Lower Screen
	Find Edit Buffer Editable Position from Previous Column to the Right
	Find Edit Buffer Editable Position to the Left
	Fetch Edit Buffer Row Character
	Insert Character into Screen Line Edit Buffer
	Insert Blank Row into Screen Edit Buffer, Shifting Rows Down
	Empty Edit Buffer Row Data
	Delete a Character from a BASIC Line in the Screen Line Edit Buffer
	Shift Rows Up to Close Blank Row in Screen Line Edit Buffer
	DELETE-WORD-LEFT Key Handler Routine
	DELETE-WORD-RIGHT Key Handler Routine
	DELETE-TO-START-OF-LINE Key Handler Routine
	DELETE-TO-END-OF-LINE Key Handler Routine
	Remove Cursor Attribute and Disable Updating Display File
	Previous Character Exists in Screen Line Edit Buffer?
	Find Row Address in Screen Line Edit Buffer
	Find Position within Screen Line Edit Buffer
	Below-Screen Line Edit Buffer Settings
	Set Below-Screen Line Edit Buffer Settings
	Shift Up Rows in Below-Screen Line Edit Buffer
	Shift Down Rows in Below-Screen Line Edit Buffer
	Insert Character into Below-Screen Line Edit Buffer
	Find Row Address in Below-Screen Line Edit Buffer
	Delete a Character from a BASIC Line in the Below-Screen Line Edit Buffer
	Above-Screen Line Edit Buffer Settings
	Set Above-Screen Line Edit Buffer Settings
	Shift Rows Down in the Above-Screen Line Edit Buffer
	Shift Row Up into the Above-Screen Line Edit Buffer if Required
	Find Row Address in Above-Screen Line Edit Buffer
	BASIC Line Character Action Handler Jump Table
	Copy a BASIC Line into the Above-Screen or Below-Screen Line Edit Buffer
	Set 'Continuation' Row in Line Edit Buffer

	BASIC Line Handling Routines
	Find Address of BASIC Line with Specified Line Number
	Create Next Line Number Representation in Keyword Construction Buffer
	Fetch Next De-tokenized Character from Selected BASIC Line in Program Area
	Copy 'Insert Keyword Representation into Keyword Construction Buffer' Routine into RAM
	Insert Keyword Representation into Keyword Construction Buffer « RAM Routine »
	Copy Keyword Characters « RAM Routine »
	Identify Token from Table
	Create Next Line Number Representation in Keyword Construction Buffer
	Insert ASCII Line Number Digit
	Find Address of BASIC Line with Specified Line Number
	Move to Next BASIC Line
	Check if at End of BASIC Program
	Compare Line Numbers
	Clear BASIC Line Construction Pointers
	Find Address of BASIC Line
	Fetch Next De-tokenized Character from BASIC Line in Program Area

	Edit Buffer Routines — Part 2
	Keywords String Table
	Indentation Settings
	Set Indentation Settings
	Store Character in Column of Edit Buffer Row
	'Enter' Action Handler Routine
	'Null Columns' Action Handler Routine
	Null Column Positions
	Indent Edit Buffer Row
	Print Edit Buffer Row to Display File if Required
	Shift Up Edit Rows in Display File if Required
	Shift Down Edit Rows in Display File if Required
	Set Cursor Attribute Colour
	Restore Cursor Position Previous Attribute
	Reset 'L' Mode
	Wait for a Key Press

	MENU ROUTINES — PART 5
	Display Menu
	Plot a Line
	Print "AT B,C" Characters
	Print String
	Store Menu Screen Area
	Restore Menu Screen Area
	Store / Restore Menu Screen Row
	Move Up Menu
	Move Down Menu
	Toggle Menu Option Selection Highlight
	Menu Title Colours Table
	Menu Title Space Table
	Menu Sinclair Stripes Bitmaps
	Sinclair Strip 'Text'
	Print the Sinclair stripes on the menu
	Print '128 BASIC' Banner
	Print 'Calculator' Banner
	Print 'Tape Loader' Banner
	Print 'Tape Tester' Banner
	Print Banner
	Clear Lower Editing Display

	RENUMBER ROUTINE
	Tokens Using Line Numbers
	Parse a Line Renumbering Line Number References
	Count the Number of BASIC Lines
	Skip Spaces
	Create ASCII Line Number Representation
	Insert Line Number Digit

	EDITOR ROUTINES — PART 4
	Initial Lower Screen Cursor Settings
	Initial Main Screen Cursor Settings
	Set Main Screen Editing Cursor Details
	Set Lower Screen Editing Cursor Details

	UNUSED ROUTINES — PART 2
	Print 'AD'

	EDITOR ROUTINES — PART 5
	Store Cursor Colour
	Set Cursor Position Attribute
	Restore Cursor Position Attribute
	Shift Up Edit Rows in Display File
	Shift Down Edit Rows in Display File
	Print a Row of the Edit Buffer to the Screen
	Clear Display Rows
	Find Rows and Columns to End of Screen
	Find Rows to End of Screen
	Get Attribute Address
	Exchange Colour Items

	TAPE TESTER ROUTINE
	EDITOR ROUTINES — PART 5
	Tokenize BASIC Line
	Fetch Next Character and Character Status from BASIC Line to Insert
	Is Lowercase Letter?
	Copy Keyword Conversion Buffer Contents into BASIC Line Workspace
	Insert Character into Keyword Conversion Buffer
	Insert Character into BASIC Line Workspace, Handling '>' and '<'
	Insert Character into BASIC Line Workspace, Handling 'REM' and Quotes
	Insert Character into BASIC Line Workspace With Space Suppression
	Insert a Character into BASIC Line Workspace
	Room for BC Bytes?
	Identify Keyword
	Copy Data Block
	Get Numeric Value for ASCII Character
	Call Action Handler Routine

	PROGRAMMERS' INITIALS
	END OF ROM MARKER
	REFERENCE INFORMATION — PART 2
	Routines Copied/Constructed in RAM
	Construct Keyword Representation
	Copy Keyword Characters
	Identify Token
	Insert Character into Display File

	Standard Error Report Codes
	Standard System Variables
	Memory Map
	I Register
	Screen File Formats
	Display File
	Attributes File
	Address Conversion Between Display File and Attributes File

	Standard I/O Ports
	Port $FE

	Cassette Header Format
	AY-3-8912 Programmable Sound Generator Registers
	Registers 0 and 1 (Channel A Tone Generator)
	Registers 2 and 3 (Channel B Tone Generator)
	Registers 4 and 5 (Channel C Tone Generator)
	Register 6 (Noise Generator)
	Register 7 (Mixer — I/O Enable)
	Register 8 (Channel A Volume)
	Register 9 (Channel B Volume)
	Register 10 (Channel C Volume)
	Register 11 and 12 (Envelope Period)
	Register 13 (Envelope Shape)
	Register 14 (I/O Port)

	Socket Pin Outs
	RS232/MIDI Socket
	Keypad Socket
	Monitor Socket
	Edge Connector

